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Summary. We implement two macroinstructions loop and Times which
iterate macroinstructions of SCMFSA. In a loop macroinstruction it jumps to
the head when the original macroinstruction stops, in a Times macroinstruction
it behaves as if the original macroinstrucion repeats n times.

MML Identifier: SCMFSA8C.

The articles [22], [29], [16], [8], [12], [30], [13], [14], [11], [7], [9], [28], [15], [17],

[23], [20], [21], [27], [24], [25], [1], [10], [19], [26], [5], [6], [4], [2], [3], and [18]

provide the terminology and notation for this paper.

1. Preliminaries

Let s be a state of SCMFSA and let P be an initial finite partial state of

SCMFSA. We say that P is pseudo-closed on s if and only if the condition

(Def. 1) is satisfied.

(Def. 1) There exists a natural number k such that

IC(Computation(s+·(P+·Start-At(insloc(0)))))(k) = insloc(cardProgramPart(P ))

and for every natural number n such that n < k holds

IC(Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ domP.

Let P be an initial finite partial state of SCMFSA. We say that P is pseudo-

paraclosed if and only if:

(Def. 2) For every state s of SCMFSA holds P is pseudo-closed on s.
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Let us note that there exists a macro instruction which is pseudo-paraclosed.

Let s be a state of SCMFSA and let P be an initial finite partial state of

SCMFSA. Let us assume that P is pseudo-closed on s.

The functor pseudo− LifeSpan(s, P ) yielding a natural number is defined as

follows:

(Def. 3) IC(Computation(s+·(P+·Start-At(insloc(0)))))(pseudo−LifeSpan(s,P )) =

insloc(cardProgramPart(P )) and for every natural number n such that

IC(Computation(s+·(P+· Start-At(insloc(0)))))(n) /∈ domP holds

pseudo− LifeSpan(s, P ) ¬ n.

We now state a number of propositions:

(1) Let s be a state of SCMFSA and P be an initial finite par-

tial state of SCMFSA. Suppose P is pseudo-closed on s. Let

n be a natural number. If n < pseudo− LifeSpan(s, P ), then

IC(Computation(s+·(P+· Start-At(insloc(0)))))(n) ∈ domP and

CurInstr((Computation(s+·(P+·Start-At(insloc(0)))))(n)) 6= haltSCMFSA .

(2) Let s be a state of SCMFSA and P be an initial finite partial

state of SCMFSA. Suppose P is pseudo-closed on s. Let k be a natu-

ral number. Suppose that for every natural number n such that n ¬

k holds IC(Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ domP. Then k <

pseudo− LifeSpan(s, P ).

(3) Let s be a state of SCMFSA and I, J be macro instructions. Sup-

pose I is pseudo-closed on s. Let k be a natural number. Suppose

k ¬ pseudo− LifeSpan(s, I). Then (Computation(s+·(I+·Start-At(insloc

(0)))))(k) and (Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) are

equal outside the instruction locations of SCMFSA.

(4) Let s be a state of SCMFSA and I be a macro instruction. If I is closed

on s and halting on s, then Directed(I) is pseudo-closed on s.

(5) Let s be a state of SCMFSA and I be a macro instruction. If I is

closed on s and halting on s, then pseudo− LifeSpan(s,Directed(I)) =

LifeSpan(s+·(I+·Start-At(insloc(0)))) + 1.

(6) For every function f and for every set x such that x ∈ dom f holds

f+·(x7−→. f(x)) = f.

(7) For every instruction-location l of SCMFSA holds l + 0 = l.

(8) For every instruction i of SCMFSA holds IncAddr(i, 0) = i.

(9) For every programmed finite partial state P of SCMFSA holds

ProgramPart(Relocated(P, 0)) = P.

(10) For all finite partial states P , Q of SCMFSA such that P ⊆ Q holds

ProgramPart(P ) ⊆ ProgramPart(Q).

(11) For all programmed finite partial states P , Q of SCMFSA and for every

natural number k such that P ⊆ Q holds Shift(P, k) ⊆ Shift(Q, k).
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(12) For all finite partial states P , Q of SCMFSA and for every natu-

ral number k such that P ⊆ Q holds ProgramPart(Relocated(P, k)) ⊆

ProgramPart(Relocated(Q, k)).

(13) Let I, J be macro instructions and k be a natural number. Suppose

card I ¬ k and k < card I + cardJ. Let i be an instruction of SCMFSA.

If i = J(insloc(k −′ card I)), then (I;J)(insloc(k)) = IncAddr(i, card I).

(14) For every state s of SCMFSA such that s(intloc(0)) = 1 and ICs =

insloc(0) holds Initialize(s) = s.

(15) For every state s of SCMFSA holds Initialize(Initialize(s)) =

Initialize(s).

(16) For every state s of SCMFSA and for every macro instruction I holds

s+·(Initialized(I)+·Start-At(insloc(0))) =

Initialize(s)+·(I+·Start-At(insloc(0))).

(17) For every state s of SCMFSA and for every macro instruction I holds

IExec(I, s) = IExec(I, Initialize(s)).

(18) For every state s of SCMFSA and for every macro instruction I such that

s(intloc(0)) = 1 holds s+·(I+·Start-At(insloc(0))) = s+· Initialized(I).

(19) For every macro instruction I holds I+·Start-At(insloc(0)) ⊆

Initialized(I).

(20) For every instruction-location l of SCMFSA and for every macro instruc-

tion I holds l ∈ dom I iff l ∈ dom Initialized(I).

(21) For every state s of SCMFSA and for every macro instruction I holds

Initialized(I) is closed on s iff I is closed on Initialize(s).

(22) For every state s of SCMFSA and for every macro instruction I holds

Initialized(I) is halting on s iff I is halting on Initialize(s).

(23) For every macro instruction I such that for every state s of SCMFSA
holds I is halting on Initialize(s) holds Initialized(I) is halting.

(24) For every macro instruction I such that for every state s of SCMFSA
holds Initialized(I) is halting on s holds Initialized(I) is halting.

(25) For every macro instruction I holds ProgramPart(Initialized(I)) = I.

(26) Let s be a state of SCMFSA, I be a macro instruction, l be an

instruction-location of SCMFSA, and x be a set. If x ∈ dom I, then

I(x) = (s+·(I+·Start-At(l)))(x).

(27) For every state s of SCMFSA such that s(intloc(0)) = 1

holds Initialize(s)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(28) Let s be a state of SCMFSA, I be a macro instruction, a be an

integer location, and l be an instruction-location of SCMFSA. Then

(s+·(I+·Start-At(l)))(a) = s(a).
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(29) For every programmed finite partial state I of SCMFSA and

for every instruction-location l of SCMFSA holds ICSCMFSA ∈

dom(I+·Start-At(l)).

(30) For every programmed finite partial state I of SCMFSA and for every

instruction-location l of SCMFSA holds (I+·Start-At(l))(ICSCMFSA) = l.

(31) Let s be a state of SCMFSA, P be a finite partial state of SCMFSA, and

l be an instruction-location of SCMFSA. Then ICs+·(P+·Start-At(l)) = l.

(32) For every state s of SCMFSA and for every instruction i of SCMFSA
such that InsCode(i) ∈ {0, 6, 7, 8} holds Exec(i, s)↾(Int-Locations∪

FinSeq-Locations) = s↾(Int-Locations∪FinSeq-Locations).

(33) Let s1, s2 be states of SCMFSA. Suppose that

(i) s1(intloc(0)) = s2(intloc(0)),

(ii) for every read-write integer location a holds s1(a) = s2(a), and

(iii) for every finite sequence location f holds s1(f) = s2(f).

Then s1↾(Int-Locations∪FinSeq-Locations) = s2↾(Int-Locations

∪FinSeq-Locations).

(34) For every state s of SCMFSA and for every programmed finite partial

state P of SCMFSA holds (s+·P )↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(35) For all states s, s3 of SCMFSA holds (s+·s3↾the instruction locations of

SCMFSA)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(36) For every state s of SCMFSA holds Initialize(s)↾the instruction locations

of SCMFSA = s↾the instruction locations of SCMFSA.

(37) Let s, s3 be states of SCMFSA and I be a macro instruction. Then

(s3+·s↾the instruction locations of SCMFSA)↾(Int-Locations

∪FinSeq-Locations) = s3↾(Int-Locations∪FinSeq-Locations).

(38) For every state s of SCMFSA holds IExec(StopSCMFSA , s) =

Initialize(s)+·Start-At(insloc(0)).

(39) For every state s of SCMFSA and for every macro instruction I such

that I is closed on s holds insloc(0) ∈ dom I.

(40) For every state s of SCMFSA and for every paraclosed macro instruction

I holds insloc(0) ∈ dom I.

(41) For every instruction i of SCMFSA holds rngMacro(i) = {i,haltSCMFSA}.

(42) Let s1, s2 be states of SCMFSA and I be a macro instruction.

Suppose I is closed on s1 and I+·Start-At(insloc(0)) ⊆ s1. Let n

be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then

IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and
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IncAddr(CurInstr((Computation(s1))(i)), n) =

CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(43) Let s1, s2 be states of SCMFSA and I be a macro instruction.

Suppose I is closed on s1 and I+·Start-At(insloc(0)) ⊆ s1 and

I+·Start-At(insloc(0)) ⊆ s2 and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then

IC(Computation(s1))(i) = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(44) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

I is closed on s1 and halting on s1 and I+·Start-At(insloc(0)) ⊆ s1 and

I+·Start-At(insloc(0)) ⊆ s2 and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Then LifeSpan(s1) = LifeSpan(s2).

(45) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

that

(i) s1(intloc(0)) = 1,

(ii) I is closed on s1 and halting on s1,

(iii) for every read-write integer location a holds s1(a) = s2(a), and

(iv) for every finite sequence location f holds s1(f) = s2(f).

Then IExec(I, s1)↾(Int-Locations∪FinSeq-Locations) =

IExec(I, s2)↾(Int-Locations∪FinSeq-Locations).

(46) Let s1, s2 be states of SCMFSA and I be a macro in-

struction. Suppose s1(intloc(0)) = 1 and I is closed on s1

and halting on s1 and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations).

Then IExec(I, s1)↾(Int-Locations∪FinSeq-Locations) =

IExec(I, s2)↾(Int-Locations∪FinSeq-Locations).

Let I be a macro instruction. Observe that Initialized(I) is initial.

One can prove the following propositions:

(47) Let s be a state of SCMFSA and I be a macro instruction. Then

Initialized(I) is pseudo-closed on s if and only if I is pseudo-closed on

Initialize(s).

(48) For every state s of SCMFSA and for every macro instruction I such

that I is pseudo-closed on Initialize(s) holds

pseudo− LifeSpan(s, Initialized(I)) = pseudo− LifeSpan(Initialize(s), I).

(49) For every state s of SCMFSA and for every macro instruction I such

that Initialized(I) is pseudo-closed on s holds

pseudo− LifeSpan(s, Initialized(I)) = pseudo− LifeSpan(Initialize(s), I).
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(50) Let s be a state of SCMFSA and I be an initial finite partial state

of SCMFSA. Suppose I is pseudo-closed on s. Then I is pseudo-

closed on s+·(I+·Start-At(insloc(0))) and pseudo− LifeSpan(s, I) =

pseudo− LifeSpan(s+·(I+·Start-At(insloc(0))), I).

(51) Let s1, s2 be states of SCMFSA and I be a macro instruction. Sup-

pose I+·Start-At(insloc(0)) ⊆ s1 and I is pseudo-closed on s1. Let

n be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Then

(i) for every natural number i such that i < pseudo− LifeSpan(s1, I) holds

IncAddr(CurInstr((Computation(s1))(i)), n) =

CurInstr((Computation(s2))(i)), and

(ii) for every natural number i such that i ¬ pseudo− LifeSpan(s1, I) holds

IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and

(Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(52) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). If I is pseudo-closed on s1, then I

is pseudo-closed on s2.

(53) Let s be a state of SCMFSA and I be a macro instruction. Suppose

s(intloc(0)) = 1. Then I is pseudo-closed on s if and only if I is pseudo-

closed on Initialize(s).

(54) Let a be an integer location and I, J be macro instructions. Then

insloc(0) ∈ dom if = 0(a, I, J) and insloc(1) ∈ dom if = 0(a, I, J) and

insloc(0) ∈ dom if > 0(a, I, J) and insloc(1) ∈ dom if > 0(a, I, J).

(55) Let a be an integer location and I, J be macro instructions. Then

(if = 0(a, I, J))(insloc(0)) = if a = 0 goto insloc(cardJ + 3) and (if =

0(a, I, J))(insloc(1)) = goto insloc(2) and (if > 0(a, I, J))(insloc(0)) =

if a > 0 goto insloc(cardJ + 3) and (if > 0(a, I, J))(insloc(1)) =

goto insloc(2).

(56) Let a be an integer location, I, J be macro instructions, and n be a

natural number. If n < card I + cardJ + 3, then insloc(n) ∈ dom if =

0(a, I, J) and (if = 0(a, I, J))(insloc(n)) 6= haltSCMFSA .

(57) Let a be an integer location, I, J be macro instructions, and n be a

natural number. If n < card I + cardJ + 3, then insloc(n) ∈ dom if >

0(a, I, J) and (if > 0(a, I, J))(insloc(n)) 6= haltSCMFSA .

(58) Let s be a state of SCMFSA and I be a macro instruction. Suppose

Directed(I) is pseudo-closed on s. Then

(i) I;StopSCMFSA is closed on s,

(ii) I;StopSCMFSA is halting on s,



the loop and Times . . . 489

(iii) LifeSpan(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))) =

pseudo− LifeSpan(s,Directed(I)),

(iv) for every natural number n such that

n < pseudo− LifeSpan(s,Directed(I)) holds

IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) =

IC(Computation(s+·((I;StopSCMFSA
)+·Start-At(insloc(0)))))(n), and

(v) for every natural number n such that

n ¬ pseudo− LifeSpan(s,Directed(I)) holds

(Computation(s+·(I+·Start-At(insloc(0)))))(n)↾D =

(Computation(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))))(n)↾D.

(59) Let s be a state of SCMFSA and I be a macro instruction. If Directed(I)

is pseudo-closed on s, then

Result(s+·((I;StopSCMFSA)+·Start-At(insloc(0))))↾D =

(Computation(s+·(I+·Start-At(insloc(0)))))

(pseudo− LifeSpan(s,Directed(I)))↾D.

(60) Let s be a state of SCMFSA and I be a macro instruction.

If s(intloc(0)) = 1 and Directed(I) is pseudo-closed on s, then

IExec(I;StopSCMFSA , s)↾D = (Computation(s+·(I+·Start-At(insloc(0)))))

(pseudo− LifeSpan(s,Directed(I)))↾D.

(61) For all macro instructions I, J and for every integer location a holds

(if = 0(a, I, J))(insloc(card I + cardJ + 3)) = haltSCMFSA .

(62) For all macro instructions I, J and for every integer location a holds

(if > 0(a, I, J))(insloc(card I + cardJ + 3)) = haltSCMFSA .

(63) For all macro instructions I, J and for every integer location a holds

(if = 0(a, I, J))(insloc(cardJ + 2)) = goto insloc(card I + cardJ + 3).

(64) For all macro instructions I, J and for every integer location a holds

(if > 0(a, I, J))(insloc(cardJ + 2)) = goto insloc(card I + cardJ + 3).

(65) For every macro instruction J and for every integer location a holds (if =

0(a,Goto(insloc(2)), J))(insloc(cardJ + 3)) = goto insloc(cardJ + 5).

(66) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) = 0 and Directed(I) is pseudo-

closed on s. Then if = 0(a, I, J) is halting on s and if = 0(a, I, J) is

closed on s and LifeSpan(s+·(if = 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))) + 1.

(67) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) = 0 and Directed(I) is pseudo-closed on s. Then IExec(if =

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(I;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).
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(68) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) > 0 and Directed(I) is pseudo-

closed on s. Then if > 0(a, I, J) is halting on s and if > 0(a, I, J) is

closed on s and LifeSpan(s+·(if > 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))) + 1.

(69) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) > 0 and Directed(I) is pseudo-closed on s. Then IExec(if >

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(I;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).

(70) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) 6= 0 and Directed(J) is pseudo-

closed on s. Then if = 0(a, I, J) is halting on s and if = 0(a, I, J) is

closed on s and LifeSpan(s+·(if = 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((J ;StopSCMFSA)+·Start-At(insloc(0)))) + 3.

(71) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) 6= 0 and Directed(J) is pseudo-closed on s. Then IExec(if =

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(J ;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).

(72) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) ¬ 0 and Directed(J) is pseudo-

closed on s. Then if > 0(a, I, J) is halting on s and if > 0(a, I, J) is

closed on s and LifeSpan(s+·(if > 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((J ;StopSCMFSA)+·Start-At(insloc(0)))) + 3.

(73) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) ¬ 0 and Directed(J) is pseudo-closed on s. Then IExec(if >

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(J ;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).

(74) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose Directed(I) is pseudo-closed on s

and Directed(J) is pseudo-closed on s. Then if = 0(a, I, J) is closed on s

and if = 0(a, I, J) is halting on s.

(75) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose Directed(I) is pseudo-closed on s

and Directed(J) is pseudo-closed on s. Then if > 0(a, I, J) is closed on s

and if > 0(a, I, J) is halting on s.

(76) Let I be a macro instruction and a be an integer location. If I does not

destroy a, then Directed(I) does not destroy a.
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(77) Let i be an instruction of SCMFSA and a be an integer location. If i

does not destroy a, then Macro(i) does not destroy a.

(78) For every integer location a holds haltSCMFSA does not refer a.

(79) For all integer locations a, b, c such that a 6= b holds AddTo(c, b) does

not refer a.

(80) Let i be an instruction of SCMFSA and a be an integer location. If i

does not refer a, then Macro(i) does not refer a.

(81) Let I, J be macro instructions and a be an integer location. Suppose I

does not destroy a and J does not destroy a. Then I;J does not destroy

a.

(82) Let J be a macro instruction, i be an instruction of SCMFSA, and a be

an integer location. Suppose i does not destroy a and J does not destroy

a. Then i;J does not destroy a.

(83) Let I be a macro instruction, j be an instruction of SCMFSA, and a be

an integer location. Suppose I does not destroy a and j does not destroy

a. Then I;j does not destroy a.

(84) Let i, j be instructions of SCMFSA and a be an integer location. Suppose

i does not destroy a and j does not destroy a. Then i;j does not destroy

a.

(85) For every integer location a holds StopSCMFSA does not destroy a.

(86) For every integer location a and for every instruction-location l of

SCMFSA holds Goto(l) does not destroy a.

(87) Let s be a state of SCMFSA and I be a macro instruction. Suppose I is

halting on Initialize(s). Then

(i) for every read-write integer location a holds (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a), and

(ii) for every finite sequence location f holds (IExec(I, s))(f) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(f).

(88) Let s be a state of SCMFSA, I be a parahalting macro instruc-

tion, and a be a read-write integer location. Then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a).

(89) Let s be a state of SCMFSA, I be a macro instruction, a be an integer lo-

cation, and k be a natural number. Suppose I is closed on Initialize(s) and

halting on Initialize(s) and I does not destroy a. Then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(90) Let s be a state of SCMFSA, I be a parahalting macro instruction, a be

an integer location, and k be a natural number. If I does not destroy a,
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then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(91) Let s be a state of SCMFSA, I be a parahalting macro instruction, and

a be an integer location. If I does not destroy a, then (IExec(I, s))(a) =

(Initialize(s))(a).

(92) Let s be a state of SCMFSA and I be a keeping 0 macro instruction. Sup-

pose I is halting on Initialize(s). Then (IExec(I, s))(intloc(0)) = 1 and for

every natural number k holds (Computation(Initialize(s)+·(I+·Start-At

(insloc(0)))))(k)(intloc(0)) = 1.

(93) Let s be a state of SCMFSA, I be a macro instruction, and

a be an integer location. Suppose I does not destroy a. Let k

be a natural number. If IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) ∈

dom I, then (Computation(s+·(I+·Start-At(insloc(0)))))(k + 1)(a) =

(Computation(s+·(I+·Start-At(insloc(0)))))(k)(a).

(94) Let s be a state of SCMFSA, I be a macro instruction, and a be an

integer location. Suppose I does not destroy a. Let m be a natural num-

ber. Suppose that for every natural number n such that n < m holds

IC(Computation(s+·(I+· Start-At(insloc(0)))))(n) ∈ dom I. Let n be a natural

number. If n ¬ m, then

(Computation(s+·(I+·Start-At(insloc(0)))))(n)(a) = s(a).

(95) Let s be a state of SCMFSA, I be a good macro instruction, and m

be a natural number. Suppose that for every natural number n such that

n < m holds IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ dom I. Let n be

a natural number. If n ¬ m, then (Computation(s+·(I+·Start-At

(insloc(0)))))(n)(intloc(0)) = s(intloc(0)).

(96) Let s be a state of SCMFSA and I be a good macro instruction.

Suppose I is halting on Initialize(s) and closed on Initialize(s). Then

(IExec(I, s))(intloc(0)) = 1 and for every natural number k holds

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) =

1.

(97) Let s be a state of SCMFSA and I be a good macro instruc-

tion. Suppose I is closed on s. Let k be a natural number. Then

(Computation(s+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) = s(intloc(0)).

(98) Let s be a state of SCMFSA, I be a keeping 0 parahalting macro instruc-

tion, and a be a read-write integer location. Suppose I does not destroy a.

Then (Computation(Initialize(s)+·((I;SubFrom(a, intloc(0)))+·Start-At

(insloc(0)))))(LifeSpan(Initialize(s)+·((I;SubFrom(a, intloc(0)))+·Start-At

(insloc(0)))))(a) = s(a)− 1.

(99) For every instruction i of SCMFSA such that i does not destroy intloc(0)

holds Macro(i) is good.
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(100) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

I is closed on s1 and halting on s1 and s1↾D = s2↾D. Let k be a natural

number. Then

(i) (Computation(s1+·(I+·Start-At(insloc(0)))))(k) and

(Computation(s2+·(I+·Start-At(insloc(0)))))(k) are equal outside the in-

struction locations of SCMFSA, and

(ii) CurInstr((Computation(s1+·(I+·Start-At(insloc(0)))))(k)) =

CurInstr((Computation(s2+·(I+·Start-At(insloc(0)))))(k)).

(101) Let s1, s2 be states of SCMFSA and I be a macro in-

struction. Suppose I is closed on s1 and halting on s1 and

s1↾D = s2↾D. Then LifeSpan(s1+·(I+·Start-At(insloc(0)))) =

LifeSpan(s2+·(I+·Start-At(insloc(0)))) and

Result(s1+·(I+·Start-At(insloc(0)))) and Result(s2+·(I+·Start-At

(insloc(0)))) are equal outside the instruction locations of SCMFSA.

(102) Let N be a non empty set with non empty elements, S be a steady-

programmed von Neumann definite AMI over N , and s be a state of S.

Suppose s is halting. Then there exists a natural number k such that s

halts at IC(Computation(s))(k).

(103) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

that

(i) I is closed on s1 and halting on s1,

(ii) I+·Start-At(insloc(0)) ⊆ s1,

(iii) I+·Start-At(insloc(0)) ⊆ s2, and

(iv) there exists a natural number k such that (Computation(s1))(k) and

s2 are equal outside the instruction locations of SCMFSA.

Then Result(s1) and Result(s2) are equal outside the instruction locations

of SCMFSA.

2. The loop Macroinstruction

Let I be a macro instruction and let k be a natural number. One can verify

that IncAddr(I, k) is initial and programmed.

Let I be a macro instruction. The functor loop I yields a halt-free macro

instruction and is defined by:

(Def. 4) loop I = (idthe instructions of SCMFSA+·(haltSCMFSA 7−→
. goto insloc(0))) · I.

Next we state two propositions:

(104) For every macro instruction I holds loop I = Directed(I, insloc(0)).

(105) Let I be a macro instruction and a be an integer location. If I does not

destroy a, then loop I does not destroy a.
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Let I be a good macro instruction. One can verify that loop I is good.

The following propositions are true:

(106) For every macro instruction I holds dom loop I = dom I.

(107) For every macro instruction I holds haltSCMFSA /∈ rng loop I.

(108) For every macro instruction I and for every set x such that x ∈ dom I

holds if I(x) 6= haltSCMFSA , then (loop I)(x) = I(x).

(109) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed on s and halting on s. Let m be a natural

number. Suppose m ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))). Then

(Computation(s+·(I+·Start-At(insloc(0)))))(m) and

(Computation(s+·(loop I+·Start-At(insloc(0)))))(m) are equal outside

the instruction locations of SCMFSA.

(110) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed on s and halting on s. Let m be a na-

tural number. If m < LifeSpan(s+·(I+·Start-At(insloc(0)))), then

CurInstr((Computation(s+·(I+·Start-At(insloc(0)))))(m)) =

CurInstr((Computation(s+·(loop I+·Start-At(insloc(0)))))(m)).

(111) Let s be a state of SCMFSA and I be a macro instruc-

tion. Suppose I is closed on s and halting on s. Let m be

a natural number. If m ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))),

then CurInstr((Computation(s+·(loop I+·Start-At(insloc(0)))))(m)) 6=

haltSCMFSA .

(112) Let s be a state of SCMFSA and I be a macro instruction. If I is closed

on s and halting on s, then CurInstr((Computation(s+·(loop I+·Start-At

(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(0).

(113) Let s be a state of SCMFSA and I be a paraclosed macro instruction.

Suppose I+·Start-At(insloc(0)) ⊆ s and s is halting. Let m be a natu-

ral number. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and

(Computation(s+· loop I))(m) are equal outside the instruction locations

of SCMFSA.

(114) Let s be a state of SCMFSA and I be a parahalting macro instruction.

Suppose Initialized(I) ⊆ s. Let k be a natural number. If k ¬ LifeSpan(s),

then CurInstr((Computation(s+· loop I))(k)) 6= haltSCMFSA .

3. The Times Macroinstruction

Let a be an integer location and let I be a macro instruction. The functor

Times(a, I) yields a macro instruction and is defined by:
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(Def. 5) Times(a, I) = if > 0(a, loop if = 0(a,Goto(insloc(2)), I;SubFrom

(a, intloc(0))),StopSCMFSA).

The following propositions are true:

(115) For every good macro instruction I and for every read-write integer lo-

cation a holds if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0))) is good.

(116) For all macro instructions I, J and for every integer location a holds

(if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0))))

(insloc(card(I;SubFrom(a, intloc(0))) + 3)) = goto

insloc(card(I;SubFrom(a, intloc(0))) + 5).

(117) Let s be a state of SCMFSA, I be a good parahalting macro in-

struction, and a be a read-write integer location. Suppose I does

not destroy a and s(intloc(0)) = 1 and s(a) > 0. Then loop if =

0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0))) is pseudo-closed on s.

(118) Let s be a state of SCMFSA, I be a good parahalting ma-

cro instruction, and a be a read-write integer location. Suppose

I does not destroy a and s(a) > 0. Then Initialized(loop if =

0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0)))) is pseudo-closed on s.

(119) Let s be a state of SCMFSA, I be a good parahalting macro instruction,

and a be a read-write integer location. Suppose I does not destroy a and

s(intloc(0)) = 1. Then Times(a, I) is closed on s and Times(a, I) is halting

on s.

(120) Let I be a good parahalting macro instruction and a be a read-write

integer location. If I does not destroy a, then Initialized(Times(a, I)) is

halting.

(121) Let I, J be macro instructions and a, c be integer locations. Suppose I

does not destroy c and J does not destroy c. Then if = 0(a, I, J) does not

destroy c and if > 0(a, I, J) does not destroy c.

(122) Let s be a state of SCMFSA, I be a good parahalting macro instruction,

and a be a read-write integer location. Suppose I does not destroy a and

s(intloc(0)) = 1 and s(a) > 0. Then there exists a state s2 of SCMFSA
and there exists a natural number k such that

(i) s2 = s+·(loop if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0)))

+·Start-At(insloc(0))),

(ii) k = LifeSpan(s+·(if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0)))

+·Start-At(insloc(0)))) + 1,

(iii) (Computation(s2))(k)(a) = s(a)− 1,

(iv) (Computation(s2))(k)(intloc(0)) = 1,

(v) for every read-write integer location b such that b 6= a holds

(Computation(s2))(k)(b) = (IExec(I, s))(b),



496 noriko asamoto

(vi) for every finite sequence location f holds (Computation(s2))(k)(f) =

(IExec(I, s))(f),

(vii) IC(Computation(s2))(k) = insloc(0), and

(viii) for every natural number n such that n ¬ k holds

IC(Computation(s2))(n) ∈ dom loop if = 0(a,Goto(insloc(2)), I;SubFrom

(a, intloc(0))).

(123) Let s be a state of SCMFSA, I be a good parahalting macro instruc-

tion, and a be a read-write integer location. If s(intloc(0)) = 1 and

s(a) ¬ 0, then IExec(Times(a, I), s)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(124) Let s be a state of SCMFSA, I be a good parahalting macro in-

struction, and a be a read-write integer location. Suppose I does not

destroy a and s(a) > 0. Then (IExec(I;SubFrom(a, intloc(0)), s))(a) =

s(a) − 1 and IExec(Times(a, I), s)↾(Int-Locations∪FinSeq-Locations) =

IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s))↾(Int-Locations

∪FinSeq-Locations).

4. An example

One can prove the following proposition

(125) Let s be a state of SCMFSA and a, b, c be read-write integer lo-

cations. If a 6= b and a 6= c and b 6= c and s(a) ­ 0, then

(IExec(Times(a,Macro(AddTo(b, c))), s))(b) = s(b) + s(c) · s(a).
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