
FORMALIZED MATHEMATICS

Volume 6, Number 4, 1997

University of Białystok

The loop and Times Macroinstruction for

SCMFSA

Noriko Asamoto

Ochanomizu University

Tokyo

Summary. We implement two macroinstructions loop and Times which
iterate macroinstructions of SCMFSA. In a loop macroinstruction it jumps to
the head when the original macroinstruction stops, in a Times macroinstruction
it behaves as if the original macroinstrucion repeats n times.

MML Identifier: SCMFSA8C.

The articles [22], [29], [16], [8], [12], [30], [13], [14], [11], [7], [9], [28], [15], [17],

[23], [20], [21], [27], [24], [25], [1], [10], [19], [26], [5], [6], [4], [2], [3], and [18]

provide the terminology and notation for this paper.

1. Preliminaries

Let s be a state of SCMFSA and let P be an initial finite partial state of

SCMFSA. We say that P is pseudo-closed on s if and only if the condition

(Def. 1) is satisfied.

(Def. 1) There exists a natural number k such that

IC(Computation(s+·(P+·Start-At(insloc(0)))))(k) = insloc(cardProgramPart(P ))

and for every natural number n such that n < k holds

IC(Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ domP.

Let P be an initial finite partial state of SCMFSA. We say that P is pseudo-

paraclosed if and only if:

(Def. 2) For every state s of SCMFSA holds P is pseudo-closed on s.

483
c© 1997 University of Białystok

ISSN 1426–2630



484 noriko asamoto

Let us note that there exists a macro instruction which is pseudo-paraclosed.

Let s be a state of SCMFSA and let P be an initial finite partial state of

SCMFSA. Let us assume that P is pseudo-closed on s.

The functor pseudo− LifeSpan(s, P ) yielding a natural number is defined as

follows:

(Def. 3) IC(Computation(s+·(P+·Start-At(insloc(0)))))(pseudo−LifeSpan(s,P )) =

insloc(cardProgramPart(P )) and for every natural number n such that

IC(Computation(s+·(P+· Start-At(insloc(0)))))(n) /∈ domP holds

pseudo− LifeSpan(s, P ) ¬ n.

We now state a number of propositions:

(1) Let s be a state of SCMFSA and P be an initial finite par-

tial state of SCMFSA. Suppose P is pseudo-closed on s. Let

n be a natural number. If n < pseudo− LifeSpan(s, P ), then

IC(Computation(s+·(P+· Start-At(insloc(0)))))(n) ∈ domP and

CurInstr((Computation(s+·(P+·Start-At(insloc(0)))))(n)) 6= haltSCMFSA .

(2) Let s be a state of SCMFSA and P be an initial finite partial

state of SCMFSA. Suppose P is pseudo-closed on s. Let k be a natu-

ral number. Suppose that for every natural number n such that n ¬

k holds IC(Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ domP. Then k <

pseudo− LifeSpan(s, P ).

(3) Let s be a state of SCMFSA and I, J be macro instructions. Sup-

pose I is pseudo-closed on s. Let k be a natural number. Suppose

k ¬ pseudo− LifeSpan(s, I). Then (Computation(s+·(I+·Start-At(insloc

(0)))))(k) and (Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) are

equal outside the instruction locations of SCMFSA.

(4) Let s be a state of SCMFSA and I be a macro instruction. If I is closed

on s and halting on s, then Directed(I) is pseudo-closed on s.

(5) Let s be a state of SCMFSA and I be a macro instruction. If I is

closed on s and halting on s, then pseudo− LifeSpan(s,Directed(I)) =

LifeSpan(s+·(I+·Start-At(insloc(0)))) + 1.

(6) For every function f and for every set x such that x ∈ dom f holds

f+·(x7−→. f(x)) = f.

(7) For every instruction-location l of SCMFSA holds l + 0 = l.

(8) For every instruction i of SCMFSA holds IncAddr(i, 0) = i.

(9) For every programmed finite partial state P of SCMFSA holds

ProgramPart(Relocated(P, 0)) = P.

(10) For all finite partial states P , Q of SCMFSA such that P ⊆ Q holds

ProgramPart(P ) ⊆ ProgramPart(Q).

(11) For all programmed finite partial states P , Q of SCMFSA and for every

natural number k such that P ⊆ Q holds Shift(P, k) ⊆ Shift(Q, k).



the loop and Times . . . 485

(12) For all finite partial states P , Q of SCMFSA and for every natu-

ral number k such that P ⊆ Q holds ProgramPart(Relocated(P, k)) ⊆

ProgramPart(Relocated(Q, k)).

(13) Let I, J be macro instructions and k be a natural number. Suppose

card I ¬ k and k < card I + cardJ. Let i be an instruction of SCMFSA.

If i = J(insloc(k −′ card I)), then (I;J)(insloc(k)) = IncAddr(i, card I).

(14) For every state s of SCMFSA such that s(intloc(0)) = 1 and ICs =

insloc(0) holds Initialize(s) = s.

(15) For every state s of SCMFSA holds Initialize(Initialize(s)) =

Initialize(s).

(16) For every state s of SCMFSA and for every macro instruction I holds

s+·(Initialized(I)+·Start-At(insloc(0))) =

Initialize(s)+·(I+·Start-At(insloc(0))).

(17) For every state s of SCMFSA and for every macro instruction I holds

IExec(I, s) = IExec(I, Initialize(s)).

(18) For every state s of SCMFSA and for every macro instruction I such that

s(intloc(0)) = 1 holds s+·(I+·Start-At(insloc(0))) = s+· Initialized(I).

(19) For every macro instruction I holds I+·Start-At(insloc(0)) ⊆

Initialized(I).

(20) For every instruction-location l of SCMFSA and for every macro instruc-

tion I holds l ∈ dom I iff l ∈ dom Initialized(I).

(21) For every state s of SCMFSA and for every macro instruction I holds

Initialized(I) is closed on s iff I is closed on Initialize(s).

(22) For every state s of SCMFSA and for every macro instruction I holds

Initialized(I) is halting on s iff I is halting on Initialize(s).

(23) For every macro instruction I such that for every state s of SCMFSA
holds I is halting on Initialize(s) holds Initialized(I) is halting.

(24) For every macro instruction I such that for every state s of SCMFSA
holds Initialized(I) is halting on s holds Initialized(I) is halting.

(25) For every macro instruction I holds ProgramPart(Initialized(I)) = I.

(26) Let s be a state of SCMFSA, I be a macro instruction, l be an

instruction-location of SCMFSA, and x be a set. If x ∈ dom I, then

I(x) = (s+·(I+·Start-At(l)))(x).

(27) For every state s of SCMFSA such that s(intloc(0)) = 1

holds Initialize(s)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(28) Let s be a state of SCMFSA, I be a macro instruction, a be an

integer location, and l be an instruction-location of SCMFSA. Then

(s+·(I+·Start-At(l)))(a) = s(a).



486 noriko asamoto

(29) For every programmed finite partial state I of SCMFSA and

for every instruction-location l of SCMFSA holds ICSCMFSA ∈

dom(I+·Start-At(l)).

(30) For every programmed finite partial state I of SCMFSA and for every

instruction-location l of SCMFSA holds (I+·Start-At(l))(ICSCMFSA) = l.

(31) Let s be a state of SCMFSA, P be a finite partial state of SCMFSA, and

l be an instruction-location of SCMFSA. Then ICs+·(P+·Start-At(l)) = l.

(32) For every state s of SCMFSA and for every instruction i of SCMFSA
such that InsCode(i) ∈ {0, 6, 7, 8} holds Exec(i, s)↾(Int-Locations∪

FinSeq-Locations) = s↾(Int-Locations∪FinSeq-Locations).

(33) Let s1, s2 be states of SCMFSA. Suppose that

(i) s1(intloc(0)) = s2(intloc(0)),

(ii) for every read-write integer location a holds s1(a) = s2(a), and

(iii) for every finite sequence location f holds s1(f) = s2(f).

Then s1↾(Int-Locations∪FinSeq-Locations) = s2↾(Int-Locations

∪FinSeq-Locations).

(34) For every state s of SCMFSA and for every programmed finite partial

state P of SCMFSA holds (s+·P )↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(35) For all states s, s3 of SCMFSA holds (s+·s3↾the instruction locations of

SCMFSA)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(36) For every state s of SCMFSA holds Initialize(s)↾the instruction locations

of SCMFSA = s↾the instruction locations of SCMFSA.

(37) Let s, s3 be states of SCMFSA and I be a macro instruction. Then

(s3+·s↾the instruction locations of SCMFSA)↾(Int-Locations

∪FinSeq-Locations) = s3↾(Int-Locations∪FinSeq-Locations).

(38) For every state s of SCMFSA holds IExec(StopSCMFSA , s) =

Initialize(s)+·Start-At(insloc(0)).

(39) For every state s of SCMFSA and for every macro instruction I such

that I is closed on s holds insloc(0) ∈ dom I.

(40) For every state s of SCMFSA and for every paraclosed macro instruction

I holds insloc(0) ∈ dom I.

(41) For every instruction i of SCMFSA holds rngMacro(i) = {i,haltSCMFSA}.

(42) Let s1, s2 be states of SCMFSA and I be a macro instruction.

Suppose I is closed on s1 and I+·Start-At(insloc(0)) ⊆ s1. Let n

be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then

IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and



the loop and Times . . . 487

IncAddr(CurInstr((Computation(s1))(i)), n) =

CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(43) Let s1, s2 be states of SCMFSA and I be a macro instruction.

Suppose I is closed on s1 and I+·Start-At(insloc(0)) ⊆ s1 and

I+·Start-At(insloc(0)) ⊆ s2 and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then

IC(Computation(s1))(i) = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(44) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

I is closed on s1 and halting on s1 and I+·Start-At(insloc(0)) ⊆ s1 and

I+·Start-At(insloc(0)) ⊆ s2 and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Then LifeSpan(s1) = LifeSpan(s2).

(45) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

that

(i) s1(intloc(0)) = 1,

(ii) I is closed on s1 and halting on s1,

(iii) for every read-write integer location a holds s1(a) = s2(a), and

(iv) for every finite sequence location f holds s1(f) = s2(f).

Then IExec(I, s1)↾(Int-Locations∪FinSeq-Locations) =

IExec(I, s2)↾(Int-Locations∪FinSeq-Locations).

(46) Let s1, s2 be states of SCMFSA and I be a macro in-

struction. Suppose s1(intloc(0)) = 1 and I is closed on s1

and halting on s1 and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations).

Then IExec(I, s1)↾(Int-Locations∪FinSeq-Locations) =

IExec(I, s2)↾(Int-Locations∪FinSeq-Locations).

Let I be a macro instruction. Observe that Initialized(I) is initial.

One can prove the following propositions:

(47) Let s be a state of SCMFSA and I be a macro instruction. Then

Initialized(I) is pseudo-closed on s if and only if I is pseudo-closed on

Initialize(s).

(48) For every state s of SCMFSA and for every macro instruction I such

that I is pseudo-closed on Initialize(s) holds

pseudo− LifeSpan(s, Initialized(I)) = pseudo− LifeSpan(Initialize(s), I).

(49) For every state s of SCMFSA and for every macro instruction I such

that Initialized(I) is pseudo-closed on s holds

pseudo− LifeSpan(s, Initialized(I)) = pseudo− LifeSpan(Initialize(s), I).



488 noriko asamoto

(50) Let s be a state of SCMFSA and I be an initial finite partial state

of SCMFSA. Suppose I is pseudo-closed on s. Then I is pseudo-

closed on s+·(I+·Start-At(insloc(0))) and pseudo− LifeSpan(s, I) =

pseudo− LifeSpan(s+·(I+·Start-At(insloc(0))), I).

(51) Let s1, s2 be states of SCMFSA and I be a macro instruction. Sup-

pose I+·Start-At(insloc(0)) ⊆ s1 and I is pseudo-closed on s1. Let

n be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Then

(i) for every natural number i such that i < pseudo− LifeSpan(s1, I) holds

IncAddr(CurInstr((Computation(s1))(i)), n) =

CurInstr((Computation(s2))(i)), and

(ii) for every natural number i such that i ¬ pseudo− LifeSpan(s1, I) holds

IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and

(Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(52) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). If I is pseudo-closed on s1, then I

is pseudo-closed on s2.

(53) Let s be a state of SCMFSA and I be a macro instruction. Suppose

s(intloc(0)) = 1. Then I is pseudo-closed on s if and only if I is pseudo-

closed on Initialize(s).

(54) Let a be an integer location and I, J be macro instructions. Then

insloc(0) ∈ dom if = 0(a, I, J) and insloc(1) ∈ dom if = 0(a, I, J) and

insloc(0) ∈ dom if > 0(a, I, J) and insloc(1) ∈ dom if > 0(a, I, J).

(55) Let a be an integer location and I, J be macro instructions. Then

(if = 0(a, I, J))(insloc(0)) = if a = 0 goto insloc(cardJ + 3) and (if =

0(a, I, J))(insloc(1)) = goto insloc(2) and (if > 0(a, I, J))(insloc(0)) =

if a > 0 goto insloc(cardJ + 3) and (if > 0(a, I, J))(insloc(1)) =

goto insloc(2).

(56) Let a be an integer location, I, J be macro instructions, and n be a

natural number. If n < card I + cardJ + 3, then insloc(n) ∈ dom if =

0(a, I, J) and (if = 0(a, I, J))(insloc(n)) 6= haltSCMFSA .

(57) Let a be an integer location, I, J be macro instructions, and n be a

natural number. If n < card I + cardJ + 3, then insloc(n) ∈ dom if >

0(a, I, J) and (if > 0(a, I, J))(insloc(n)) 6= haltSCMFSA .

(58) Let s be a state of SCMFSA and I be a macro instruction. Suppose

Directed(I) is pseudo-closed on s. Then

(i) I;StopSCMFSA is closed on s,

(ii) I;StopSCMFSA is halting on s,



the loop and Times . . . 489

(iii) LifeSpan(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))) =

pseudo− LifeSpan(s,Directed(I)),

(iv) for every natural number n such that

n < pseudo− LifeSpan(s,Directed(I)) holds

IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) =

IC(Computation(s+·((I;StopSCMFSA
)+·Start-At(insloc(0)))))(n), and

(v) for every natural number n such that

n ¬ pseudo− LifeSpan(s,Directed(I)) holds

(Computation(s+·(I+·Start-At(insloc(0)))))(n)↾D =

(Computation(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))))(n)↾D.

(59) Let s be a state of SCMFSA and I be a macro instruction. If Directed(I)

is pseudo-closed on s, then

Result(s+·((I;StopSCMFSA)+·Start-At(insloc(0))))↾D =

(Computation(s+·(I+·Start-At(insloc(0)))))

(pseudo− LifeSpan(s,Directed(I)))↾D.

(60) Let s be a state of SCMFSA and I be a macro instruction.

If s(intloc(0)) = 1 and Directed(I) is pseudo-closed on s, then

IExec(I;StopSCMFSA , s)↾D = (Computation(s+·(I+·Start-At(insloc(0)))))

(pseudo− LifeSpan(s,Directed(I)))↾D.

(61) For all macro instructions I, J and for every integer location a holds

(if = 0(a, I, J))(insloc(card I + cardJ + 3)) = haltSCMFSA .

(62) For all macro instructions I, J and for every integer location a holds

(if > 0(a, I, J))(insloc(card I + cardJ + 3)) = haltSCMFSA .

(63) For all macro instructions I, J and for every integer location a holds

(if = 0(a, I, J))(insloc(cardJ + 2)) = goto insloc(card I + cardJ + 3).

(64) For all macro instructions I, J and for every integer location a holds

(if > 0(a, I, J))(insloc(cardJ + 2)) = goto insloc(card I + cardJ + 3).

(65) For every macro instruction J and for every integer location a holds (if =

0(a,Goto(insloc(2)), J))(insloc(cardJ + 3)) = goto insloc(cardJ + 5).

(66) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) = 0 and Directed(I) is pseudo-

closed on s. Then if = 0(a, I, J) is halting on s and if = 0(a, I, J) is

closed on s and LifeSpan(s+·(if = 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))) + 1.

(67) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) = 0 and Directed(I) is pseudo-closed on s. Then IExec(if =

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(I;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).



490 noriko asamoto

(68) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) > 0 and Directed(I) is pseudo-

closed on s. Then if > 0(a, I, J) is halting on s and if > 0(a, I, J) is

closed on s and LifeSpan(s+·(if > 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((I;StopSCMFSA)+·Start-At(insloc(0)))) + 1.

(69) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) > 0 and Directed(I) is pseudo-closed on s. Then IExec(if >

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(I;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).

(70) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) 6= 0 and Directed(J) is pseudo-

closed on s. Then if = 0(a, I, J) is halting on s and if = 0(a, I, J) is

closed on s and LifeSpan(s+·(if = 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((J ;StopSCMFSA)+·Start-At(insloc(0)))) + 3.

(71) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) 6= 0 and Directed(J) is pseudo-closed on s. Then IExec(if =

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(J ;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).

(72) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) ¬ 0 and Directed(J) is pseudo-

closed on s. Then if > 0(a, I, J) is halting on s and if > 0(a, I, J) is

closed on s and LifeSpan(s+·(if > 0(a, I, J)+·Start-At(insloc(0)))) =

LifeSpan(s+·((J ;StopSCMFSA)+·Start-At(insloc(0)))) + 3.

(73) Let s be a state of SCMFSA, I, J be macro instructions, and

a be a read-write integer location. Suppose s(intloc(0)) = 1 and

s(a) ¬ 0 and Directed(J) is pseudo-closed on s. Then IExec(if >

0(a, I, J), s)↾(Int-Locations∪FinSeq-Locations) = IExec(J ;StopSCMFSA , s)

↾(Int-Locations∪FinSeq-Locations).

(74) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose Directed(I) is pseudo-closed on s

and Directed(J) is pseudo-closed on s. Then if = 0(a, I, J) is closed on s

and if = 0(a, I, J) is halting on s.

(75) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose Directed(I) is pseudo-closed on s

and Directed(J) is pseudo-closed on s. Then if > 0(a, I, J) is closed on s

and if > 0(a, I, J) is halting on s.

(76) Let I be a macro instruction and a be an integer location. If I does not

destroy a, then Directed(I) does not destroy a.



the loop and Times . . . 491

(77) Let i be an instruction of SCMFSA and a be an integer location. If i

does not destroy a, then Macro(i) does not destroy a.

(78) For every integer location a holds haltSCMFSA does not refer a.

(79) For all integer locations a, b, c such that a 6= b holds AddTo(c, b) does

not refer a.

(80) Let i be an instruction of SCMFSA and a be an integer location. If i

does not refer a, then Macro(i) does not refer a.

(81) Let I, J be macro instructions and a be an integer location. Suppose I

does not destroy a and J does not destroy a. Then I;J does not destroy

a.

(82) Let J be a macro instruction, i be an instruction of SCMFSA, and a be

an integer location. Suppose i does not destroy a and J does not destroy

a. Then i;J does not destroy a.

(83) Let I be a macro instruction, j be an instruction of SCMFSA, and a be

an integer location. Suppose I does not destroy a and j does not destroy

a. Then I;j does not destroy a.

(84) Let i, j be instructions of SCMFSA and a be an integer location. Suppose

i does not destroy a and j does not destroy a. Then i;j does not destroy

a.

(85) For every integer location a holds StopSCMFSA does not destroy a.

(86) For every integer location a and for every instruction-location l of

SCMFSA holds Goto(l) does not destroy a.

(87) Let s be a state of SCMFSA and I be a macro instruction. Suppose I is

halting on Initialize(s). Then

(i) for every read-write integer location a holds (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a), and

(ii) for every finite sequence location f holds (IExec(I, s))(f) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(f).

(88) Let s be a state of SCMFSA, I be a parahalting macro instruc-

tion, and a be a read-write integer location. Then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a).

(89) Let s be a state of SCMFSA, I be a macro instruction, a be an integer lo-

cation, and k be a natural number. Suppose I is closed on Initialize(s) and

halting on Initialize(s) and I does not destroy a. Then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(90) Let s be a state of SCMFSA, I be a parahalting macro instruction, a be

an integer location, and k be a natural number. If I does not destroy a,



492 noriko asamoto

then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(91) Let s be a state of SCMFSA, I be a parahalting macro instruction, and

a be an integer location. If I does not destroy a, then (IExec(I, s))(a) =

(Initialize(s))(a).

(92) Let s be a state of SCMFSA and I be a keeping 0 macro instruction. Sup-

pose I is halting on Initialize(s). Then (IExec(I, s))(intloc(0)) = 1 and for

every natural number k holds (Computation(Initialize(s)+·(I+·Start-At

(insloc(0)))))(k)(intloc(0)) = 1.

(93) Let s be a state of SCMFSA, I be a macro instruction, and

a be an integer location. Suppose I does not destroy a. Let k

be a natural number. If IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) ∈

dom I, then (Computation(s+·(I+·Start-At(insloc(0)))))(k + 1)(a) =

(Computation(s+·(I+·Start-At(insloc(0)))))(k)(a).

(94) Let s be a state of SCMFSA, I be a macro instruction, and a be an

integer location. Suppose I does not destroy a. Let m be a natural num-

ber. Suppose that for every natural number n such that n < m holds

IC(Computation(s+·(I+· Start-At(insloc(0)))))(n) ∈ dom I. Let n be a natural

number. If n ¬ m, then

(Computation(s+·(I+·Start-At(insloc(0)))))(n)(a) = s(a).

(95) Let s be a state of SCMFSA, I be a good macro instruction, and m

be a natural number. Suppose that for every natural number n such that

n < m holds IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ dom I. Let n be

a natural number. If n ¬ m, then (Computation(s+·(I+·Start-At

(insloc(0)))))(n)(intloc(0)) = s(intloc(0)).

(96) Let s be a state of SCMFSA and I be a good macro instruction.

Suppose I is halting on Initialize(s) and closed on Initialize(s). Then

(IExec(I, s))(intloc(0)) = 1 and for every natural number k holds

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) =

1.

(97) Let s be a state of SCMFSA and I be a good macro instruc-

tion. Suppose I is closed on s. Let k be a natural number. Then

(Computation(s+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) = s(intloc(0)).

(98) Let s be a state of SCMFSA, I be a keeping 0 parahalting macro instruc-

tion, and a be a read-write integer location. Suppose I does not destroy a.

Then (Computation(Initialize(s)+·((I;SubFrom(a, intloc(0)))+·Start-At

(insloc(0)))))(LifeSpan(Initialize(s)+·((I;SubFrom(a, intloc(0)))+·Start-At

(insloc(0)))))(a) = s(a)− 1.

(99) For every instruction i of SCMFSA such that i does not destroy intloc(0)

holds Macro(i) is good.



the loop and Times . . . 493

(100) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

I is closed on s1 and halting on s1 and s1↾D = s2↾D. Let k be a natural

number. Then

(i) (Computation(s1+·(I+·Start-At(insloc(0)))))(k) and

(Computation(s2+·(I+·Start-At(insloc(0)))))(k) are equal outside the in-

struction locations of SCMFSA, and

(ii) CurInstr((Computation(s1+·(I+·Start-At(insloc(0)))))(k)) =

CurInstr((Computation(s2+·(I+·Start-At(insloc(0)))))(k)).

(101) Let s1, s2 be states of SCMFSA and I be a macro in-

struction. Suppose I is closed on s1 and halting on s1 and

s1↾D = s2↾D. Then LifeSpan(s1+·(I+·Start-At(insloc(0)))) =

LifeSpan(s2+·(I+·Start-At(insloc(0)))) and

Result(s1+·(I+·Start-At(insloc(0)))) and Result(s2+·(I+·Start-At

(insloc(0)))) are equal outside the instruction locations of SCMFSA.

(102) Let N be a non empty set with non empty elements, S be a steady-

programmed von Neumann definite AMI over N , and s be a state of S.

Suppose s is halting. Then there exists a natural number k such that s

halts at IC(Computation(s))(k).

(103) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose

that

(i) I is closed on s1 and halting on s1,

(ii) I+·Start-At(insloc(0)) ⊆ s1,

(iii) I+·Start-At(insloc(0)) ⊆ s2, and

(iv) there exists a natural number k such that (Computation(s1))(k) and

s2 are equal outside the instruction locations of SCMFSA.

Then Result(s1) and Result(s2) are equal outside the instruction locations

of SCMFSA.

2. The loop Macroinstruction

Let I be a macro instruction and let k be a natural number. One can verify

that IncAddr(I, k) is initial and programmed.

Let I be a macro instruction. The functor loop I yields a halt-free macro

instruction and is defined by:

(Def. 4) loop I = (idthe instructions of SCMFSA+·(haltSCMFSA 7−→
. goto insloc(0))) · I.

Next we state two propositions:

(104) For every macro instruction I holds loop I = Directed(I, insloc(0)).

(105) Let I be a macro instruction and a be an integer location. If I does not

destroy a, then loop I does not destroy a.



494 noriko asamoto

Let I be a good macro instruction. One can verify that loop I is good.

The following propositions are true:

(106) For every macro instruction I holds dom loop I = dom I.

(107) For every macro instruction I holds haltSCMFSA /∈ rng loop I.

(108) For every macro instruction I and for every set x such that x ∈ dom I

holds if I(x) 6= haltSCMFSA , then (loop I)(x) = I(x).

(109) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed on s and halting on s. Let m be a natural

number. Suppose m ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))). Then

(Computation(s+·(I+·Start-At(insloc(0)))))(m) and

(Computation(s+·(loop I+·Start-At(insloc(0)))))(m) are equal outside

the instruction locations of SCMFSA.

(110) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed on s and halting on s. Let m be a na-

tural number. If m < LifeSpan(s+·(I+·Start-At(insloc(0)))), then

CurInstr((Computation(s+·(I+·Start-At(insloc(0)))))(m)) =

CurInstr((Computation(s+·(loop I+·Start-At(insloc(0)))))(m)).

(111) Let s be a state of SCMFSA and I be a macro instruc-

tion. Suppose I is closed on s and halting on s. Let m be

a natural number. If m ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))),

then CurInstr((Computation(s+·(loop I+·Start-At(insloc(0)))))(m)) 6=

haltSCMFSA .

(112) Let s be a state of SCMFSA and I be a macro instruction. If I is closed

on s and halting on s, then CurInstr((Computation(s+·(loop I+·Start-At

(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(0).

(113) Let s be a state of SCMFSA and I be a paraclosed macro instruction.

Suppose I+·Start-At(insloc(0)) ⊆ s and s is halting. Let m be a natu-

ral number. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and

(Computation(s+· loop I))(m) are equal outside the instruction locations

of SCMFSA.

(114) Let s be a state of SCMFSA and I be a parahalting macro instruction.

Suppose Initialized(I) ⊆ s. Let k be a natural number. If k ¬ LifeSpan(s),

then CurInstr((Computation(s+· loop I))(k)) 6= haltSCMFSA .

3. The Times Macroinstruction

Let a be an integer location and let I be a macro instruction. The functor

Times(a, I) yields a macro instruction and is defined by:



the loop and Times . . . 495

(Def. 5) Times(a, I) = if > 0(a, loop if = 0(a,Goto(insloc(2)), I;SubFrom

(a, intloc(0))),StopSCMFSA).

The following propositions are true:

(115) For every good macro instruction I and for every read-write integer lo-

cation a holds if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0))) is good.

(116) For all macro instructions I, J and for every integer location a holds

(if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0))))

(insloc(card(I;SubFrom(a, intloc(0))) + 3)) = goto

insloc(card(I;SubFrom(a, intloc(0))) + 5).

(117) Let s be a state of SCMFSA, I be a good parahalting macro in-

struction, and a be a read-write integer location. Suppose I does

not destroy a and s(intloc(0)) = 1 and s(a) > 0. Then loop if =

0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0))) is pseudo-closed on s.

(118) Let s be a state of SCMFSA, I be a good parahalting ma-

cro instruction, and a be a read-write integer location. Suppose

I does not destroy a and s(a) > 0. Then Initialized(loop if =

0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0)))) is pseudo-closed on s.

(119) Let s be a state of SCMFSA, I be a good parahalting macro instruction,

and a be a read-write integer location. Suppose I does not destroy a and

s(intloc(0)) = 1. Then Times(a, I) is closed on s and Times(a, I) is halting

on s.

(120) Let I be a good parahalting macro instruction and a be a read-write

integer location. If I does not destroy a, then Initialized(Times(a, I)) is

halting.

(121) Let I, J be macro instructions and a, c be integer locations. Suppose I

does not destroy c and J does not destroy c. Then if = 0(a, I, J) does not

destroy c and if > 0(a, I, J) does not destroy c.

(122) Let s be a state of SCMFSA, I be a good parahalting macro instruction,

and a be a read-write integer location. Suppose I does not destroy a and

s(intloc(0)) = 1 and s(a) > 0. Then there exists a state s2 of SCMFSA
and there exists a natural number k such that

(i) s2 = s+·(loop if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0)))

+·Start-At(insloc(0))),

(ii) k = LifeSpan(s+·(if = 0(a,Goto(insloc(2)), I;SubFrom(a, intloc(0)))

+·Start-At(insloc(0)))) + 1,

(iii) (Computation(s2))(k)(a) = s(a)− 1,

(iv) (Computation(s2))(k)(intloc(0)) = 1,

(v) for every read-write integer location b such that b 6= a holds

(Computation(s2))(k)(b) = (IExec(I, s))(b),



496 noriko asamoto

(vi) for every finite sequence location f holds (Computation(s2))(k)(f) =

(IExec(I, s))(f),

(vii) IC(Computation(s2))(k) = insloc(0), and

(viii) for every natural number n such that n ¬ k holds

IC(Computation(s2))(n) ∈ dom loop if = 0(a,Goto(insloc(2)), I;SubFrom

(a, intloc(0))).

(123) Let s be a state of SCMFSA, I be a good parahalting macro instruc-

tion, and a be a read-write integer location. If s(intloc(0)) = 1 and

s(a) ¬ 0, then IExec(Times(a, I), s)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(124) Let s be a state of SCMFSA, I be a good parahalting macro in-

struction, and a be a read-write integer location. Suppose I does not

destroy a and s(a) > 0. Then (IExec(I;SubFrom(a, intloc(0)), s))(a) =

s(a) − 1 and IExec(Times(a, I), s)↾(Int-Locations∪FinSeq-Locations) =

IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s))↾(Int-Locations

∪FinSeq-Locations).

4. An example

One can prove the following proposition

(125) Let s be a state of SCMFSA and a, b, c be read-write integer lo-

cations. If a 6= b and a 6= c and b 6= c and s(a) ­ 0, then

(IExec(Times(a,Macro(AddTo(b, c))), s))(b) = s(b) + s(c) · s(a).

References

[1] Noriko Asamoto. Some multi instructions defined by sequence of instructions of SCMFSA.
Formalized Mathematics, 5(4):615–619, 1996.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[3] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[4] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[7] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[8] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[10] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.



the loop and Times . . . 497

[11] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[12] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[13] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[14] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[15] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,
2(5):701–709, 1991.

[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[20] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[23] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[24] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[25] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Mathe-
matics, 5(4):583–586, 1996.

[26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[28] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received October 29, 1997


