On the Order on a Special Polygon

Andrzej Trybulec
University of Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Summary. The goal of the article is to determine the order of the special points defined in [10] on a special polygon. We restrict ourselves to the clockwise oriented finite sequences (the concept defined in this article) that start in N-min C (C being a compact non empty subset of the plane).

MML Identifier: SPRECT_2.

The papers [28], [33], [27], [7], [15], [29], [34], [1], [5], [6], [3], [32], [8], [30], [16], [17], [2], [25], [4], [19], [18], [26], [11], [12], [13], [14], [21], [20], [22], [9], [24], [23], [10], and [31] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:
(1) For all sets A, B, C, p such that $A \cap B \subseteq\{p\}$ and $p \in C$ and C misses B holds $A \cup C$ misses B.
(2) For all sets A, B, C, p such that $A \cap C=\{p\}$ and $p \in B$ and $B \subseteq C$ holds $A \cap B=\{p\}$.
(3) For all sets A, B such that for every set y such that $y \in B$ holds A misses y holds A misses $\cup B$.
(4) For all sets A, B such that for all sets x, y such that $x \in A$ and $y \in B$ holds x misses y holds $\bigcup A$ misses $\bigcup B$.

2. On THE FINITE SEQUENCES

We adopt the following convention: i, j, k, m, n denote natural numbers, D denotes a non empty set, and f denotes a finite sequence of elements of D.

The following propositions are true:
(5) For all i, j, k such that $i \leqslant j$ and $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $k \in \operatorname{dom} \operatorname{mid}(f, i, j)$ holds $(k+i)-^{\prime} 1 \in \operatorname{dom} f$.
(6) For all i, j, k such that $i>j$ and $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $k \in \operatorname{dom} \operatorname{mid}(f, i, j)$ holds $i-{ }^{\prime} k+1 \in \operatorname{dom} f$.
(7) For all i, j, k such that $i \leqslant j$ and $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $k \in \operatorname{dom} \operatorname{mid}(f, i, j)$ holds $\pi_{k} \operatorname{mid}(f, i, j)=\pi_{(k+i)-^{\prime} 1} f$.
(8) For all i, j, k such that $i>j$ and $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $k \in \operatorname{dom} \operatorname{mid}(f, i, j)$ holds $\pi_{k} \operatorname{mid}(f, i, j)=\pi_{i-^{\prime} k+1} f$.
(9) If $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$, then len $\operatorname{mid}(f, i, j) \geqslant 1$.
(10) If $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and len $\operatorname{mid}(f, i, j)=1$, then $i=j$.
(11) If $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$, then $\operatorname{mid}(f, i, j)$ is non empty.
(12) If $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$, then $\pi_{1} \operatorname{mid}(f, i, j)=\pi_{i} f$.
(13) If $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$, then $\pi_{\text {len } \operatorname{mid}(f, i, j)} \operatorname{mid}(f, i, j)=\pi_{j} f$.

3. Compact subsets of the plane

In the sequel X denotes a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
One can prove the following four propositions:
(14) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in X$ and $p_{2}=\mathrm{N}$-bound X holds $p \in \mathrm{~N}$-most X.
(15) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in X$ and $p_{\mathbf{2}}=\mathrm{S}$-bound X holds $p \in \mathrm{~S}$-most X.
(16) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in X$ and $p_{\mathbf{1}}=\mathrm{W}$-bound X holds $p \in \mathrm{~W}$-most X.
(17) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in X$ and $p_{\mathbf{1}}=\mathrm{E}$-bound X holds $p \in \mathrm{E}$-most X.

4. Finite sequences on the plane

We now state several propositions:
(18) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $1 \leqslant i$ and $i \leqslant j$ and $j \leqslant \operatorname{len} f$ holds $\widetilde{\mathcal{L}}(\operatorname{mid}(f, i, j))=\bigcup\{\mathcal{L}(f, k): i \leqslant k \wedge k<j\}$.
(19) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds dom X-coordinate $(f)=$ dom f.
(20) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds dom \mathbf{Y}-coordinate $(f)=$ $\operatorname{dom} f$.
(21) For all points a, b, c of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $b \in \mathcal{L}(a, c)$ and $a_{\mathbf{1}} \leqslant b_{\mathbf{1}}$ and $c_{\mathbf{1}} \leqslant b_{\mathbf{1}}$ holds $a=b$ or $b=c$ or $a_{1}=b_{1}$ and $c_{1}=b_{1}$.
(22) For all points a, b, c of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $b \in \mathcal{L}(a, c)$ and $a_{2} \leqslant b_{\mathbf{2}}$ and $c_{\mathbf{2}} \leqslant b_{\mathbf{2}}$ holds $a=b$ or $b=c$ or $a_{2}=b_{2}$ and $c_{2}=b_{2}$.
(23) For all points a, b, c of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $b \in \mathcal{L}(a, c)$ and $a_{1} \geqslant b_{1}$ and $c_{1} \geqslant b_{1}$ holds $a=b$ or $b=c$ or $a_{1}=b_{\mathbf{1}}$ and $c_{\mathbf{1}}=b_{\mathbf{1}}$.
(24) For all points a, b, c of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $b \in \mathcal{L}(a, c)$ and $a_{2} \geqslant b_{2}$ and $c_{2} \geqslant b_{2}$ holds $a=b$ or $b=c$ or $a_{2}=b_{2}$ and $c_{2}=b_{2}$.

5. The area of a sequence

Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. We say that g is in the area of f if and only if:
(Def. 1) For every n such that $n \in \operatorname{dom} g$ holds W-bound $\widetilde{\mathcal{L}}(f) \leqslant\left(\pi_{n} g\right)_{\mathbf{1}}$ and $\left(\pi_{n} g\right)_{1} \leqslant$ E-bound $\widetilde{\mathcal{L}}(f)$ and S-bound $\widetilde{\mathcal{L}}(f) \leqslant\left(\pi_{n} g\right)_{2}$ and $\left(\pi_{n} g\right)_{2} \leqslant$ N-bound $\widetilde{\mathcal{L}}(f)$.
We now state several propositions:
(25) Every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is in the area of f.
(26) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose g is in the area of f. Let given i, j. If $i \in \operatorname{dom} g$ and $j \in \operatorname{dom} g$, then $\operatorname{mid}(g, i, j)$ is in the area of f.
(27) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i, j. If $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$, then $\operatorname{mid}(f, i, j)$ is in the area of f.
(28) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and g, h be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose g is in the area of f and h is in the area of f. Then $g^{\frown} h$ is in the area of f.
(29) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds \langle NE-corner $\widetilde{\mathcal{L}}(f)\rangle$ is in the area of f.
(30) For every non trivial finite sequence f of elements of \mathcal{E}_{T}^{2} holds \langle NW-corner $\widetilde{\mathcal{L}}(f)\rangle$ is in the area of f.
(31) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds \langle SE-corner $\widetilde{\mathcal{L}}(f)\rangle$ is in the area of f.
(32) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds \langle SW-corner $\widetilde{\mathcal{L}}(f)\rangle$ is in the area of f.

6. Horizontal and vertical connections

Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\text {T }}^{2}$ and let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. We say that g is a h.c. for f if and only if:
(Def. 2) g is in the area of f and $\left(\pi_{1} g\right)_{\mathbf{1}}=$ W-bound $\widetilde{\mathcal{L}}(f)$ and $\left(\pi_{\operatorname{len} g} g\right)_{\mathbf{1}}=$ E-bound $\widetilde{\mathcal{L}}(f)$.
We say that g is a v.c. for f if and only if:
(Def. 3) g is in the area of f and $\left(\pi_{1} g\right)_{\mathbf{2}}=\mathrm{S}$-bound $\widetilde{\mathcal{L}}(f)$ and $\left(\pi_{\operatorname{len} g} g\right)_{\mathbf{2}}=$ N-bound $\widetilde{\mathcal{L}}(f)$.
Next we state the proposition
(33) Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and g, h be Ssequences in \mathbb{R}^{2}. If g is a h.c. for f and h is a v.c. for f, then $\tilde{\mathcal{L}}(g)$ meets $\widetilde{\mathcal{L}}(h)$.

7. Orientation

Let f be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. We say that f is clockwise oriented if and only if:
(Def. 4) $\pi_{2} f_{\circlearrowleft}^{N-m i n} \widetilde{\mathcal{L}}(f) \in \operatorname{N}-\operatorname{most} \widetilde{\mathcal{L}}(f)$.
The following proposition is true
(34) Let f be a non constant standard special circular sequence. If $\pi_{1} f=$ N -min $\widetilde{\mathcal{L}}(f)$, then f is clockwise oriented iff $\pi_{2} f \in \mathrm{~N}$-most $\widetilde{\mathcal{L}}(f)$.
Let us note that $\square_{\mathcal{E}^{2}}$ is compact.
We now state several propositions:
(35) N-bound $\square_{\mathcal{E}^{2}}=1$.
(36) W-bound $\square_{\mathcal{E}^{2}}=0$.
(37) E-bound $\square_{\mathcal{E}^{2}}=1$.
(38) S-bound $\square_{\mathcal{E}^{2}}=0$.
(39) N -most $\square_{\mathcal{E}^{2}}=\mathcal{L}([0,1],[1,1])$.
(40) $N-\min \square_{\mathcal{E}^{2}}=[0,1]$.

Let X be a non vertical non horizontal non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. One can verify that $\operatorname{SpStSeq} X$ is clockwise oriented.

One can verify that there exists a non constant standard special circular sequence which is clockwise oriented.

One can prove the following propositions:
(41) Let f be a non constant standard special circular sequence and given i, j. Suppose $i>j$ but $1<j$ and $i \leqslant \operatorname{len} f$ or $1 \leqslant j$ and $i<\operatorname{len} f$. Then $\operatorname{mid}(f, i, j)$ is a S-sequence in \mathbb{R}^{2}.
(42) Let f be a non constant standard special circular sequence and given i, j. Suppose $i<j$ but $1<i$ and $j \leqslant \operatorname{len} f$ or $1 \leqslant i$ and $j<\operatorname{len} f$. Then $\operatorname{mid}(f, i, j)$ is a S-sequence in \mathbb{R}^{2}.
In the sequel f is a clockwise oriented non constant standard special circular sequence.

One can prove the following propositions:
(43) $\mathrm{N}-\min \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(44) $N-\max \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(45) $S-\min \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(46) $S-\max \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(47) $W-\min \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(48) $\mathrm{W}-\max \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(49) $\mathrm{E}-\min \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(50) $\mathrm{E}-\max \widetilde{\mathcal{L}}(f) \in \operatorname{rng} f$.
(51) If $1 \leqslant i$ and $i \leqslant j$ and $j<m$ and $m \leqslant n$ and $n \leqslant \operatorname{len} f$ and $1<i$ or $n<\operatorname{len} f$, then $\widetilde{\mathcal{L}}(\operatorname{mid}(f, i, j))$ misses $\widetilde{\mathcal{L}}(\operatorname{mid}(f, m, n))$.
(52) If $1 \leqslant i$ and $i \leqslant j$ and $j<m$ and $m \leqslant n$ and $n \leqslant \operatorname{len} f$ and $1<i$ or $n<\operatorname{len} f$, then $\widetilde{\mathcal{L}}(\operatorname{mid}(f, i, j))$ misses $\widetilde{\mathcal{L}}(\operatorname{mid}(f, n, m))$.
(53) If $1 \leqslant i$ and $i \leqslant j$ and $j<m$ and $m \leqslant n$ and $n \leqslant \operatorname{len} f$ and $1<i$ or $n<\operatorname{len} f$, then $\widetilde{\mathcal{L}}(\operatorname{mid}(f, j, i))$ misses $\widetilde{\mathcal{L}}(\operatorname{mid}(f, n, m))$.
(54) If $1 \leqslant i$ and $i \leqslant j$ and $j<m$ and $m \leqslant n$ and $n \leqslant \operatorname{len} f$ and $1<i$ or $n<\operatorname{len} f$, then $\widetilde{\mathcal{L}}(\operatorname{mid}(f, j, i))$ misses $\widetilde{\mathcal{L}}(\operatorname{mid}(f, m, n))$.
(55) $\quad(N-\min \widetilde{\mathcal{L}}(f))_{\mathbf{1}}<(N-\max \widetilde{\mathcal{L}}(f))_{\mathbf{1}}$.
(56) $\quad \mathrm{N}-\min \widetilde{\mathcal{L}}(f) \neq \mathrm{N}-\max \widetilde{\mathcal{L}}(f)$.
(57) $\quad(E-\min \widetilde{\mathcal{L}}(f))_{\mathbf{2}}<(\operatorname{E}-\max \widetilde{\mathcal{L}}(f))_{\mathbf{2}}$.
(58) $\quad \mathrm{E}-\min \widetilde{\mathcal{L}}(f) \neq \mathrm{E}-\max \widetilde{\mathcal{L}}(f)$.
(59) $\quad(\mathrm{S}-\min \widetilde{\mathcal{L}}(f))_{1}<(\mathrm{S}-\max \widetilde{\mathcal{L}}(f))_{1}$.
(60) $\quad S-\min \widetilde{\mathcal{L}}(f) \neq \operatorname{S}-\max \widetilde{\mathcal{L}}(f)$.
(61) $\quad(\text { W-min } \widetilde{\mathcal{L}}(f))_{\mathbf{2}}<(\text { W-max } \widetilde{\mathcal{L}}(f))_{\mathbf{2}}$.
(62) $\quad \mathrm{W}-\min \widetilde{\mathcal{L}}(f) \neq \mathrm{W}-\max \widetilde{\mathcal{L}}(f)$.
(63) $\mathcal{L}($ NW-corner $\widetilde{\mathcal{L}}(f), N-\min \widetilde{\mathcal{L}}(f))$ misses $\mathcal{L}(N-\max \widetilde{\mathcal{L}}(f)$, NE-corner $\widetilde{\mathcal{L}}(f))$.
(64) Let f be a S-sequence in \mathbb{R}^{2} and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p \neq \pi_{1} f$ but $p_{1}=\left(\pi_{1} f\right)_{\mathbf{1}}$ or $p_{\mathbf{2}}=\left(\pi_{1} f\right)_{\mathbf{2}}$ but $\mathcal{L}\left(p, \pi_{1} f\right) \cap \widetilde{\mathcal{L}}(f)=\left\{\pi_{1} f\right\}$. Then $\langle p\rangle \sim f$ is a S-sequence in \mathbb{R}^{2}.
(65) Let f be a S-sequence in \mathbb{R}^{2} and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p \neq \pi_{\operatorname{len} f} f$ but $p_{1}=\left(\pi_{\operatorname{len} f} f\right)_{\mathbf{1}}$ or $p_{2}=\left(\pi_{\operatorname{len} f} f\right)_{\mathbf{2}}$ but $\mathcal{L}\left(p, \pi_{\operatorname{len} f} f\right) \cap \widetilde{\mathcal{L}}(f)=\left\{\pi_{\operatorname{len} f} f\right\}$. Then $f^{\wedge}\langle p\rangle$ is a S-sequence in \mathbb{R}^{2}.

8. Appending corners

We now state several propositions:
(66) Let given i, j. Suppose $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $\operatorname{mid}(f, i, j)$ is a Ssequence in \mathbb{R}^{2} and $\pi_{j} f=\mathrm{N}$-max $\widetilde{\mathcal{L}}(f)$ and N -max $\widetilde{\mathcal{L}}(f) \neq \mathrm{NE}$-corner $\widetilde{\mathcal{L}}(f)$. Then $(\operatorname{mid}(f, i, j)) \wedge\langle$ NE-corner $\widetilde{\mathcal{L}}(f)\rangle$ is a S-sequence in \mathbb{R}^{2}.
(67) Let given i, j. Suppose $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $\operatorname{mid}(f, i, j)$ is a Ssequence in \mathbb{R}^{2} and $\pi_{j} f=$ E-max $\widetilde{\mathcal{L}}(f)$ and E-max $\widetilde{\mathcal{L}}(f) \neq$ NE-corner $\widetilde{\mathcal{L}}(f)$. Then $(\operatorname{mid}(f, i, j)) \wedge\langle$ NE-corner $\widetilde{\mathcal{L}}(f)\rangle$ is a S-sequence in \mathbb{R}^{2}.
(68) Let given i, j. Suppose $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $\operatorname{mid}(f, i, j)$ is a Ssequence in \mathbb{R}^{2} and $\pi_{j} f=S$-max $\widetilde{\mathcal{L}}(f)$ and S-max $\widetilde{\mathcal{L}}(f) \neq$ SE-corner $\widetilde{\mathcal{L}}(f)$. Then $(\operatorname{mid}(f, i, j)) \wedge\langle$ SE-corner $\widetilde{\mathcal{L}}(f)\rangle$ is a S-sequence in \mathbb{R}^{2}.
(69) Let given i, j. Suppose $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $\operatorname{mid}(f, i, j)$ is a Ssequence in \mathbb{R}^{2} and $\pi_{j} f=\mathrm{E}-\max \widetilde{\mathcal{L}}(f)$ and E-max $\widetilde{\mathcal{L}}(f) \neq$ NE-corner $\widetilde{\mathcal{L}}(f)$. Then $(\operatorname{mid}(f, i, j)) \wedge\langle$ NE-corner $\widetilde{\mathcal{L}}(f)\rangle$ is a S -sequence in \mathbb{R}^{2}.
(70) Let given i, j. Suppose $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $\operatorname{mid}(f, i, j)$ is a Ssequence in \mathbb{R}^{2} and $\pi_{i} f=\mathrm{N}$ - $-\min \widetilde{\mathcal{L}}(f)$ and N -min $\widetilde{\mathcal{L}}(f) \neq \mathrm{NW}$-corner $\widetilde{\mathcal{L}}(f)$. Then $\langle\text { NW-corner } \widetilde{\mathcal{L}}(f)\rangle^{\wedge} \operatorname{mid}(f, i, j)$ is a S-sequence in \mathbb{R}^{2}.
(71) Let given i, j. Suppose $i \in \operatorname{dom} f$ and $j \in \operatorname{dom} f$ and $\operatorname{mid}(f, i, j)$ is a S-sequence in \mathbb{R}^{2} and $\pi_{i} f=\mathrm{W}-\min \widetilde{\mathcal{L}}(f)$ and W-min $\widetilde{\mathcal{L}}(f) \neq$ SW-corner $\widetilde{\mathcal{L}}(f)$. Then \langle SW-corner $\widetilde{\mathcal{L}}(f)\rangle{ }^{\wedge} \operatorname{mid}(f, i, j)$ is a S-sequence in \mathbb{R}^{2}.
Let f be a non constant standard special circular sequence. One can check that $\widetilde{\mathcal{L}}(f)$ is simple closed curve.

9. THE ORDER

We now state a number of propositions:
(72) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$, then $(\mathrm{N}-\min \widetilde{\mathcal{L}}(f)) \leftrightarrow f<(\mathrm{N}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(73) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$, then $(N-\max \widetilde{\mathcal{L}}(f)) \leftrightarrow f>1$.
(74) If $\pi_{1} f=N-\min \widetilde{\mathcal{L}}(f) \quad$ and $\quad N-\max \widetilde{\mathcal{L}}(f) \quad \neq \quad \operatorname{E-max} \widetilde{\mathcal{L}}(f)$, then $(\mathrm{N}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f<(\mathrm{E}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(75) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$, then $(\mathrm{E}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f<(\operatorname{E}-\min \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(76) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $\quad \mathrm{E}-\min \widetilde{\mathcal{L}}(f) \quad \neq \quad$ S-max $\widetilde{\mathcal{L}}(f)$, then $(E-\min \widetilde{\mathcal{L}}(f)) \leftarrow f<(\operatorname{S}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(77) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$, then $(\mathrm{S}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f<(\mathrm{S}-\min \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(78) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $\mathrm{S}-\min \widetilde{\mathcal{L}}(f) \neq \mathrm{W}-\min \widetilde{\mathcal{L}}(f)$, then $(\mathrm{S}-\min \widetilde{\mathcal{L}}(f)) \leftarrow f<(\mathrm{W}-\min \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(79) If $\pi_{1} f=N-\min \widetilde{\mathcal{L}}(f) \quad$ and $\quad N-\min \widetilde{\mathcal{L}}(f) \quad \neq \quad \mathrm{W}-\max \widetilde{\mathcal{L}}(f)$, then $(\mathrm{W}-\min \widetilde{\mathcal{L}}(f)) \leftarrow f<(\mathrm{W}-\max \widetilde{\mathcal{L}}(f)) \leftarrow f$.
(80) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$, then $(\mathrm{W}-\min \widetilde{\mathcal{L}}(f)) \leftarrow f<\operatorname{len} f$.
(81) If $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$, then $(\mathrm{W}-\max \widetilde{\mathcal{L}}(f)) \varphi f<\operatorname{len} f$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Czesław Bylinski. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[9] Czesław Byliński and Yatsuka Nakamura. Special polygons. Formalized Mathematics, 5(2):247-252, 1996.
[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[13] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[16] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[17] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[18] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[19] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[20] Jarosław Kotowicz and Yatsuka Nakamura. Go-board theorem. Formalized Mathematics, $3(1): 125-129,1992$.
[21] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[22] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Formalized Mathematics, 5(1):97-102, 1996.
[23] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[24] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[25] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[26] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[27] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[29] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[30] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, $5(\mathbf{3}): 317-322,1996$.
[31] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. Formalized Mathematics, 6(4):531-539, 1997.
[32] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[33] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

