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Summary. Various types of the intermediate value theorem ([25]) are
proved. For their special cases, the Bolzano theorem is also proved. Using such
a theorem, it is shown that if a curve is a simple closed curve, then it is not
horizontally degenerated, neither is it vertically degenerated.

MML Identifier: TOPREAL5.

The articles [29], [33], [28], [16], [1], [27], [34], [6], [7], [4], [8], [32], [22], [35], [11],

[10], [24], [2], [5], [31], [17], [3], [12], [13], [14], [15], [18], [19], [21], [26], [23], [30],

[9], and [20] provide the notation and terminology for this paper.

1. Intermediate Value Theorems and Bolzano Theorem

For simplicity, we adopt the following convention: a, b, c, d, r1, r2, r3, r, r4,

s1, s2 are real numbers, p, q are points of E
2
T
, P is a subset of the carrier of E2

T
,

and X, Y , Z are non empty topological spaces.

Next we state a number of propositions:

(1) For all a, b, c holds c ∈ [a, b] iff a ¬ c and c ¬ b.

(2) Let f be a continuous mapping from X into Y and g be a continuous

mapping from Y into Z. Then g · f is a continuous mapping from X into

Z.

(3) Let A, B be subsets of the carrier of X. If A is open and B is open and

A ∩B = ∅X , then A and B are separated.
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(4) Let A, B1, B2 be subsets of the carrier of X. Suppose B1 is open and B2

is open and B1∩A 6= ∅ and B2∩A 6= ∅ and A ⊆ B1∪B2 and B1∩B2 = ∅.

Then A is not connected.

(5) Let f be a continuous mapping from X into Y and A be a subset of the

carrier of X. If A is connected and A 6= ∅, then f◦A is connected.

(6) For all r1, r2 such that r1 ¬ r2 holds Ω[(r1), r2]T is connected.

(7) For every subset A of the carrier of R
1 and for every a such that A =

{r : a < r} holds A is open.

(8) For every subset A of the carrier of R
1 and for every a such that A =

{r : a > r} holds A is open.

(9) Let A be a subset of the carrier of R1 and given a. Suppose a /∈ A and

there exist b, d such that b ∈ A and d ∈ A and b < a and a < d. Then A

is not connected.

(10) Let X be a non empty topological space, x1, x2 be points of X, a, b, d be

real numbers, and f be a continuous mapping from X into R
1. Suppose

X is connected and f(x1) = a and f(x2) = b and a ¬ d and d ¬ b. Then

there exists a point x3 of X such that f(x3) = d.

(11) Let X be a non empty topological space, x1, x2 be points of X, B be a

subset of the carrier of X, a, b, d be real numbers, and f be a continuous

mapping from X into R
1. Suppose B is connected and f(x1) = a and

f(x2) = b and a ¬ d and d ¬ b and x1 ∈ B and x2 ∈ B. Then there exists

a point x3 of X such that x3 ∈ B and f(x3) = d.

(12) Let given r1, r2, a, b. Suppose r1 < r2. Let f be a continuous mapping

from [(r1), r2]T into R
1 and given d. Suppose f(r1) = a and f(r2) = b and

a < d and d < b. Then there exists r3 such that f(r3) = d and r1 < r3

and r3 < r2.

(13) Let given r1, r2, a, b. Suppose r1 < r2. Let f be a continuous mapping

from [(r1), r2]T into R
1 and given d. Suppose f(r1) = a and f(r2) = b and

a > d and d > b. Then there exists r3 such that f(r3) = d and r1 < r3

and r3 < r2.

(14) Let r1, r2 be real numbers, g be a continuous mapping from [(r1), r2]T
into R

1, and given s1, s2. Suppose r1 < r2 and s1 · s2 < 0 and s1 = g(r1)

and s2 = g(r2). Then there exists r4 such that g(r4) = 0 and r1 < r4 and

r4 < r2.

(15) Let g be a map from I into R
1 and given s1, s2. Suppose g is continuous

and g(0) 6= g(1) and s1 = g(0) and s2 = g(1). Then there exists r4 such

that 0 < r4 and r4 < 1 and g(r4) = s1+s2
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2. Simple Closed Curves Are Not Flat

Next we state a number of propositions:

(16) For every map f from E2
T
into R

1 such that f = proj1 holds f is conti-

nuous.

(17) For every map f from E2
T
into R

1 such that f = proj2 holds f is conti-

nuous.

(18) Let P be a non empty subset of the carrier of E2
T
and f be a map from

I into (E2
T
)↾P. Suppose f is continuous. Then there exists a map g from I

into R
1 such that g is continuous and for all r, q such that r ∈ the carrier

of I and q = f(r) holds q1 = g(r).

(19) Let P be a non empty subset of the carrier of E2
T
and f be a map from

I into (E2
T
)↾P. Suppose f is continuous. Then there exists a map g from I

into R
1 such that g is continuous and for all r, q such that r ∈ the carrier

of I and q = f(r) holds q2 = g(r).

(20) Let P be a non empty subset of the carrier of E2
T
. Suppose P is simple

closed curve. Then it is not true that there exists r such that for every p

such that p ∈ P holds p2 = r.

(21) Let P be a non empty subset of the carrier of E2
T
. Suppose P is simple

closed curve. Then it is not true that there exists r such that for every p

such that p ∈ P holds p1 = r.

(22) For every compact non empty subset C of E2
T
such that C is a simple

closed curve holds N-boundC > S-boundC.

(23) For every compact non empty subset C of E2
T
such that C is a simple

closed curve holds E-boundC >W-boundC.

(24) For every compact non empty subset P of E2
T
such that P is a simple

closed curve holds S-minP 6= N-maxP.

(25) For every compact non empty subset P of E2
T
such that P is a simple

closed curve holds W-minP 6= E-maxP.
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