
FORMALIZED MATHEMATICS

Volume 6, Number 4, 1997

University of Białystok

While Macro Instructions of SCMFSA

Jing-Chao Chen1

Shanghai Jiaotong University

Shanghai

Summary. The article defines while macro instructions based on
SCMFSA. Some theorems about the generalized halting problems of while macro
instructions are proved.

MML Identifier: SCMFSA 9.

The notation and terminology used in this paper are introduced in the following

papers: [24], [32], [19], [8], [13], [33], [15], [16], [17], [12], [34], [7], [10], [14], [31],

[18], [9], [20], [21], [25], [11], [23], [30], [29], [26], [27], [1], [28], [22], [5], [6], [4],

[2], and [3].

The following propositions are true:

(1) For every macro instruction I and for every integer location a holds

card if = 0(a, I;Goto(insloc(0)),StopSCMFSA) = card I + 6.

(2) For every macro instruction I and for every integer location a holds

card if > 0(a, I;Goto(insloc(0)),StopSCMFSA) = card I + 6.

Let a be an integer location and let I be a macro instruction. The functor

while = 0(a, I) yielding a macro instruction is defined as follows:

(Def. 1) while = 0(a, I) = if = 0(a, I;Goto(insloc(0)),StopSCMFSA)+·(insloc

(card I + 4)7−→. goto insloc(0)).

The functor while > 0(a, I) yielding a macro instruction is defined by:

(Def. 2) while > 0(a, I) = if > 0(a, I;Goto(insloc(0)),StopSCMFSA)+·(insloc

(card I + 4)7−→. goto insloc(0)).

The following proposition is true

1Part of the work was done while the author was visiting the Institute of Mathematics at
the University of Białystok.

553
c© 1997 University of Białystok

ISSN 1426–2630



554 jing-chao chen

(3) For every macro instruction I and for every integer location a holds

card if = 0(a,StopSCMFSA , if > 0(a,StopSCMFSA , I;Goto(insloc(0)))) =

card I + 11.

Let a be an integer location and let I be a macro instruction. The functor

while < 0(a, I) yields a macro instruction and is defined as follows:

(Def. 3) while < 0(a, I) = if = 0(a,StopSCMFSA , if > 0(a,StopSCMFSA , I;Goto

(insloc(0))))+·(insloc(card I + 4)7−→. goto insloc(0)).

Next we state a number of propositions:

(4) For every macro instruction I and for every integer location a holds

cardwhile = 0(a, I) = card I + 6.

(5) For every macro instruction I and for every integer location a holds

cardwhile > 0(a, I) = card I + 6.

(6) For every macro instruction I and for every integer location a holds

cardwhile < 0(a, I) = card I + 11.

(7) For every integer location a and for every instruction-location l of

SCMFSA holds if a = 0 goto l 6= haltSCMFSA .

(8) For every integer location a and for every instruction-location l of

SCMFSA holds if a > 0 goto l 6= haltSCMFSA .

(9) For every instruction-location l of SCMFSA holds goto l 6= haltSCMFSA .

(10) Let a be an integer location and I be a macro instruction. Then

insloc(0) ∈ domwhile = 0(a, I) and insloc(1) ∈ domwhile = 0(a, I) and

insloc(0) ∈ domwhile > 0(a, I) and insloc(1) ∈ domwhile > 0(a, I).

(11) Let a be an integer location and I be a macro instruction. Then

(while = 0(a, I))(insloc(0)) = if a = 0 goto insloc(4) and (while =

0(a, I))(insloc(1)) = goto insloc(2) and (while > 0(a, I))(insloc(0)) =

if a > 0 goto insloc(4) and (while > 0(a, I))(insloc(1)) = goto insloc(2).

(12) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(k) ∈ domwhile = 0(a, I).

(13) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(card I + k) ∈ domwhile = 0(a, I).

(14) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(card I + 5)) = haltSCMFSA .

(15) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(3)) = goto insloc(card I + 5).

(16) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(2)) = goto insloc(3).

(17) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < card I + 6, then insloc(k) ∈ domwhile = 0(a, I).



while macro instructions of SCMFSA 555

(18) Let s be a state of SCMFSA, I be a macro instruction, and a be a read-

write integer location. If s(a) 6= 0, then while = 0(a, I) is halting on s and

while = 0(a, I) is closed on s.

(19) Let a be an integer location, I be a macro instruction, s be a state of

SCMFSA, and k be a natural number. Suppose that

(i) I is closed on s and halting on s,

(ii) k < LifeSpan(s+·(I+·Start-At(insloc(0)))),

(iii) IC(Computation(s+·(while=0(a,I)+· Start-At(insloc(0)))))(1+k) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) + 4, and

(iv) (Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))(1 + k)

↾(Int-Locations∪FinSeq-Locations) = (Computation(s+·(I+·Start-At

(insloc(0)))))(k)↾(Int-Locations∪FinSeq-Locations).

Then IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(1+k+1) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(k+1)+4 and (Computation(s+·(while

= 0(a, I)+·Start-At(insloc(0)))))(1 + k + 1)↾(Int-Locations

∪FinSeq-Locations) = (Computation(s+·(I+·Start-At(insloc(0)))))

(k + 1)↾(Int-Locations∪FinSeq-Locations).

(20) Let a be an integer location, I be a macro instruction, and s be a state

of SCMFSA. Suppose I is closed on s and halting on s and

IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(1+LifeSpan(s+·(I+·Start-At

(insloc(0))))) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))+4.

Then CurInstr((Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))

(1 + LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(card I + 4).

(21) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(card I + 4)) = goto insloc(0).

(22) Let s be a state of SCMFSA, I be a macro instruction, and a be a

read-write integer location. Suppose I is closed on s and halting on s and

s(a) = 0. Then IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))

(LifeSpan(s+·(I+· Start-At(insloc(0))))+3) = insloc(0) and for every natural num-

ber k such that k ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))) + 3 holds

IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(k) ∈ domwhile = 0(a, I).

In the sequel s denotes a state of SCMFSA, I denotes a macro instruction,

and a denotes a read-write integer location.

Let us consider s, I, a. The functor StepWhile = 0(a, I, s) yields a function

from N into
∏
(the object kind of SCMFSA) and is defined by the conditions

(Def. 4).

(Def. 4)(i) (StepWhile = 0(a, I, s))(0) = s, and

(ii) for every natural number i and for every element x of
∏
(the ob-

ject kind of SCMFSA) such that x = (StepWhile = 0(a, I, s))(i)



556 jing-chao chen

holds (StepWhile = 0(a, I, s))(i + 1) = (Computation(x+·(while =

0(a, I)+·s0)))(LifeSpan(x+·(I+·s0)) + 3).

In the sequel k, n are natural numbers.

We now state three propositions:

(23) (StepWhile = 0(a, I, s))(0) = s.

(24) (StepWhile = 0(a, I, s))(k + 1) = (Computation((StepWhile =

0(a, I, s))(k)+·(while = 0(a, I)+·s0)))(LifeSpan((StepWhile = 0(a, I, s))

(k)+·(I+·s0)) + 3).

(25) (StepWhile = 0(a, I, s))(k + 1) = (StepWhile = 0(a, I, (StepWhile =

0(a, I, s))(k)))(1).

The scheme MinIndex deals with a unary functor F yielding a natural num-

ber and a natural number A, and states that:

There exists k such that F(k) = 0 and for every n such that

F(n) = 0 holds k ¬ n

provided the parameters meet the following conditions:

• F(0) = A, and

• For every k holds F(k + 1) < F(k) or F(k) = 0.

We now state a number of propositions:

(26) For all functions f , g holds f+·g+·g = f+·g.

(27) For all functions f , g, h and for every set D such that (f+·g)↾D = h↾D

holds (h+·g)↾D = (f+·g)↾D.

(28) For all functions f , g, h and for every set D such that f↾D = h↾D holds

(h+·g)↾D = (f+·g)↾D.

(29) For all states s1, s2 of SCMFSA such that IC(s1) = IC(s2) and

s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations) and s1↾I1 = s2↾I1 holds s1 = s2.

(30) Let I be a macro instruction, a be a read-write integer location, and

s be a state of SCMFSA. Then (StepWhile = 0(a, I, s))(0 + 1) =

(Computation(s+·(while = 0(a, I)+·s0)))(LifeSpan(s+·(I+·s0)) + 3).

(31) Let I be a macro instruction, a be a read-write integer location,

s be a state of SCMFSA, and k, n be natural numbers. Suppose

IC(StepWhile=0(a,I,s))(k) = insloc(0) and (StepWhile = 0(a, I, s))(k) =

(Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))(n). Then

(StepWhile = 0(a, I, s))(k) = (StepWhile = 0(a, I, s))(k)+·(while =

0(a, I)+·Start-At(insloc(0))) and (StepWhile = 0(a, I, s))(k + 1) =

(Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))(n + (LifeSpan

((StepWhile = 0(a, I, s))(k)+·(I+·Start-At(insloc(0)))) + 3)).

(32) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Suppose that



while macro instructions of SCMFSA 557

(i) for every natural number k holds I is closed on (StepWhile =

0(a, I, s))(k) and halting on (StepWhile = 0(a, I, s))(k), and

(ii) there exists a function f from
∏
(the object kind of SCMFSA)

into N such that for every natural number k holds f((StepWhile =

0(a, I, s))(k + 1)) < f((StepWhile = 0(a, I, s))(k)) or f((StepWhile =

0(a, I, s))(k)) = 0 but f((StepWhile = 0(a, I, s))(k)) = 0 iff

(StepWhile = 0(a, I, s))(k)(a) 6= 0.

Then while = 0(a, I) is halting on s and while = 0(a, I) is closed on s.

(33) Let I be a parahalting macro instruction, a be a read-write integer loca-

tion, and s be a state of SCMFSA. Given a function f from
∏
(the object

kind of SCMFSA) into N such that let k be a natural number. Then

f((StepWhile = 0(a, I, s))(k + 1)) < f((StepWhile = 0(a, I, s))(k)) or

f((StepWhile = 0(a, I, s))(k)) = 0 but f((StepWhile = 0(a, I, s))(k)) =

0 iff (StepWhile = 0(a, I, s))(k)(a) 6= 0. Then while = 0(a, I) is halting

on s and while = 0(a, I) is closed on s.

(34) Let I be a parahalting macro instruction and a be a read-write inte-

ger location. Given a function f from
∏
(the object kind of SCMFSA)

into N such that let s be a state of SCMFSA. Then f((StepWhile =

0(a, I, s))(1)) < f(s) or f(s) = 0 but f(s) = 0 iff s(a) 6= 0. Then

while = 0(a, I) is parahalting.

(35) For all instructions-locations l1, l2 of SCMFSA and for every integer

location a holds l1 7−→
. goto l2 does not destroy a.

(36) For every instruction i of SCMFSA such that i does not destroy intloc(0)

holds Macro(i) is good.

Let I, J be good macro instructions and let a be an integer location. Note

that if = 0(a, I, J) is good.

Let I be a good macro instruction and let a be an integer location. One can

verify that while = 0(a, I) is good.

We now state a number of propositions:

(37) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(k) ∈ domwhile > 0(a, I).

(38) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(card I + k) ∈ domwhile > 0(a, I).

(39) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(card I + 5)) = haltSCMFSA .

(40) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(3)) = goto insloc(card I + 5).

(41) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(2)) = goto insloc(3).

(42) Let a be an integer location, I be a macro instruction, and k be a natural



558 jing-chao chen

number. If k < card I + 6, then insloc(k) ∈ domwhile > 0(a, I).

(43) Let s be a state of SCMFSA, I be a macro instruction, and a be a read-

write integer location. If s(a) ¬ 0, then while > 0(a, I) is halting on s and

while > 0(a, I) is closed on s.

(44) Let a be an integer location, I be a macro instruction, s be a state of

SCMFSA, and k be a natural number. Suppose that

(i) I is closed on s and halting on s,

(ii) k < LifeSpan(s+·(I+·Start-At(insloc(0)))),

(iii) IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(1+k) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(k) + 4, and

(iv) (Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))(1+k)↾D =

(Computation(s+·(I+·Start-At(insloc(0)))))(k)↾D.

Then IC(Computation(s+·(while>0(a,I)+·Start-At(insloc(0)))))(1+k+1) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(k+1)+4 and (Computation(s+·(while

> 0(a, I)+·Start-At(insloc(0)))))(1 + k + 1)↾D =

(Computation(s+·(I+·Start-At(insloc(0)))))(k + 1)↾D.

(45) Let a be an integer location, I be a macro instruction, and s be

a state of SCMFSA. Suppose I is closed on s and halting on s and

IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(1+LifeSpan(s+·(I+·Start-At

(insloc(0))))) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At(insloc(0)))))+4.

Then CurInstr((Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))

(1 + LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(card I + 4).

(46) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(card I + 4)) = goto insloc(0).

(47) Let s be a state of SCMFSA, I be a macro instruction, and a be a

read-write integer location. Suppose I is closed on s and halting on s and

s(a) > 0.

Then IC(Computation(s+·(while>0(a,I)+·Start-At(insloc(0)))))

(LifeSpan(s+·(I+·Start-At(insloc(0))))+3) = insloc(0) and for every natural num-

ber k such that k ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))) + 3 holds

IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(k) ∈ domwhile > 0(a, I).

In the sequel s denotes a state of SCMFSA, I denotes a macro instruction,

and a denotes a read-write integer location.

Let us consider s, I, a. The functor StepWhile > 0(a, I, s) yielding a function

from N into
∏
(the object kind of SCMFSA) is defined by the conditions (Def. 5).

(Def. 5)(i) (StepWhile > 0(a, I, s))(0) = s, and

(ii) for every natural number i and for every element x of
∏
(the ob-

ject kind of SCMFSA) such that x = (StepWhile > 0(a, I, s))(i)

holds (StepWhile > 0(a, I, s))(i + 1) = (Computation(x+·(while >

0(a, I)+·s0)))(LifeSpan(x+·(I+·s0)) + 3).



while macro instructions of SCMFSA 559

One can prove the following propositions:

(48) (StepWhile > 0(a, I, s))(0) = s.

(49) (StepWhile > 0(a, I, s))(k + 1) = (Computation((StepWhile >

0(a, I, s))(k)+·(while > 0(a, I)+·s0)))(LifeSpan((StepWhile > 0(a, I, s))

(k)+·(I+·s0)) + 3).

(50) (StepWhile > 0(a, I, s))(k + 1) = (StepWhile > 0(a, I, (StepWhile >

0(a, I, s))(k)))(1).

(51) Let I be a macro instruction, a be a read-write integer location, and

s be a state of SCMFSA. Then (StepWhile > 0(a, I, s))(0 + 1) =

(Computation(s+·(while > 0(a, I)+·s0)))(LifeSpan(s+·(I+·s0)) + 3).

(52) Let I be a macro instruction, a be a read-write integer location,

s be a state of SCMFSA, and k, n be natural numbers. Suppose

IC(StepWhile>0(a,I,s))(k) = insloc(0) and (StepWhile > 0(a, I, s))(k) =

(Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))(n). Then

(StepWhile > 0(a, I, s))(k) = (StepWhile > 0(a, I, s))(k)+·(while >

0(a, I)+·Start-At(insloc(0))) and (StepWhile > 0(a, I, s))(k + 1) =

(Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))(n + (LifeSpan

((StepWhile > 0(a, I, s))(k)+·(I+·Start-At(insloc(0)))) + 3)).

(53) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Suppose that

(i) for every natural number k holds I is closed on (StepWhile >

0(a, I, s))(k) and halting on (StepWhile > 0(a, I, s))(k), and

(ii) there exists a function f from
∏
(the object kind of SCMFSA)

into N such that for every natural number k holds f((StepWhile >

0(a, I, s))(k + 1)) < f((StepWhile > 0(a, I, s))(k)) or f((StepWhile >

0(a, I, s))(k)) = 0 but f((StepWhile > 0(a, I, s))(k)) = 0 iff

(StepWhile > 0(a, I, s))(k)(a) ¬ 0.

Then while > 0(a, I) is halting on s and while > 0(a, I) is closed on s.

(54) Let I be a parahalting macro instruction, a be a read-write integer loca-

tion, and s be a state of SCMFSA. Given a function f from
∏
(the object

kind of SCMFSA) into N such that let k be a natural number. Then

f((StepWhile > 0(a, I, s))(k + 1)) < f((StepWhile > 0(a, I, s))(k)) or

f((StepWhile > 0(a, I, s))(k)) = 0 but f((StepWhile > 0(a, I, s))(k)) =

0 iff (StepWhile > 0(a, I, s))(k)(a) ¬ 0. Then while > 0(a, I) is halting

on s and while > 0(a, I) is closed on s.

(55) Let I be a parahalting macro instruction and a be a read-write inte-

ger location. Given a function f from
∏
(the object kind of SCMFSA)

into N such that let s be a state of SCMFSA. Then f((StepWhile >

0(a, I, s))(1)) < f(s) or f(s) = 0 but f(s) = 0 iff s(a) ¬ 0. Then

while > 0(a, I) is parahalting.



560 jing-chao chen

Let I, J be good macro instructions and let a be an integer location. One

can verify that if > 0(a, I, J) is good.

Let I be a good macro instruction and let a be an integer location. One can

verify that while > 0(a, I) is good.

Acknowledgments

The author wishes to thank Prof. Andrzej Trybulec and Dr. Grzegorz Bance-

rek for their helpful comments and encouragement during his stay in Białystok.

References

[1] Noriko Asamoto. Some multi instructions defined by sequence of instructions of SCMFSA.
Formalized Mathematics, 5(4):615–619, 1996.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[3] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[4] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[7] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[8] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[9] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[10] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[11] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[12] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[13] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[14] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[15] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[16] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[17] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[18] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,
2(5):701–709, 1991.

[19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[20] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[21] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[22] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[23] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.



while macro instructions of SCMFSA 561

[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[26] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[27] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Mathe-
matics, 5(4):583–586, 1996.

[28] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[29] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[30] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of scm. For-
malized Mathematics, 5(4):507–512, 1996.

[31] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[32] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[34] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics,
2(3):413–418, 1991.

Received December 10, 1997


