Intermediate Value Theorem and Thickness of Simple Closed Curves

Yatsuka Nakamura
Shinshu University
Nagano

Andrzej Trybulec
University of Białystok

Summary. Various types of the intermediate value theorem ([25]) are proved. For their special cases, the Bolzano theorem is also proved. Using such a theorem, it is shown that if a curve is a simple closed curve, then it is not horizontally degenerated, neither is it vertically degenerated.

MML Identifier: TOPREAL5.

The articles [29], [33], [28], [16], [1], [27], [34], [6], [7], [4], [8], [32], [22], [35], [11], [10], [24], [2], [5], [31], [17], [3], [12], [13], [14], [15], [18], [19], [21], [26], [23], [30], [9], and [20] provide the notation and terminology for this paper.

1. Intermediate Value Theorems and Bolzano Theorem

For simplicity, we adopt the following convention: $a, b, c, d, r_{1}, r_{2}, r_{3}, r, r_{4}$, s_{1}, s_{2} are real numbers, p, q are points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ is a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, and X, Y, Z are non empty topological spaces.

Next we state a number of propositions:
(1) For all a, b, c holds $c \in[a, b]$ iff $a \leqslant c$ and $c \leqslant b$.
(2) Let f be a continuous mapping from X into Y and g be a continuous mapping from Y into Z. Then $g \cdot f$ is a continuous mapping from X into Z.
(3) Let A, B be subsets of the carrier of X. If A is open and B is open and $A \cap B=\emptyset_{X}$, then A and B are separated.
(4) Let A, B_{1}, B_{2} be subsets of the carrier of X. Suppose B_{1} is open and B_{2} is open and $B_{1} \cap A \neq \emptyset$ and $B_{2} \cap A \neq \emptyset$ and $A \subseteq B_{1} \cup B_{2}$ and $B_{1} \cap B_{2}=\emptyset$. Then A is not connected.
(5) Let f be a continuous mapping from X into Y and A be a subset of the carrier of X. If A is connected and $A \neq \emptyset$, then $f^{\circ} A$ is connected.
(6) For all r_{1}, r_{2} such that $r_{1} \leqslant r_{2}$ holds $\Omega_{\left[\left(r_{1}\right), r_{2}\right]_{\mathrm{T}}}$ is connected.
(7) For every subset A of the carrier of $\mathbb{R}^{\mathbf{1}}$ and for every a such that $A=$ $\{r: a<r\}$ holds A is open.
(8) For every subset A of the carrier of $\mathbb{R}^{\mathbf{1}}$ and for every a such that $A=$ $\{r: a>r\}$ holds A is open.
(9) Let A be a subset of the carrier of $\mathbb{R}^{\mathbf{1}}$ and given a. Suppose $a \notin A$ and there exist b, d such that $b \in A$ and $d \in A$ and $b<a$ and $a<d$. Then A is not connected.
(10) Let X be a non empty topological space, x_{1}, x_{2} be points of X, a, b, d be real numbers, and f be a continuous mapping from X into $\mathbb{R}^{\mathbf{1}}$. Suppose X is connected and $f\left(x_{1}\right)=a$ and $f\left(x_{2}\right)=b$ and $a \leqslant d$ and $d \leqslant b$. Then there exists a point x_{3} of X such that $f\left(x_{3}\right)=d$.
(11) Let X be a non empty topological space, x_{1}, x_{2} be points of X, B be a subset of the carrier of X, a, b, d be real numbers, and f be a continuous mapping from X into $\mathbb{R}^{\mathbf{1}}$. Suppose B is connected and $f\left(x_{1}\right)=a$ and $f\left(x_{2}\right)=b$ and $a \leqslant d$ and $d \leqslant b$ and $x_{1} \in B$ and $x_{2} \in B$. Then there exists a point x_{3} of X such that $x_{3} \in B$ and $f\left(x_{3}\right)=d$.
(12) Let given r_{1}, r_{2}, a, b. Suppose $r_{1}<r_{2}$. Let f be a continuous mapping from $\left[\left(r_{1}\right), r_{2}\right]_{\mathrm{T}}$ into $\mathbb{R}^{\mathbf{1}}$ and given d. Suppose $f\left(r_{1}\right)=a$ and $f\left(r_{2}\right)=b$ and $a<d$ and $d<b$. Then there exists r_{3} such that $f\left(r_{3}\right)=d$ and $r_{1}<r_{3}$ and $r_{3}<r_{2}$.
(13) Let given r_{1}, r_{2}, a, b. Suppose $r_{1}<r_{2}$. Let f be a continuous mapping from $\left[\left(r_{1}\right), r_{2}\right]_{\mathrm{T}}$ into $\mathbb{R}^{\mathbf{1}}$ and given d. Suppose $f\left(r_{1}\right)=a$ and $f\left(r_{2}\right)=b$ and $a>d$ and $d>b$. Then there exists r_{3} such that $f\left(r_{3}\right)=d$ and $r_{1}<r_{3}$ and $r_{3}<r_{2}$.
(14) Let r_{1}, r_{2} be real numbers, g be a continuous mapping from $\left[\left(r_{1}\right), r_{2}\right]_{\mathrm{T}}$ into $\mathbb{R}^{\mathbf{1}}$, and given s_{1}, s_{2}. Suppose $r_{1}<r_{2}$ and $s_{1} \cdot s_{2}<0$ and $s_{1}=g\left(r_{1}\right)$ and $s_{2}=g\left(r_{2}\right)$. Then there exists r_{4} such that $g\left(r_{4}\right)=0$ and $r_{1}<r_{4}$ and $r_{4}<r_{2}$.
(15) Let g be a map from \mathbb{I} into $\mathbb{R}^{\mathbf{1}}$ and given s_{1}, s_{2}. Suppose g is continuous and $g(0) \neq g(1)$ and $s_{1}=g(0)$ and $s_{2}=g(1)$. Then there exists r_{4} such that $0<r_{4}$ and $r_{4}<1$ and $g\left(r_{4}\right)=\frac{s_{1}+s_{2}}{2}$.

2. Simple Closed Curves Are Not Flat

Next we state a number of propositions:
(16) For every map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathbb{R}^{\mathbf{1}}$ such that $f=$ proj1 holds f is continuous.
(17) For every map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathbb{R}^{\mathbf{1}}$ such that $f=\operatorname{proj} 2$ holds f is continuous.
(18) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$. Suppose f is continuous. Then there exists a map g from \mathbb{I} into $\mathbb{R}^{\mathbf{1}}$ such that g is continuous and for all r, q such that $r \in$ the carrier of \mathbb{I} and $q=f(r)$ holds $q_{1}=g(r)$.
(19) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$. Suppose f is continuous. Then there exists a map g from \mathbb{I} into $\mathbb{R}^{\mathbf{1}}$ such that g is continuous and for all r, q such that $r \in$ the carrier of \mathbb{I} and $q=f(r)$ holds $q_{2}=g(r)$.
(20) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is simple closed curve. Then it is not true that there exists r such that for every p such that $p \in P$ holds $p_{2}=r$.
(21) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is simple closed curve. Then it is not true that there exists r such that for every p such that $p \in P$ holds $p_{1}=r$.
(22) For every compact non empty subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ such that C is a simple closed curve holds N -bound $C>\mathrm{S}$-bound C.
(23) For every compact non empty subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ such that C is a simple closed curve holds E-bound $C>\mathrm{W}$-bound C.
(24) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that P is a simple closed curve holds $\mathrm{S}-\min P \neq \mathrm{N}-\max P$.
(25) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that P is a simple closed curve holds W-min $P \neq \mathrm{E}-$ max P.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[13] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[15] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[17] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[18] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[19] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1-16, 1992.
[20] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean space to each coordinates. Formalized Mathematics, 6(4):505-509, 1997.
[21] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[24] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[25] Georgi E. Shilov, editor. Elementary Real and Complex Analysis(English translation, translated by Richard A. Silverman). The MIT Press, 1973.
[26] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[27] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[28] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[29] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[30] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[31] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[33] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[35] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

