On the Order on a Special Polygon

Andrzej Trybulec University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. The goal of the article is to determine the order of the special points defined in [10] on a special polygon. We restrict ourselves to the clockwise oriented finite sequences (the concept defined in this article) that start in N-min C (C being a compact non empty subset of the plane).

MML Identifier: $SPRECT_2$.

The papers [28], [33], [27], [7], [15], [29], [34], [1], [5], [6], [3], [32], [8], [30], [16], [17], [2], [25], [4], [19], [18], [26], [11], [12], [13], [14], [21], [20], [22], [9], [24], [23], [10], and [31] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) For all sets A, B, C, p such that $A \cap B \subseteq \{p\}$ and $p \in C$ and C misses B holds $A \cup C$ misses B.
- (2) For all sets A, B, C, p such that $A \cap C = \{p\}$ and $p \in B$ and $B \subseteq C$ holds $A \cap B = \{p\}$.
- (3) For all sets A, B such that for every set y such that $y \in B$ holds A misses y holds A misses $\bigcup B$.
- (4) For all sets A, B such that for all sets x, y such that $x \in A$ and $y \in B$ holds x misses y holds $\bigcup A$ misses $\bigcup B$.

C 1997 University of Białystok ISSN 1426-2630

2. On the finite sequences

We adopt the following convention: i, j, k, m, n denote natural numbers, D denotes a non empty set, and f denotes a finite sequence of elements of D.

The following propositions are true:

- (5) For all i, j, k such that $i \leq j$ and $i \in \text{dom } f$ and $j \in \text{dom } f$ and $k \in \text{dom mid}(f, i, j)$ holds $(k + i) 1 \in \text{dom } f$.
- (6) For all i, j, k such that i > j and $i \in \text{dom } f$ and $j \in \text{dom } f$ and $k \in \text{dom mid}(f, i, j)$ holds $i k + 1 \in \text{dom } f$.
- (7) For all i, j, k such that $i \leq j$ and $i \in \text{dom } f$ and $j \in \text{dom } f$ and $k \in \text{dom mid}(f, i, j)$ holds $\pi_k \operatorname{mid}(f, i, j) = \pi_{(k+i)-i} f$.
- (8) For all i, j, k such that i > j and $i \in \text{dom } f$ and $j \in \text{dom } f$ and $k \in \text{dom mid}(f, i, j)$ holds $\pi_k \operatorname{mid}(f, i, j) = \pi_{i-k+1} f$.
- (9) If $i \in \text{dom } f$ and $j \in \text{dom } f$, then $\text{len mid}(f, i, j) \ge 1$.
- (10) If $i \in \text{dom } f$ and $j \in \text{dom } f$ and len mid(f, i, j) = 1, then i = j.
- (11) If $i \in \text{dom } f$ and $j \in \text{dom } f$, then mid(f, i, j) is non empty.
- (12) If $i \in \text{dom } f$ and $j \in \text{dom } f$, then $\pi_1 \operatorname{mid}(f, i, j) = \pi_i f$.
- (13) If $i \in \text{dom } f$ and $j \in \text{dom } f$, then $\pi_{\text{len mid}(f,i,j)} \operatorname{mid}(f,i,j) = \pi_j f$.

3. Compact subsets of the plane

In the sequel X denotes a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$. One can prove the following four propositions:

- (14) For every point p of \mathcal{E}^2_T such that $p \in X$ and $p_2 = N$ -bound X holds $p \in N$ -most X.
- (15) For every point p of \mathcal{E}^2_T such that $p \in X$ and $p_2 = S$ -bound X holds $p \in S$ -most X.
- (16) For every point p of \mathcal{E}^2_T such that $p \in X$ and $p_1 = W$ -bound X holds $p \in W$ -most X.
- (17) For every point p of \mathcal{E}^2_T such that $p \in X$ and $p_1 = E$ -bound X holds $p \in E$ -most X.

4. FINITE SEQUENCES ON THE PLANE

We now state several propositions:

- (18) For every finite sequence f of elements of $\mathcal{E}^2_{\mathrm{T}}$ such that $1 \leq i$ and $i \leq j$ and $j \leq \mathrm{len} f$ holds $\widetilde{\mathcal{L}}(\mathrm{mid}(f, i, j)) = \bigcup \{\mathcal{L}(f, k) : i \leq k \land k < j\}.$
- (19) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ holds dom **X**-coordinate $(f) = \operatorname{dom} f$.
- (20) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ holds dom **Y**-coordinate $(f) = \operatorname{dom} f$.
- (21) For all points a, b, c of \mathcal{E}_{T}^{2} such that $b \in \mathcal{L}(a, c)$ and $a_{1} \leq b_{1}$ and $c_{1} \leq b_{1}$ holds a = b or b = c or $a_{1} = b_{1}$ and $c_{1} = b_{1}$.
- (22) For all points a, b, c of \mathcal{E}_{T}^{2} such that $b \in \mathcal{L}(a, c)$ and $a_{2} \leq b_{2}$ and $c_{2} \leq b_{2}$ holds a = b or b = c or $a_{2} = b_{2}$ and $c_{2} = b_{2}$.
- (23) For all points a, b, c of \mathcal{E}_{T}^{2} such that $b \in \mathcal{L}(a, c)$ and $a_{1} \ge b_{1}$ and $c_{1} \ge b_{1}$ holds a = b or b = c or $a_{1} = b_{1}$ and $c_{1} = b_{1}$.
- (24) For all points a, b, c of \mathcal{E}_{T}^{2} such that $b \in \mathcal{L}(a, c)$ and $a_{2} \ge b_{2}$ and $c_{2} \ge b_{2}$ holds a = b or b = c or $a_{2} = b_{2}$ and $c_{2} = b_{2}$.

5. The area of a sequence

Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. We say that g is in the area of f if and only if:

(Def. 1) For every n such that $n \in \text{dom } g$ holds W-bound $\widetilde{\mathcal{L}}(f) \leq (\pi_n g)_{\mathbf{1}}$ and $(\pi_n g)_{\mathbf{1}} \leq \text{E-bound } \widetilde{\mathcal{L}}(f)$ and S-bound $\widetilde{\mathcal{L}}(f) \leq (\pi_n g)_{\mathbf{2}}$ and $(\pi_n g)_{\mathbf{2}} \leq \text{N-bound } \widetilde{\mathcal{L}}(f)$.

We now state several propositions:

- (25) Every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ is in the area of f.
- (26) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose g is in the area of f. Let given i, j. If $i \in \mathrm{dom}\,g$ and $j \in \mathrm{dom}\,g$, then $\mathrm{mid}(g, i, j)$ is in the area of f.
- (27) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and given i, j. If $i \in \mathrm{dom} f$ and $j \in \mathrm{dom} f$, then $\mathrm{mid}(f, i, j)$ is in the area of f.
- (28) Let f be a non trivial finite sequence of elements of \mathcal{E}_{T}^{2} and g, h be finite sequences of elements of \mathcal{E}_{T}^{2} . Suppose g is in the area of f and h is in the area of f. Then $g \cap h$ is in the area of f.
- (29) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ holds $\langle \operatorname{NE-corner} \widetilde{\mathcal{L}}(f) \rangle$ is in the area of f.

- (30) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ holds $\langle \mathrm{NW}\text{-corner }\widetilde{\mathcal{L}}(f) \rangle$ is in the area of f.
- (31) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ holds $\langle \operatorname{SE-corner} \widetilde{\mathcal{L}}(f) \rangle$ is in the area of f.
- (32) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ holds $\langle \mathrm{SW}\text{-corner }\widetilde{\mathcal{L}}(f) \rangle$ is in the area of f.

6. Horizontal and vertical connections

Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. We say that g is a h.c. for f if and only if:

(Def. 2) g is in the area of f and $(\pi_1 g)_1 = W$ -bound $\mathcal{L}(f)$ and $(\pi_{\text{len}\,g}g)_1 = E$ -bound $\mathcal{L}(f)$.

We say that g is a v.c. for f if and only if:

(Def. 3) g is in the area of f and $(\pi_1 g)_2 = \text{S-bound } \widetilde{\mathcal{L}}(f)$ and $(\pi_{\text{len} g} g)_2 = \text{N-bound } \widetilde{\mathcal{L}}(f)$.

Next we state the proposition

(33) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and g, h be S-sequences in \mathbb{R}^2 . If g is a h.c. for f and h is a v.c. for f, then $\widetilde{\mathcal{L}}(g)$ meets $\widetilde{\mathcal{L}}(h)$.

7. ORIENTATION

Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. We say that f is clockwise oriented if and only if:

(Def. 4) $\pi_2 f^{\operatorname{N-min} \widetilde{\mathcal{L}}(f)}_{\circlearrowright} \in \operatorname{N-most} \widetilde{\mathcal{L}}(f).$

The following proposition is true

(34) Let f be a non constant standard special circular sequence. If $\pi_1 f =$ N-min $\widetilde{\mathcal{L}}(f)$, then f is clockwise oriented iff $\pi_2 f \in$ N-most $\widetilde{\mathcal{L}}(f)$.

Let us note that $\Box_{\mathcal{E}^2}$ is compact.

We now state several propositions:

- (35) N-bound $\Box_{\mathcal{E}^2} = 1$.
- (36) W-bound $\Box_{\mathcal{E}^2} = 0$.
- (37) E-bound $\Box_{\mathcal{E}^2} = 1$.
- (38) S-bound $\Box_{\mathcal{E}^2} = 0$.
- (39) N-most $\Box_{\mathcal{E}^2} = \mathcal{L}([0,1],[1,1]).$

544

(40) N-min $\Box_{\mathcal{E}^2} = [0, 1].$

Let X be a non vertical non horizontal non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$. One can verify that SpStSeq X is clockwise oriented.

One can verify that there exists a non constant standard special circular sequence which is clockwise oriented.

One can prove the following propositions:

- (41) Let f be a non constant standard special circular sequence and given i, j. Suppose i > j but 1 < j and $i \leq \text{len } f$ or $1 \leq j$ and i < len f. Then mid(f, i, j) is a S-sequence in \mathbb{R}^2 .
- (42) Let f be a non constant standard special circular sequence and given i, j. Suppose i < j but 1 < i and $j \leq \text{len } f$ or $1 \leq i$ and j < len f. Then mid(f, i, j) is a S-sequence in \mathbb{R}^2 .

In the sequel f is a clockwise oriented non constant standard special circular sequence.

One can prove the following propositions:

- (43) N-min $\mathcal{L}(f) \in \operatorname{rng} f$.
- (44) N-max $\widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
- (45) S-min $\widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
- (46) S-max $\mathcal{L}(f) \in \operatorname{rng} f$.
- (47) W-min $\widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
- (48) W-max $\mathcal{L}(f) \in \operatorname{rng} f$.
- (49) E-min $\widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
- (50) E-max $\widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
- (51) If $1 \leq i$ and $i \leq j$ and j < m and $m \leq n$ and $n \leq \text{len } f$ and 1 < i or n < len f, then $\widetilde{\mathcal{L}}(\text{mid}(f, i, j))$ misses $\widetilde{\mathcal{L}}(\text{mid}(f, m, n))$.
- (52) If $1 \leq i$ and $i \leq j$ and j < m and $m \leq n$ and $n \leq \text{len } f$ and 1 < i or n < len f, then $\widetilde{\mathcal{L}}(\text{mid}(f, i, j))$ misses $\widetilde{\mathcal{L}}(\text{mid}(f, n, m))$.
- (53) If $1 \leq i$ and $i \leq j$ and j < m and $m \leq n$ and $n \leq \text{len } f$ and 1 < i or n < len f, then $\widetilde{\mathcal{L}}(\text{mid}(f, j, i))$ misses $\widetilde{\mathcal{L}}(\text{mid}(f, n, m))$.
- (54) If $1 \leq i$ and $i \leq j$ and j < m and $m \leq n$ and $n \leq \text{len } f$ and 1 < i or n < len f, then $\widetilde{\mathcal{L}}(\text{mid}(f, j, i))$ misses $\widetilde{\mathcal{L}}(\text{mid}(f, m, n))$.
- (55) $(\operatorname{N-min} \widetilde{\mathcal{L}}(f))_1 < (\operatorname{N-max} \widetilde{\mathcal{L}}(f))_1.$
- (56) N-min $\widetilde{\mathcal{L}}(f) \neq$ N-max $\widetilde{\mathcal{L}}(f)$.
- (57) $(\operatorname{E-min} \widetilde{\mathcal{L}}(f))_2 < (\operatorname{E-max} \widetilde{\mathcal{L}}(f))_2.$
- (58) E-min $\widetilde{\mathcal{L}}(f) \neq \text{E-max}\,\widetilde{\mathcal{L}}(f)$.
- (59) $(\operatorname{S-min} \widetilde{\mathcal{L}}(f))_1 < (\operatorname{S-max} \widetilde{\mathcal{L}}(f))_1.$
- (60) S-min $\widetilde{\mathcal{L}}(f) \neq$ S-max $\widetilde{\mathcal{L}}(f)$.
- (61) $(W-\min \widetilde{\mathcal{L}}(f))_2 < (W-\max \widetilde{\mathcal{L}}(f))_2.$

- (62) W-min $\widetilde{\mathcal{L}}(f) \neq$ W-max $\widetilde{\mathcal{L}}(f)$.
- (63) $\mathcal{L}(\text{NW-corner }\widetilde{\mathcal{L}}(f), \text{N-min }\widetilde{\mathcal{L}}(f)) \text{ misses } \mathcal{L}(\text{N-max }\widetilde{\mathcal{L}}(f), \text{NE-corner }\widetilde{\mathcal{L}}(f)).$
- (64) Let f be a S-sequence in \mathbb{R}^2 and p be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $p \neq \pi_1 f$ but $p_1 = (\pi_1 f)_1$ or $p_2 = (\pi_1 f)_2$ but $\mathcal{L}(p, \pi_1 f) \cap \widetilde{\mathcal{L}}(f) = \{\pi_1 f\}$. Then $\langle p \rangle \cap f$ is a S-sequence in \mathbb{R}^2 .
- (65) Let f be a S-sequence in \mathbb{R}^2 and p be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $p \neq \pi_{\mathrm{len}\,f}f$ but $p_{\mathbf{1}} = (\pi_{\mathrm{len}\,f}f)_{\mathbf{1}}$ or $p_{\mathbf{2}} = (\pi_{\mathrm{len}\,f}f)_{\mathbf{2}}$ but $\mathcal{L}(p, \pi_{\mathrm{len}\,f}f) \cap \widetilde{\mathcal{L}}(f) = \{\pi_{\mathrm{len}\,f}f\}$. Then $f \cap \langle p \rangle$ is a S-sequence in \mathbb{R}^2 .

8. Appending corners

We now state several propositions:

- (66) Let given i, j. Suppose $i \in \text{dom } f$ and $j \in \text{dom } f$ and mid(f, i, j) is a S-sequence in \mathbb{R}^2 and $\pi_j f = \text{N-max } \widetilde{\mathcal{L}}(f)$ and $\text{N-max } \widetilde{\mathcal{L}}(f) \neq \text{NE-corner } \widetilde{\mathcal{L}}(f)$. Then $(\text{mid}(f, i, j)) \cap \langle \text{NE-corner } \widetilde{\mathcal{L}}(f) \rangle$ is a S-sequence in \mathbb{R}^2 .
- (67) Let given i, j. Suppose $i \in \text{dom } f$ and $j \in \text{dom } f$ and mid(f, i, j) is a S-sequence in \mathbb{R}^2 and $\pi_j f = \text{E-max } \widetilde{\mathcal{L}}(f)$ and $\text{E-max } \widetilde{\mathcal{L}}(f) \neq \text{NE-corner } \widetilde{\mathcal{L}}(f)$. Then $(\text{mid}(f, i, j)) \cap \langle \text{NE-corner } \widetilde{\mathcal{L}}(f) \rangle$ is a S-sequence in \mathbb{R}^2 .
- (68) Let given i, j. Suppose $i \in \text{dom } f$ and $j \in \text{dom } f$ and mid(f, i, j) is a S-sequence in \mathbb{R}^2 and $\pi_j f = \text{S-max } \widetilde{\mathcal{L}}(f)$ and $\text{S-max } \widetilde{\mathcal{L}}(f) \neq \text{SE-corner } \widetilde{\mathcal{L}}(f)$. Then $(\text{mid}(f, i, j)) \cap \langle \text{SE-corner } \widetilde{\mathcal{L}}(f) \rangle$ is a S-sequence in \mathbb{R}^2 .
- (69) Let given i, j. Suppose $i \in \text{dom } f$ and $j \in \text{dom } f$ and mid(f, i, j) is a S-sequence in \mathbb{R}^2 and $\pi_j f = \text{E-max } \widetilde{\mathcal{L}}(f)$ and $\text{E-max } \widetilde{\mathcal{L}}(f) \neq \text{NE-corner } \widetilde{\mathcal{L}}(f)$. Then $(\text{mid}(f, i, j)) \cap \langle \text{NE-corner } \widetilde{\mathcal{L}}(f) \rangle$ is a S-sequence in \mathbb{R}^2 .
- (70) Let given i, j. Suppose $i \in \text{dom } f$ and $j \in \text{dom } f$ and mid(f, i, j) is a S-sequence in \mathbb{R}^2 and $\pi_i f = \text{N-min} \widetilde{\mathcal{L}}(f)$ and N-min $\widetilde{\mathcal{L}}(f) \neq \text{NW-corner} \widetilde{\mathcal{L}}(f)$. Then $\langle \text{NW-corner} \widetilde{\mathcal{L}}(f) \rangle \cap \text{mid}(f, i, j)$ is a S-sequence in \mathbb{R}^2 .
- (71) Let given i, j. Suppose $i \in \text{dom } f$ and $j \in \text{dom } f$ and mid(f, i, j)is a S-sequence in \mathbb{R}^2 and $\pi_i f = \text{W-min } \widetilde{\mathcal{L}}(f)$ and W-min $\widetilde{\mathcal{L}}(f) \neq$ SW-corner $\widetilde{\mathcal{L}}(f)$. Then (SW-corner $\widetilde{\mathcal{L}}(f)$) \cap mid(f, i, j) is a S-sequence in \mathbb{R}^2 .

Let f be a non constant standard special circular sequence. One can check that $\widetilde{\mathcal{L}}(f)$ is simple closed curve.

9. The order

We now state a number of propositions:

- (72) If $\pi_1 f = \text{N-min}\,\widetilde{\mathcal{L}}(f)$, then $(\text{N-min}\,\widetilde{\mathcal{L}}(f)) \leftrightarrow f < (\text{N-max}\,\widetilde{\mathcal{L}}(f)) \leftrightarrow f$.
- (73) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$, then $(\operatorname{N-max} \widetilde{\mathcal{L}}(f)) \leftrightarrow f > 1$.
- (74) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$ and $\operatorname{N-max} \widetilde{\mathcal{L}}(f) \neq \operatorname{E-max} \widetilde{\mathcal{L}}(f)$, then (N-max $\widetilde{\mathcal{L}}(f)$) $\Leftrightarrow f < (\operatorname{E-max} \widetilde{\mathcal{L}}(f)) \Leftrightarrow f$.
- (75) If $\pi_1 f = \text{N-min}\,\widetilde{\mathcal{L}}(f)$, then $(\text{E-max}\,\widetilde{\mathcal{L}}(f)) \leftrightarrow f < (\text{E-min}\,\widetilde{\mathcal{L}}(f)) \leftrightarrow f$.
- (76) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$ and $\operatorname{E-min} \widetilde{\mathcal{L}}(f) \neq \operatorname{S-max} \widetilde{\mathcal{L}}(f)$, then (E-min $\widetilde{\mathcal{L}}(f)$) $\leftrightarrow f < (\operatorname{S-max} \widetilde{\mathcal{L}}(f)) \leftrightarrow f$.
- (77) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$, then $(\operatorname{S-max} \widetilde{\mathcal{L}}(f)) \leftrightarrow f < (\operatorname{S-min} \widetilde{\mathcal{L}}(f)) \leftrightarrow f$.
- (78) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$ and $\operatorname{S-min} \widetilde{\mathcal{L}}(f) \neq \operatorname{W-min} \widetilde{\mathcal{L}}(f)$, then (S-min $\widetilde{\mathcal{L}}(f)$) $\leftrightarrow f < (\operatorname{W-min} \widetilde{\mathcal{L}}(f)) \leftrightarrow f$.
- (79) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$ and $\operatorname{N-min} \widetilde{\mathcal{L}}(f) \neq \operatorname{W-max} \widetilde{\mathcal{L}}(f)$, then (W-min $\widetilde{\mathcal{L}}(f)$) $\Leftrightarrow f < (\operatorname{W-max} \widetilde{\mathcal{L}}(f)) \Leftrightarrow f$.
- (80) If $\pi_1 f = \text{N-min}\,\widetilde{\mathcal{L}}(f)$, then $(\text{W-min}\,\widetilde{\mathcal{L}}(f)) \leftrightarrow f < \text{len}\,f$.
- (81) If $\pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f)$, then $(\operatorname{W-max} \widetilde{\mathcal{L}}(f)) \leftrightarrow f < \operatorname{len} f$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
 [8] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 1(1):47-53.
- [8] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
- [9] Czesław Byliński and Yatsuka Nakamura. Special polygons. Formalized Mathematics, 5(2):247–252, 1996.
- [10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
 [13] Agata Darmochwał and Yatsuka Nakamura. The topological space \$\mathcal{E}_T^2\$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [16] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.

- [17] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
- [18] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [19] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [20] Jarosław Kotowicz and Yatsuka Nakamura. Go-board theorem. Formalized Mathematics, 3(1):125–129, 1992.
- [21] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [22] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Formalized Mathematics, 5(1):97–102, 1996.
- [23] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255–263, 1997.
- [24] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [25] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [26] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [27] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [29] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [30] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317–322, 1996.
- [31] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. *Formalized Mathematics*, 6(4):531–539, 1997.
- [32] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [33] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received November 30, 1997