# While Macro Instructions of $\mathrm{SCM}_{\mathrm{FSA}}$ 

Jing-Chao Chen ${ }^{1}$<br>Shanghai Jiaotong University<br>Shanghai


#### Abstract

Summary. The article defines while macro instructions based on $\mathbf{S C M}_{\mathrm{FSA}}$. Some theorems about the generalized halting problems of while macro instructions are proved.


MML Identifier: SCMFSA_9.

The notation and terminology used in this paper are introduced in the following papers: [24], [32], [19], [8], [13], [33], [15], [16], [17], [12], [34], [7], [10], [14], [31], [18], [9], [20], [21], [25], [11], [23], [30], [29], [26], [27], [1], [28], [22], [5], [6], [4], [2], and [3].

The following propositions are true:
(1) For every macro instruction $I$ and for every integer location $a$ holds $\operatorname{card} i f=0\left(a, I ; \operatorname{Goto}(\operatorname{insloc}(0))\right.$, Stop $\left._{\mathrm{SCM}_{\mathrm{FSA}}}\right)=\operatorname{card} I+6$.
(2) For every macro instruction $I$ and for every integer location $a$ holds $\operatorname{card}$ if $>0\left(a, I ; \operatorname{Goto}(\operatorname{insloc}(0)), \operatorname{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}\right)=\operatorname{card} I+6$.
Let $a$ be an integer location and let $I$ be a macro instruction. The functor while $=0(a, I)$ yielding a macro instruction is defined as follows:
(Def. 1) while $=0(a, I)=i f=0\left(a, I\right.$; Goto(insloc(0)), Stop $\left._{\mathrm{SCM}_{\mathrm{FSA}}}\right)+\cdot(\mathrm{insloc}$ (card $I+4) \longmapsto$ goto insloc(0)).
The functor while $>0(a, I)$ yielding a macro instruction is defined by:
(Def. 2) while $>0(a, I)=i f>0\left(a, I ; \operatorname{Goto}(\operatorname{insloc}(0))\right.$, Stop $\left._{\mathrm{SCM}_{\mathrm{FSA}}}\right)+\cdot($ insloc (card $I+4) \longmapsto$ goto insloc(0)).
The following proposition is true

[^0](3) For every macro instruction $I$ and for every integer location $a$ holds $\operatorname{card} i f=0\left(a, \operatorname{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}\right.$, if $\left.>0\left(a, \operatorname{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}, I ; \operatorname{Goto}(\operatorname{insloc}(0))\right)\right)=$ card $I+11$.
Let $a$ be an integer location and let $I$ be a macro instruction. The functor while $<0(a, I)$ yields a macro instruction and is defined as follows:
(Def. 3) while $<0(a, I)=i f=0\left(a, \operatorname{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}\right.$, if $>0\left(a, \operatorname{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}, I\right.$; Goto $(\operatorname{insloc}(0))))+\cdot(\operatorname{insloc}(\operatorname{card} I+4) \longmapsto$ goto insloc(0)).
Next we state a number of propositions:
(4) For every macro instruction $I$ and for every integer location $a$ holds card while $=0(a, I)=\operatorname{card} I+6$.
(5) For every macro instruction $I$ and for every integer location $a$ holds card while $>0(a, I)=\operatorname{card} I+6$.
(6) For every macro instruction $I$ and for every integer location $a$ holds card while $<0(a, I)=\operatorname{card} I+11$.
(7) For every integer location $a$ and for every instruction-location $l$ of SCM $_{\mathrm{FSA}}$ holds if $a=0$ goto $l \neq$ halt $_{\mathrm{SCM}_{\mathrm{FSA}}}$.
(8) For every integer location $a$ and for every instruction-location $l$ of $\mathrm{SCM}_{\mathrm{FSA}}$ holds if $a>0$ goto $l \neq$ halt $_{\mathrm{SCM}_{\mathrm{FSA}}}$.
(9) For every instruction-location $l$ of $\mathbf{S C M}_{\mathrm{FSA}}$ holds goto $l \neq$ halt $_{\mathbf{S C M}_{\mathrm{FSA}}}$.
(10) Let $a$ be an integer location and $I$ be a macro instruction. Then $\operatorname{insloc}(0) \in \operatorname{dom}$ while $=0(a, I)$ and insloc $(1) \in \operatorname{dom}$ while $=0(a, I)$ and $\operatorname{insloc}(0) \in \operatorname{dom}$ while $>0(a, I)$ and insloc $(1) \in \operatorname{dom}$ while $>0(a, I)$.
(11) Let $a$ be an integer location and $I$ be a macro instruction. Then $($ while $=0(a, I))(\operatorname{insloc}(0))=$ if $a=0$ goto insloc(4) and (while $=$ $0(a, I))(\operatorname{insloc}(1))=$ goto insloc $(2)$ and $($ while $>0(a, I))(\operatorname{insloc}(0))=$ if $a>0$ goto insloc $(4)$ and $($ while $>0(a, I))($ insloc $(1))=$ goto insloc $(2)$.
(12) Let $a$ be an integer location, $I$ be a macro instruction, and $k$ be a natural number. If $k<6$, then $\operatorname{insloc}(k) \in \operatorname{dom}$ while $=0(a, I)$.
(13) Let $a$ be an integer location, $I$ be a macro instruction, and $k$ be a natural number. If $k<6$, then insloc $(\operatorname{card} I+k) \in \operatorname{dom}$ while $=0(a, I)$.
(14) For every integer location $a$ and for every macro instruction $I$ holds $($ while $=0(a, I))(\operatorname{insloc}(\operatorname{card} I+5))=$ halt $_{\mathbf{S C M}_{\mathrm{FSA}}}$.
(15) For every integer location $a$ and for every macro instruction $I$ holds $($ while $=0(a, I))(\operatorname{insloc}(3))=$ goto insloc $(\operatorname{card} I+5)$.
(16) For every integer location $a$ and for every macro instruction $I$ holds $(w h i l e=0(a, I))($ insloc $(2))=$ goto insloc(3).
(17) Let $a$ be an integer location, $I$ be a macro instruction, and $k$ be a natural number. If $k<\operatorname{card} I+6$, then $\operatorname{insloc}(k) \in \operatorname{dom}$ while $=0(a, I)$.
(18) Let $s$ be a state of $\mathbf{S C M}_{\text {FSA }}, I$ be a macro instruction, and $a$ be a readwrite integer location. If $s(a) \neq 0$, then while $=0(a, I)$ is halting on $s$ and while $=0(a, I)$ is closed on $s$.
(19) Let $a$ be an integer location, $I$ be a macro instruction, $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$, and $k$ be a natural number. Suppose that
(i) $\quad I$ is closed on $s$ and halting on $s$,
(ii) $k<\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))$,
(iii) $\quad \mathbf{I} \mathbf{C}_{(\operatorname{Computation}(s+\cdot(w h i l e=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(1+k)}=$ $\mathbf{I C}_{(\operatorname{Computation}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(k)}+4$, and
(iv) $\quad(\operatorname{Computation}(s+\cdot($ while $=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(1+k)$
$\upharpoonright($ Int-Locations $\cup$ FinSeq-Locations $)=($ Computation $(s+\cdot(I+\cdot$ Start-At $(\operatorname{insloc}(0)))))(k) \upharpoonright($ Int-Locations $\cup$ FinSeq-Locations).
Then IC $(\operatorname{Computation}(s+\cdot($ while $=0(a, I)+\cdot \operatorname{Start-At(\operatorname {insloc}(0)))))(1+k+1)}=$
$\mathbf{I C}(\operatorname{Computation}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(k+1)+4$ and $(\operatorname{Computation}(s+\cdot($ while
$=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(1+k+1) \upharpoonright($ Int-Locations
$\cup$ FinSeq-Locations $)=($ Computation $(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))$ $(k+1) \upharpoonright($ Int-Locations $\cup$ FinSeq-Locations).
(20) Let $a$ be an integer location, $I$ be a macro instruction, and $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Suppose $I$ is closed on $s$ and halting on $s$ and
$\mathbf{I C}_{(\text {Computation }(s+\cdot(\text { while }=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(1+\text { LifeSpan }(s+\cdot(I+\cdot \operatorname{Start}-\mathrm{At}}$ $($ insloc(0))))) $=$
$\mathbf{I C}_{(\operatorname{Computation}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start-At(\operatorname {insloc}(0)))))}+4 .}$
Then CurInstr $((\operatorname{Computation}(s+\cdot($ while $=0(a, I)+\cdot \operatorname{Start-At}(\operatorname{insloc}(0)))))$ $(1+\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))))=$ goto insloc$(\operatorname{card} I+4)$.
(21) For every integer location $a$ and for every macro instruction $I$ holds $($ while $=0(a, I))(\operatorname{insloc}(\operatorname{card} I+4))=$ goto insloc $(0)$.
(22) Let $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}, I$ be a macro instruction, and $a$ be a read-write integer location. Suppose $I$ is closed on $s$ and halting on $s$ and $s(a)=0$. Then $\mathbf{I C}(\operatorname{Computation}(s+\cdot(w h i l e=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))$
$(\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))+3)=\operatorname{insloc}(0)$ and for every natural number $k$ such that $k \leqslant \operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))+3$ holds $\mathbf{I} \mathbf{C o m p u t a t i o n}(s+\cdot($ while $=0(a, I)+\cdot \operatorname{Start-At}(\operatorname{insloc}(0)))))(k) \in \operatorname{dom}$ while $=0(a, I)$.
In the sequel $s$ denotes a state of $\mathbf{S C M}_{\mathrm{FSA}}, I$ denotes a macro instruction, and $a$ denotes a read-write integer location.

Let us consider $s, I, a$. The functor StepWhile $=0(a, I, s)$ yields a function from $\mathbb{N}$ into $\prod$ (the object kind of $\mathbf{S C M}_{\mathrm{FSA}}$ ) and is defined by the conditions (Def. 4).
(Def. 4)(i) $\quad($ StepWhile $=0(a, I, s))(0)=s$, and
(ii) for every natural number $i$ and for every element $x$ of $\Pi$ (the object kind of $\left.\mathbf{S C M}_{\mathrm{FSA}}\right)$ such that $x=($ StepWhile $=0(a, I, s))(i)$

> holds $($ StepWhile $=0(a, I, s))(i+1)=($ Computation $(x+\cdot($ while $=$ $\left.\left.\left.0(a, I)+\cdot s_{0}\right)\right)\right)\left(\right.$ LifeSpan $\left.\left(x+\cdot\left(I+\cdot s_{0}\right)\right)+3\right)$

In the sequel $k, n$ are natural numbers.
We now state three propositions:
(23) $\quad($ StepWhile $=0(a, I, s))(0)=s$.
(24) $\quad($ StepWhile $=0(a, I, s))(k+1)=($ Computation $(($ StepWhile $=$ $0(a, I, s))(k)+\cdot\left(\right.$ while $\left.\left.\left.=0(a, I)+\cdot s_{0}\right)\right)\right)($ LifeSpan $(($ StepWhile $=0(a, I, s))$ $\left.\left.(k)+\cdot\left(I+\cdot s_{0}\right)\right)+3\right)$.
(25) $\quad($ StepWhile $=0(a, I, s))(k+1)=($ StepWhile $=0(a, I,($ StepWhile $=$ $0(a, I, s))(k)))(1)$.
The scheme MinIndex deals with a unary functor $\mathcal{F}$ yielding a natural number and a natural number $\mathcal{A}$, and states that:

There exists $k$ such that $\mathcal{F}(k)=0$ and for every $n$ such that $\mathcal{F}(n)=0$ holds $k \leqslant n$
provided the parameters meet the following conditions:

- $\mathcal{F}(0)=\mathcal{A}$, and
- For every $k$ holds $\mathcal{F}(k+1)<\mathcal{F}(k)$ or $\mathcal{F}(k)=0$.

We now state a number of propositions:
(26) For all functions $f, g$ holds $f+\cdot g+\cdot g=f+\cdot g$.
(27) For all functions $f, g, h$ and for every set $D$ such that $(f+\cdot g) \upharpoonright D=h \upharpoonright D$ holds $(h+\cdot g) \upharpoonright D=(f+\cdot g) \upharpoonright D$.
(28) For all functions $f, g, h$ and for every set $D$ such that $f \upharpoonright D=h \upharpoonright D$ holds $(h+\cdot g) \upharpoonright D=(f+\cdot g) \upharpoonright D$.
(29) For all states $s_{1}, s_{2}$ of $\mathbf{S C M}_{\text {FSA }}$ such that $\mathbf{I C}\left(s_{1}\right)=\mathbf{I C}_{\left(s_{2}\right)}$ and $s_{1} \upharpoonright($ Int-Locations $\cup$ FinSeq-Locations $)=$ $s_{2} \upharpoonright\left(\right.$ Int-Locations $\cup$ FinSeq-Locations) and $s_{1} \upharpoonright I_{1}=s_{2} \upharpoonright I_{1}$ holds $s_{1}=s_{2}$.
(30) Let $I$ be a macro instruction, $a$ be a read-write integer location, and $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Then $($ StepWhile $=0(a, I, s))(0+1)=$ $\left(\operatorname{Computation}\left(s+\cdot\left(\right.\right.\right.$ while $\left.\left.\left.=0(a, I)+\cdot s_{0}\right)\right)\right)\left(\operatorname{LifeSpan}\left(s+\cdot\left(I+\cdot s_{0}\right)\right)+3\right)$.
(31) Let $I$ be a macro instruction, $a$ be a read-write integer location, $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$, and $k, n$ be natural numbers. Suppose $\mathbf{I C}_{(\text {StepWhile }=0(a, I, s))(k)}=\operatorname{insloc}(0)$ and $(S t e p W h i l e=0(a, I, s))(k)=$ (Computation $(s+\cdot(w h i l e=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(n)$. Then $($ StepWhile $=0(a, I, s))(k)=($ StepWhile $=0(a, I, s))(k)+\cdot($ while $=$ $0(a, I)+\cdot \operatorname{Start}-A t(\operatorname{insloc}(0)))$ and $($ StepWhile $=0(a, I, s))(k+1)=$ $(\operatorname{Computation}(s+\cdot($ while $=0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(n+($ LifeSpan $(($ StepWhile $=0(a, I, s))(k)+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))+3))$.
(32) Let $I$ be a macro instruction, $a$ be a read-write integer location, and $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Suppose that
(i) for every natural number $k$ holds $I$ is closed on (StepWhile $=$ $0(a, I, s))(k)$ and halting on $($ StepWhile $=0(a, I, s))(k)$, and
(ii) there exists a function $f$ from $\Pi$ (the object kind of $\mathbf{S C M}_{\text {FSA }}$ ) into $\mathbb{N}$ such that for every natural number $k$ holds $f(($ StepWhile $=$ $0(a, I, s))(k+1))<f(($ StepWhile $=0(a, I, s))(k))$ or $f(($ StepWhile $=$ $0(a, I, s))(k))=0$ but $f(($ StepWhile $=0(a, I, s))(k))=0$ iff $($ StepWhile $=0(a, I, s))(k)(a) \neq 0$.
Then while $=0(a, I)$ is halting on $s$ and while $=0(a, I)$ is closed on $s$.
(33) Let $I$ be a parahalting macro instruction, $a$ be a read-write integer location, and $s$ be a state of $\mathbf{S C M}_{\text {FSA }}$. Given a function $f$ from $\prod$ (the object kind of $\mathbf{S C M}_{\mathrm{FSA}}$ ) into $\mathbb{N}$ such that let $k$ be a natural number. Then $f(($ StepWhile $=0(a, I, s))(k+1))<f(($ StepWhile $=0(a, I, s))(k))$ or $f(($ StepWhile $=0(a, I, s))(k))=0$ but $f(($ StepWhile $=0(a, I, s))(k))=$ 0 iff $($ StepWhile $=0(a, I, s))(k)(a) \neq 0$. Then while $=0(a, I)$ is halting on $s$ and while $=0(a, I)$ is closed on $s$.
(34) Let $I$ be a parahalting macro instruction and $a$ be a read-write integer location. Given a function $f$ from $\prod$ (the object kind of $\mathbf{S C M}_{\text {FSA }}$ ) into $\mathbb{N}$ such that let $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Then $f(($ StepWhile $=$ $0(a, I, s))(1))<f(s)$ or $f(s)=0$ but $f(s)=0$ iff $s(a) \neq 0$. Then while $=0(a, I)$ is parahalting.
(35) For all instructions-locations $l_{1}, l_{2}$ of $\mathbf{S C M}_{\text {FSA }}$ and for every integer location $a$ holds $l_{1} \longmapsto$ goto $l_{2}$ does not destroy $a$.
(36) For every instruction $i$ of $\mathbf{S C M}_{\mathrm{FSA}}$ such that $i$ does not destroy intloc(0) holds $\operatorname{Macro}(i)$ is good.
Let $I, J$ be good macro instructions and let $a$ be an integer location. Note that if $=0(a, I, J)$ is good.

Let $I$ be a good macro instruction and let $a$ be an integer location. One can verify that while $=0(a, I)$ is good.

We now state a number of propositions:
(37) Let $a$ be an integer location, $I$ be a macro instruction, and $k$ be a natural number. If $k<6$, then $\operatorname{insloc}(k) \in \operatorname{dom}$ while $>0(a, I)$.
(38) Let $a$ be an integer location, $I$ be a macro instruction, and $k$ be a natural number. If $k<6$, then insloc $(\operatorname{card} I+k) \in \operatorname{dom}$ while $>0(a, I)$.
(39) For every integer location $a$ and for every macro instruction $I$ holds $($ while $>0(a, I))(\operatorname{insloc}(\operatorname{card} I+5))=$ halt $_{\mathbf{S C M}_{\mathrm{FSA}}}$.
(40) For every integer location $a$ and for every macro instruction $I$ holds $($ while $>0(a, I))(\operatorname{insloc}(3))=$ goto insloc $(\operatorname{card} I+5)$.
(41) For every integer location $a$ and for every macro instruction $I$ holds $($ while $>0(a, I))(\operatorname{insloc}(2))=$ goto insloc $(3)$.
(42) Let $a$ be an integer location, $I$ be a macro instruction, and $k$ be a natural
number. If $k<\operatorname{card} I+6$, then $\operatorname{insloc}(k) \in \operatorname{dom}$ while $>0(a, I)$.
(43) Let $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}, I$ be a macro instruction, and $a$ be a readwrite integer location. If $s(a) \leqslant 0$, then while $>0(a, I)$ is halting on $s$ and while $>0(a, I)$ is closed on $s$.
(44) Let $a$ be an integer location, $I$ be a macro instruction, $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$, and $k$ be a natural number. Suppose that
(i) $\quad I$ is closed on $s$ and halting on $s$,
(ii) $\quad k<\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))$,
(iii) $\quad \mathbf{I C}\left(\begin{array}{c}\text { Computation }(s+\cdot(w h i l e>0(a, I)+\cdot \operatorname{Start}-A t(\text { insloc }(0)))))(1+k)\end{array}=\right.$ $\mathbf{I C}_{(\text {Computation }(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\text { insloc(0) }))))(k)}+4$, and
(iv) $(\operatorname{Computation}(s+\cdot($ while $>0(a, I)+\cdot \operatorname{Start-At(\operatorname {insloc}(0)))))(1+k)\upharpoonright D=}$ $(\operatorname{Computation}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(k) \upharpoonright D$.
Then IC $\mathbf{C o m p u t a t i o n}(s+\cdot(w h i l e>0(a, I)+\cdot$ Start-At(insloc(0)))))(1+k+1)$==$
$\mathbf{I C}_{(\text {Computation }(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\text { insloc }(0)))))(k+1)}+4$ and (Computation $(s+\cdot($ while $>0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(1+k+1) \mid D=$
$(\operatorname{Computation}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))))(k+1) \upharpoonright D$.
(45) Let $a$ be an integer location, $I$ be a macro instruction, and $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Suppose $I$ is closed on $s$ and halting on $s$ and $\mathbf{I C}_{(\text {Computation }(s+\cdot(w h i l e>0(a, I)+\cdot \text { Start-At(insloc(0))))) }(1+\text { LifeSpan }(s+\cdot(I+\cdot \text { Start-At }}$ (insloc(0))))) $=$
$\mathbf{I C}_{(\text {Computation }(s+\cdot(I+\cdot \operatorname{Start-At}(\text { insloc }(0)))))(\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start-At(insloc}(0)))))}+4$. Then $\operatorname{CurInstr}((\operatorname{Computation}(s+\cdot($ while $>0(a, I)+\cdot \operatorname{Start-At(\operatorname {insloc}(0)))))}$ $(1+\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))))=$ goto insloc $(\operatorname{card} I+4)$.
(46) For every integer location $a$ and for every macro instruction $I$ holds $($ while $>0(a, I))(\operatorname{insloc}(\operatorname{card} I+4))=$ goto insloc $(0)$.
(47) Let $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}, I$ be a macro instruction, and $a$ be a read-write integer location. Suppose $I$ is closed on $s$ and halting on $s$ and $s(a)>0$.
Then $\mathbf{I C}_{(\text {Computation }(s+\cdot(w h i l e>0(a, I)+\cdot \text { Start-At(insloc(0))))) })}$ $(\operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))+3)=\operatorname{insloc}(0)$ and for every natural number $k$ such that $k \leqslant \operatorname{LifeSpan}(s+\cdot(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0))))+3$ holds $\mathbf{I C}_{(\text {Computation }(s+\cdot(w h i l e>0(a, I)+\cdot \text { Start-At(insloc(0))))) })(k)} \in \operatorname{dom}$ while $>0(a, I)$.
In the sequel $s$ denotes a state of $\mathbf{S C M}_{\mathrm{FSA}}, I$ denotes a macro instruction, and $a$ denotes a read-write integer location.

Let us consider $s, I, a$. The functor StepWhile $>0(a, I, s)$ yielding a function from $\mathbb{N}$ into $\Pi$ (the object kind of $\mathbf{S C M}_{\mathrm{FSA}}$ ) is defined by the conditions (Def. 5).
(Def. 5)(i) $\quad($ StepWhile $>0(a, I, s))(0)=s$, and
(ii) for every natural number $i$ and for every element $x$ of $\Pi$ (the object kind of $\left.\mathbf{S C M}_{\mathrm{FSA}}\right)$ such that $x=($ StepWhile $>0(a, I, s))(i)$ holds $($ StepWhile $>0(a, I, s))(i+1)=($ Computation $(x+\cdot($ while $>$ $\left.\left.\left.0(a, I)+\cdot s_{0}\right)\right)\right)\left(\operatorname{LifeSpan}\left(x+\cdot\left(I+\cdot s_{0}\right)\right)+3\right)$.

One can prove the following propositions:
(48) $\quad($ StepWhile $>0(a, I, s))(0)=s$.
(49) (StepWhile $>0(a, I, s))(k+1)=$ (Computation $(($ StepWhile $>$ $0(a, I, s))(k)+\cdot\left(\right.$ while $\left.\left.\left.>0(a, I)+\cdot s_{0}\right)\right)\right)($ LifeSpan $(($ StepWhile $>0(a, I, s))$ $\left.\left.(k)+\cdot\left(I+\cdot s_{0}\right)\right)+3\right)$.
(50) $\quad($ StepWhile $>0(a, I, s))(k+1)=($ StepWhile $>0(a, I,($ StepWhile $>$ $0(a, I, s))(k)))(1)$.
(51) Let $I$ be a macro instruction, $a$ be a read-write integer location, and $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Then $($ StepWhile $>0(a, I, s))(0+1)=$ (Computation $\left(s+\cdot\left(\right.\right.$ while $\left.\left.\left.>0(a, I)+\cdot s_{0}\right)\right)\right)\left(\operatorname{LifeSpan}\left(s+\cdot\left(I+\cdot s_{0}\right)\right)+3\right)$.
(52) Let $I$ be a macro instruction, $a$ be a read-write integer location, $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$, and $k, n$ be natural numbers. Suppose $\mathbf{I C}_{(\text {StepWhile }>0(a, I, s))(k)}=\operatorname{insloc}(0)$ and $($ StepWhile $>0(a, I, s))(k)=$ $($ Computation $(s+\cdot($ while $>0(a, I)+\cdot \operatorname{Start-At}(\operatorname{insloc}(0)))))(n)$. Then $($ StepWhile $>0(a, I, s))(k)=($ StepWhile $>0(a, I, s))(k)+\cdot($ while $>$ $0(a, I)+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)))$ and $($ StepWhile $>0(a, I, s))(k+1)=$ (Computation $(s+\cdot($ while $>0(a, I)+\cdot$ Start-At(insloc $(0)))))(n+($ LifeSpan $(($ StepWhile $>0(a, I, s))(k)+\cdot(I+\cdot \operatorname{Start}-A t(\operatorname{insloc}(0))))+3))$.
(53) Let $I$ be a macro instruction, $a$ be a read-write integer location, and $s$ be a state of $\mathbf{S C M}_{\text {FSA }}$. Suppose that
(i) for every natural number $k$ holds $I$ is closed on (StepWhile $>$ $0(a, I, s))(k)$ and halting on $($ StepWhile $>0(a, I, s))(k)$, and
(ii) there exists a function $f$ from $\prod$ (the object kind of $\mathbf{S C M}_{\mathrm{FSA}}$ ) into $\mathbb{N}$ such that for every natural number $k$ holds $f(($ StepWhile $>$ $0(a, I, s))(k+1))<f(($ StepWhile $>0(a, I, s))(k))$ or $f(($ StepWhile $>$ $0(a, I, s))(k))=0$ but $f(($ StepWhile $>0(a, I, s))(k))=0$ iff $($ StepWhile $>0(a, I, s))(k)(a) \leqslant 0$.
Then while $>0(a, I)$ is halting on $s$ and while $>0(a, I)$ is closed on $s$.
(54) Let $I$ be a parahalting macro instruction, $a$ be a read-write integer location, and $s$ be a state of $\mathbf{S C M}_{\text {FSA }}$. Given a function $f$ from $\Pi$ (the object kind of $\left.\mathbf{S C M}_{\mathrm{FSA}}\right)$ into $\mathbb{N}$ such that let $k$ be a natural number. Then $f(($ StepWhile $>0(a, I, s))(k+1))<f(($ StepWhile $>0(a, I, s))(k))$ or $f(($ StepWhile $>0(a, I, s))(k))=0$ but $f(($ StepWhile $>0(a, I, s))(k))=$ 0 iff $($ StepWhile $>0(a, I, s))(k)(a) \leqslant 0$. Then while $>0(a, I)$ is halting on $s$ and while $>0(a, I)$ is closed on $s$.
(55) Let $I$ be a parahalting macro instruction and $a$ be a read-write integer location. Given a function $f$ from $\Pi$ (the object kind of $\mathbf{S C M}_{\mathrm{FSA}}$ ) into $\mathbb{N}$ such that let $s$ be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Then $f(($ StepWhile $>$ $0(a, I, s))(1))<f(s)$ or $f(s)=0$ but $f(s)=0$ iff $s(a) \leqslant 0$. Then while $>0(a, I)$ is parahalting.

Let $I, J$ be good macro instructions and let $a$ be an integer location. One can verify that if $>0(a, I, J)$ is good.

Let $I$ be a good macro instruction and let $a$ be an integer location. One can verify that while $>0(a, I)$ is good.

## Acknowledgments

The author wishes to thank Prof. Andrzej Trybulec and Dr. Grzegorz Bancerek for their helpful comments and encouragement during his stay in Białystok.

## References

[1] Noriko Asamoto. Some multi instructions defined by sequence of instructions of $\mathbf{S C M}_{\mathrm{FSA}}$. Formalized Mathematics, 5(4):615-619, 1996.
[2] Noriko Asamoto. Conditional branch macro instructions of $\mathbf{S C M}_{\text {FSA }}$. Part I. Formalized Mathematics, 6(1):65-72, 1997.
[3] Noriko Asamoto. Conditional branch macro instructions of $\mathbf{S C M}_{\mathrm{FSA}}$. Part II. Formalized Mathematics, 6(1):73-80, 1997.
[4] Noriko Asamoto. Constant assignment macro instructions of $\mathbf{S C M}_{\mathrm{FSA}}$. Part II. Formalized Mathematics, 6(1):59-63, 1997.
[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II. Formalized Mathematics, 6(1):41-47, 1997.
[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. Formalized Mathematics, 6(1):53-57, 1997.
[7] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[8] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[9] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[10] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[11] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized Mathematics, 4(1):61-67, 1993.
[12] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[13] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[14] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[15] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[16] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[17] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[18] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[20] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[21] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[22] Piotr Rudnicki and Andrzej Trybulec. Memory handling for $\mathbf{S C M}_{\mathrm{FSA}}$. Formalized Mathematics, 6(1):29-36, 1997.
[23] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, $5(\mathbf{1}): 1-8,1996$.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[26] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of $\mathbf{S C M}_{\mathrm{FSA}}$. Formalized Mathematics, 5(4):571-576, 1996.
[27] Andrzej Trybulec and Yatsuka Nakamura. Relocability for $\mathbf{S C M}_{\mathrm{FSA}}$. Formalized Mathematics, 5(4):583-586, 1996.
[28] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. Formalized Mathematics, 6(1):21-27, 1997.
[29] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM SSA $^{\text {computer. }}$ Formalized Mathematics, 5(4):519-528, 1996.
[30] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of scm. Formalized Mathematics, 5(4):507-512, 1996.
[31] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[32] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[34] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics, $2(3): 413-418,1991$.

Received December 10, 1997


[^0]:    ${ }^{1}$ Part of the work was done while the author was visiting the Institute of Mathematics at the University of Białystok.

