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Summary. The article defines while macro instructions based on
SCMFSA. Some theorems about the generalized halting problems of while macro
instructions are proved.

MML Identifier: SCMFSA 9.

The notation and terminology used in this paper are introduced in the following

papers: [24], [32], [19], [8], [13], [33], [15], [16], [17], [12], [34], [7], [10], [14], [31],

[18], [9], [20], [21], [25], [11], [23], [30], [29], [26], [27], [1], [28], [22], [5], [6], [4],

[2], and [3].

The following propositions are true:

(1) For every macro instruction I and for every integer location a holds

card if = 0(a, I;Goto(insloc(0)),StopSCMFSA) = card I + 6.

(2) For every macro instruction I and for every integer location a holds

card if > 0(a, I;Goto(insloc(0)),StopSCMFSA) = card I + 6.

Let a be an integer location and let I be a macro instruction. The functor

while = 0(a, I) yielding a macro instruction is defined as follows:

(Def. 1) while = 0(a, I) = if = 0(a, I;Goto(insloc(0)),StopSCMFSA)+·(insloc

(card I + 4)7−→. goto insloc(0)).

The functor while > 0(a, I) yielding a macro instruction is defined by:

(Def. 2) while > 0(a, I) = if > 0(a, I;Goto(insloc(0)),StopSCMFSA)+·(insloc

(card I + 4)7−→. goto insloc(0)).

The following proposition is true

1Part of the work was done while the author was visiting the Institute of Mathematics at
the University of Białystok.
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(3) For every macro instruction I and for every integer location a holds

card if = 0(a,StopSCMFSA , if > 0(a,StopSCMFSA , I;Goto(insloc(0)))) =

card I + 11.

Let a be an integer location and let I be a macro instruction. The functor

while < 0(a, I) yields a macro instruction and is defined as follows:

(Def. 3) while < 0(a, I) = if = 0(a,StopSCMFSA , if > 0(a,StopSCMFSA , I;Goto

(insloc(0))))+·(insloc(card I + 4)7−→. goto insloc(0)).

Next we state a number of propositions:

(4) For every macro instruction I and for every integer location a holds

cardwhile = 0(a, I) = card I + 6.

(5) For every macro instruction I and for every integer location a holds

cardwhile > 0(a, I) = card I + 6.

(6) For every macro instruction I and for every integer location a holds

cardwhile < 0(a, I) = card I + 11.

(7) For every integer location a and for every instruction-location l of

SCMFSA holds if a = 0 goto l 6= haltSCMFSA .

(8) For every integer location a and for every instruction-location l of

SCMFSA holds if a > 0 goto l 6= haltSCMFSA .

(9) For every instruction-location l of SCMFSA holds goto l 6= haltSCMFSA .

(10) Let a be an integer location and I be a macro instruction. Then

insloc(0) ∈ domwhile = 0(a, I) and insloc(1) ∈ domwhile = 0(a, I) and

insloc(0) ∈ domwhile > 0(a, I) and insloc(1) ∈ domwhile > 0(a, I).

(11) Let a be an integer location and I be a macro instruction. Then

(while = 0(a, I))(insloc(0)) = if a = 0 goto insloc(4) and (while =

0(a, I))(insloc(1)) = goto insloc(2) and (while > 0(a, I))(insloc(0)) =

if a > 0 goto insloc(4) and (while > 0(a, I))(insloc(1)) = goto insloc(2).

(12) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(k) ∈ domwhile = 0(a, I).

(13) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(card I + k) ∈ domwhile = 0(a, I).

(14) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(card I + 5)) = haltSCMFSA .

(15) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(3)) = goto insloc(card I + 5).

(16) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(2)) = goto insloc(3).

(17) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < card I + 6, then insloc(k) ∈ domwhile = 0(a, I).
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(18) Let s be a state of SCMFSA, I be a macro instruction, and a be a read-

write integer location. If s(a) 6= 0, then while = 0(a, I) is halting on s and

while = 0(a, I) is closed on s.

(19) Let a be an integer location, I be a macro instruction, s be a state of

SCMFSA, and k be a natural number. Suppose that

(i) I is closed on s and halting on s,

(ii) k < LifeSpan(s+·(I+·Start-At(insloc(0)))),

(iii) IC(Computation(s+·(while=0(a,I)+· Start-At(insloc(0)))))(1+k) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) + 4, and

(iv) (Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))(1 + k)

↾(Int-Locations∪FinSeq-Locations) = (Computation(s+·(I+·Start-At

(insloc(0)))))(k)↾(Int-Locations∪FinSeq-Locations).

Then IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(1+k+1) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(k+1)+4 and (Computation(s+·(while

= 0(a, I)+·Start-At(insloc(0)))))(1 + k + 1)↾(Int-Locations

∪FinSeq-Locations) = (Computation(s+·(I+·Start-At(insloc(0)))))

(k + 1)↾(Int-Locations∪FinSeq-Locations).

(20) Let a be an integer location, I be a macro instruction, and s be a state

of SCMFSA. Suppose I is closed on s and halting on s and

IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(1+LifeSpan(s+·(I+·Start-At

(insloc(0))))) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))+4.

Then CurInstr((Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))

(1 + LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(card I + 4).

(21) For every integer location a and for every macro instruction I holds

(while = 0(a, I))(insloc(card I + 4)) = goto insloc(0).

(22) Let s be a state of SCMFSA, I be a macro instruction, and a be a

read-write integer location. Suppose I is closed on s and halting on s and

s(a) = 0. Then IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))

(LifeSpan(s+·(I+· Start-At(insloc(0))))+3) = insloc(0) and for every natural num-

ber k such that k ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))) + 3 holds

IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(k) ∈ domwhile = 0(a, I).

In the sequel s denotes a state of SCMFSA, I denotes a macro instruction,

and a denotes a read-write integer location.

Let us consider s, I, a. The functor StepWhile = 0(a, I, s) yields a function

from N into
∏
(the object kind of SCMFSA) and is defined by the conditions

(Def. 4).

(Def. 4)(i) (StepWhile = 0(a, I, s))(0) = s, and

(ii) for every natural number i and for every element x of
∏
(the ob-

ject kind of SCMFSA) such that x = (StepWhile = 0(a, I, s))(i)
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holds (StepWhile = 0(a, I, s))(i + 1) = (Computation(x+·(while =

0(a, I)+·s0)))(LifeSpan(x+·(I+·s0)) + 3).

In the sequel k, n are natural numbers.

We now state three propositions:

(23) (StepWhile = 0(a, I, s))(0) = s.

(24) (StepWhile = 0(a, I, s))(k + 1) = (Computation((StepWhile =

0(a, I, s))(k)+·(while = 0(a, I)+·s0)))(LifeSpan((StepWhile = 0(a, I, s))

(k)+·(I+·s0)) + 3).

(25) (StepWhile = 0(a, I, s))(k + 1) = (StepWhile = 0(a, I, (StepWhile =

0(a, I, s))(k)))(1).

The scheme MinIndex deals with a unary functor F yielding a natural num-

ber and a natural number A, and states that:

There exists k such that F(k) = 0 and for every n such that

F(n) = 0 holds k ¬ n

provided the parameters meet the following conditions:

• F(0) = A, and

• For every k holds F(k + 1) < F(k) or F(k) = 0.

We now state a number of propositions:

(26) For all functions f , g holds f+·g+·g = f+·g.

(27) For all functions f , g, h and for every set D such that (f+·g)↾D = h↾D

holds (h+·g)↾D = (f+·g)↾D.

(28) For all functions f , g, h and for every set D such that f↾D = h↾D holds

(h+·g)↾D = (f+·g)↾D.

(29) For all states s1, s2 of SCMFSA such that IC(s1) = IC(s2) and

s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations) and s1↾I1 = s2↾I1 holds s1 = s2.

(30) Let I be a macro instruction, a be a read-write integer location, and

s be a state of SCMFSA. Then (StepWhile = 0(a, I, s))(0 + 1) =

(Computation(s+·(while = 0(a, I)+·s0)))(LifeSpan(s+·(I+·s0)) + 3).

(31) Let I be a macro instruction, a be a read-write integer location,

s be a state of SCMFSA, and k, n be natural numbers. Suppose

IC(StepWhile=0(a,I,s))(k) = insloc(0) and (StepWhile = 0(a, I, s))(k) =

(Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))(n). Then

(StepWhile = 0(a, I, s))(k) = (StepWhile = 0(a, I, s))(k)+·(while =

0(a, I)+·Start-At(insloc(0))) and (StepWhile = 0(a, I, s))(k + 1) =

(Computation(s+·(while = 0(a, I)+·Start-At(insloc(0)))))(n + (LifeSpan

((StepWhile = 0(a, I, s))(k)+·(I+·Start-At(insloc(0)))) + 3)).

(32) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Suppose that
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(i) for every natural number k holds I is closed on (StepWhile =

0(a, I, s))(k) and halting on (StepWhile = 0(a, I, s))(k), and

(ii) there exists a function f from
∏
(the object kind of SCMFSA)

into N such that for every natural number k holds f((StepWhile =

0(a, I, s))(k + 1)) < f((StepWhile = 0(a, I, s))(k)) or f((StepWhile =

0(a, I, s))(k)) = 0 but f((StepWhile = 0(a, I, s))(k)) = 0 iff

(StepWhile = 0(a, I, s))(k)(a) 6= 0.

Then while = 0(a, I) is halting on s and while = 0(a, I) is closed on s.

(33) Let I be a parahalting macro instruction, a be a read-write integer loca-

tion, and s be a state of SCMFSA. Given a function f from
∏
(the object

kind of SCMFSA) into N such that let k be a natural number. Then

f((StepWhile = 0(a, I, s))(k + 1)) < f((StepWhile = 0(a, I, s))(k)) or

f((StepWhile = 0(a, I, s))(k)) = 0 but f((StepWhile = 0(a, I, s))(k)) =

0 iff (StepWhile = 0(a, I, s))(k)(a) 6= 0. Then while = 0(a, I) is halting

on s and while = 0(a, I) is closed on s.

(34) Let I be a parahalting macro instruction and a be a read-write inte-

ger location. Given a function f from
∏
(the object kind of SCMFSA)

into N such that let s be a state of SCMFSA. Then f((StepWhile =

0(a, I, s))(1)) < f(s) or f(s) = 0 but f(s) = 0 iff s(a) 6= 0. Then

while = 0(a, I) is parahalting.

(35) For all instructions-locations l1, l2 of SCMFSA and for every integer

location a holds l1 7−→
. goto l2 does not destroy a.

(36) For every instruction i of SCMFSA such that i does not destroy intloc(0)

holds Macro(i) is good.

Let I, J be good macro instructions and let a be an integer location. Note

that if = 0(a, I, J) is good.

Let I be a good macro instruction and let a be an integer location. One can

verify that while = 0(a, I) is good.

We now state a number of propositions:

(37) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(k) ∈ domwhile > 0(a, I).

(38) Let a be an integer location, I be a macro instruction, and k be a natural

number. If k < 6, then insloc(card I + k) ∈ domwhile > 0(a, I).

(39) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(card I + 5)) = haltSCMFSA .

(40) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(3)) = goto insloc(card I + 5).

(41) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(2)) = goto insloc(3).

(42) Let a be an integer location, I be a macro instruction, and k be a natural
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number. If k < card I + 6, then insloc(k) ∈ domwhile > 0(a, I).

(43) Let s be a state of SCMFSA, I be a macro instruction, and a be a read-

write integer location. If s(a) ¬ 0, then while > 0(a, I) is halting on s and

while > 0(a, I) is closed on s.

(44) Let a be an integer location, I be a macro instruction, s be a state of

SCMFSA, and k be a natural number. Suppose that

(i) I is closed on s and halting on s,

(ii) k < LifeSpan(s+·(I+·Start-At(insloc(0)))),

(iii) IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(1+k) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(k) + 4, and

(iv) (Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))(1+k)↾D =

(Computation(s+·(I+·Start-At(insloc(0)))))(k)↾D.

Then IC(Computation(s+·(while>0(a,I)+·Start-At(insloc(0)))))(1+k+1) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(k+1)+4 and (Computation(s+·(while

> 0(a, I)+·Start-At(insloc(0)))))(1 + k + 1)↾D =

(Computation(s+·(I+·Start-At(insloc(0)))))(k + 1)↾D.

(45) Let a be an integer location, I be a macro instruction, and s be

a state of SCMFSA. Suppose I is closed on s and halting on s and

IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(1+LifeSpan(s+·(I+·Start-At

(insloc(0))))) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At(insloc(0)))))+4.

Then CurInstr((Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))

(1 + LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(card I + 4).

(46) For every integer location a and for every macro instruction I holds

(while > 0(a, I))(insloc(card I + 4)) = goto insloc(0).

(47) Let s be a state of SCMFSA, I be a macro instruction, and a be a

read-write integer location. Suppose I is closed on s and halting on s and

s(a) > 0.

Then IC(Computation(s+·(while>0(a,I)+·Start-At(insloc(0)))))

(LifeSpan(s+·(I+·Start-At(insloc(0))))+3) = insloc(0) and for every natural num-

ber k such that k ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))) + 3 holds

IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(k) ∈ domwhile > 0(a, I).

In the sequel s denotes a state of SCMFSA, I denotes a macro instruction,

and a denotes a read-write integer location.

Let us consider s, I, a. The functor StepWhile > 0(a, I, s) yielding a function

from N into
∏
(the object kind of SCMFSA) is defined by the conditions (Def. 5).

(Def. 5)(i) (StepWhile > 0(a, I, s))(0) = s, and

(ii) for every natural number i and for every element x of
∏
(the ob-

ject kind of SCMFSA) such that x = (StepWhile > 0(a, I, s))(i)

holds (StepWhile > 0(a, I, s))(i + 1) = (Computation(x+·(while >

0(a, I)+·s0)))(LifeSpan(x+·(I+·s0)) + 3).
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One can prove the following propositions:

(48) (StepWhile > 0(a, I, s))(0) = s.

(49) (StepWhile > 0(a, I, s))(k + 1) = (Computation((StepWhile >

0(a, I, s))(k)+·(while > 0(a, I)+·s0)))(LifeSpan((StepWhile > 0(a, I, s))

(k)+·(I+·s0)) + 3).

(50) (StepWhile > 0(a, I, s))(k + 1) = (StepWhile > 0(a, I, (StepWhile >

0(a, I, s))(k)))(1).

(51) Let I be a macro instruction, a be a read-write integer location, and

s be a state of SCMFSA. Then (StepWhile > 0(a, I, s))(0 + 1) =

(Computation(s+·(while > 0(a, I)+·s0)))(LifeSpan(s+·(I+·s0)) + 3).

(52) Let I be a macro instruction, a be a read-write integer location,

s be a state of SCMFSA, and k, n be natural numbers. Suppose

IC(StepWhile>0(a,I,s))(k) = insloc(0) and (StepWhile > 0(a, I, s))(k) =

(Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))(n). Then

(StepWhile > 0(a, I, s))(k) = (StepWhile > 0(a, I, s))(k)+·(while >

0(a, I)+·Start-At(insloc(0))) and (StepWhile > 0(a, I, s))(k + 1) =

(Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))(n + (LifeSpan

((StepWhile > 0(a, I, s))(k)+·(I+·Start-At(insloc(0)))) + 3)).

(53) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Suppose that

(i) for every natural number k holds I is closed on (StepWhile >

0(a, I, s))(k) and halting on (StepWhile > 0(a, I, s))(k), and

(ii) there exists a function f from
∏
(the object kind of SCMFSA)

into N such that for every natural number k holds f((StepWhile >

0(a, I, s))(k + 1)) < f((StepWhile > 0(a, I, s))(k)) or f((StepWhile >

0(a, I, s))(k)) = 0 but f((StepWhile > 0(a, I, s))(k)) = 0 iff

(StepWhile > 0(a, I, s))(k)(a) ¬ 0.

Then while > 0(a, I) is halting on s and while > 0(a, I) is closed on s.

(54) Let I be a parahalting macro instruction, a be a read-write integer loca-

tion, and s be a state of SCMFSA. Given a function f from
∏
(the object

kind of SCMFSA) into N such that let k be a natural number. Then

f((StepWhile > 0(a, I, s))(k + 1)) < f((StepWhile > 0(a, I, s))(k)) or

f((StepWhile > 0(a, I, s))(k)) = 0 but f((StepWhile > 0(a, I, s))(k)) =

0 iff (StepWhile > 0(a, I, s))(k)(a) ¬ 0. Then while > 0(a, I) is halting

on s and while > 0(a, I) is closed on s.

(55) Let I be a parahalting macro instruction and a be a read-write inte-

ger location. Given a function f from
∏
(the object kind of SCMFSA)

into N such that let s be a state of SCMFSA. Then f((StepWhile >

0(a, I, s))(1)) < f(s) or f(s) = 0 but f(s) = 0 iff s(a) ¬ 0. Then

while > 0(a, I) is parahalting.
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Let I, J be good macro instructions and let a be an integer location. One

can verify that if > 0(a, I, J) is good.

Let I be a good macro instruction and let a be an integer location. One can

verify that while > 0(a, I) is good.
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