A Decomposition of a Simple Closed Curves and the Order of Their Points

Yatsuka Nakamura
Shinshu University
Nagano

Andrzej Trybulec
University of Białystok

Summary. The goal of the article is to introduce an order on a simple closed curve. To do this, we fix two points on the curve and devide it into two arcs. We prove that such a decomposition is unique. Other auxiliary theorems about arcs are proven for preparation of the proof of the above.

MML Identifier: JORDAN6.

The papers [41], [46], [45], [40], [26], [1], [49], [44], [37], [12], [39], [10], [36], [32], [48], [2], [7], [8], [4], [20], [21], [34], [33], [29], [11], [43], [28], [19], [35], [16], [9], [15], [42], [18], [22], [17], [6], [23], [27], [3], [31], [5], [38], [13], [25], [47], [14], [30], and [24] provide the notation and terminology for this paper.

1. Middle Points of Arcs

For simplicity, we use the following convention: a, b, c, s, r are real numbers, n is a natural number, p, q are points of $\mathcal{E}_{\mathrm{T}}^{2}$, and P is a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$.

The following propositions are true:
(1) If $a=\frac{a+b}{2}$, then $a=b$.
(2) If $r \leqslant s$, then $r \leqslant \frac{r+s}{2}$ and $\frac{r+s}{2} \leqslant s$.
(3) Let T_{1} be a non empty topological space, P be a subset of the carrier of T_{1}, A be a subset of the carrier of $T_{1} \upharpoonright P$, and B be a subset of the carrier of T_{1}. If B is closed and $A=B \cap P$, then A is closed.
(4) Let T_{1}, T_{2} be non empty topological spaces, P be a non empty subset of the carrier of T_{2}, and f be a map from T_{1} into $T_{2} \upharpoonright P$. Then
(i) $\quad f$ is a map from T_{1} into T_{2}, and
(ii) for every map f_{2} from T_{1} into T_{2} such that $f_{2}=f$ and f is continuous holds f_{2} is continuous.
(5) Let r be a real number and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}} \geqslant r\right\}$, then P is closed.
(6) Let r be a real number and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}} \leqslant r\right\}$, then P is closed.
(7) Let r be a real number and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=r\right\}$, then P is closed.
(8) Let r be a real number and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{2}} \geqslant r\right\}$, then P is closed.
(9) Let r be a real number and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{2}} \leqslant r\right\}$, then P is closed.
(10) Let r be a real number and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{2}}=r\right\}$, then P is closed.
(11) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2}, then P is connected.
(12) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then P is closed.
(13) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is an arc from p_{1} to p_{2}. Then there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in P$ and $q_{1}=\frac{\left(p_{1}\right)_{1}+\left(p_{2}\right)_{1}}{2}$.
(14) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}, Q$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is an arc from p_{1} to p_{2} and $Q=\left\{q: q_{\mathbf{1}}=\frac{\left(p_{1}\right)_{1}+\left(p_{2}\right)_{\mathbf{1}}}{2}\right\}$. Then P meets Q and $P \cap Q$ is closed.
(15) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}, Q$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is an arc from p_{1} to p_{2} and $Q=\left\{q: q_{\mathbf{2}}=\frac{\left(p_{1}\right)_{\mathbf{2}}+\left(p_{2}\right)_{\mathbf{2}}}{2}\right\}$. Then P meets Q and $P \cap Q$ is closed.
Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Let us assume that P is an arc from p_{1} to p_{2}. The functor $\operatorname{xMiddle}\left(P, p_{1}, p_{2}\right)$ yields a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 1) For every subset Q of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $Q=\left\{q: q_{\mathbf{1}}=\right.$ $\left.\frac{\left(p_{1}\right)_{\mathbf{1}}+\left(p_{2}\right)_{\mathbf{1}}}{2}\right\}$ holds $x \operatorname{Middle}\left(P, p_{1}, p_{2}\right)=\operatorname{FPoint}\left(P, p_{1}, p_{2}, Q\right)$.
Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Let us assume that P is an arc from p_{1} to p_{2}. The functor $\mathrm{y} \operatorname{Middle}\left(P, p_{1}, p_{2}\right)$ yields a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 2) For every subset Q of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $Q=\left\{q: q_{\mathbf{2}}=\right.$ $\left.\frac{\left(p_{1}\right)_{2}+\left(p_{2}\right)_{\mathbf{2}}}{2}\right\}$ holds yMiddle $\left(P, p_{1}, p_{2}\right)=\operatorname{FPoint}\left(P, p_{1}, p_{2}, Q\right)$.
One can prove the following propositions:
(16) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $\operatorname{xMiddle}\left(P, p_{1}, p_{2}\right) \in P$ and yMiddle $\left(P, p_{1}, p_{2}\right) \in P$.
(17) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $p_{1}=\operatorname{xMiddle}\left(P, p_{1}, p_{2}\right)$ iff $\left(p_{1}\right)_{\mathbf{1}}=$ $\left(p_{2}\right)_{1}$.
(18) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $p_{1}=\mathrm{yMiddle}\left(P, p_{1}, p_{2}\right) \operatorname{iff}\left(p_{1}\right)_{\mathbf{2}}=$ $\left(p_{2}\right)_{\mathbf{2}}$.

2. Segments of Arcs

The following proposition is true
(19) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and LE $q_{1}, q_{2}, P, p_{1}, p_{2}$, then LE $q_{2}, q_{1}, P, p_{2}, p_{1}$.
Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and let p_{1}, p_{2}, q_{1} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. The functor $\operatorname{LSegment}\left(P, p_{1}, p_{2}, q_{1}\right)$ yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 3) LSegment $\left(P, p_{1}, p_{2}, q_{1}\right)=\left\{q: \operatorname{LE} q, q_{1}, P, p_{1}, p_{2}\right\}$.
Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and let p_{1}, p_{2}, q_{1} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. The functor $\operatorname{RSegment}\left(P, p_{1}, p_{2}, q_{1}\right)$ yielding a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 4) $\operatorname{RSegment}\left(P, p_{1}, p_{2}, q_{1}\right)=\left\{q: \operatorname{LE} q_{1}, q, P, p_{1}, p_{2}\right\}$.
Next we state several propositions:
(20) For every non empty subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for all points p_{1}, p_{2}, q_{1} of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{LSegment}\left(P, p_{1}, p_{2}, q_{1}\right) \subseteq P$.
(21) For every non empty subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for all points p_{1}, p_{2}, q_{1} of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{RSegment}\left(P, p_{1}, p_{2}, q_{1}\right) \subseteq P$.
(22) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $\operatorname{LSegment}\left(P, p_{1}, p_{2}, p_{1}\right)=\left\{p_{1}\right\}$.
(23) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2}, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and $q \in P$, then LE $q, p_{2}, P, p_{1}, p_{2}$.
(24) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2}, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and $q \in P$, then $\mathrm{LE} p_{1}, q, P, p_{1}, p_{2}$.
(25) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $\operatorname{LSegment}\left(P, p_{1}, p_{2}, p_{2}\right)=P$.
(26) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $\operatorname{RSegment}\left(P, p_{1}, p_{2}, p_{2}\right)=\left\{p_{2}\right\}$.
(27) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then $\operatorname{RSegment}\left(P, p_{1}, p_{2}, p_{1}\right)=P$.
(28) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2}, q_{1} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and $q_{1} \in P$, then $\operatorname{RSegment}\left(P, p_{1}, p_{2}, q_{1}\right)=$ $\operatorname{LSegment}\left(P, p_{2}, p_{1}, q_{1}\right)$.
Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and let $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. The functor $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right)$ yielding a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 5) $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right)=\operatorname{RSegment}\left(P, p_{1}, p_{2}, q_{1}\right) \cap \operatorname{LSegment}\left(P, p_{1}, p_{2}, q_{2}\right)$.
Next we state four propositions:
(29) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Then $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right)=\left\{q: \operatorname{LE} q_{1}, q, P, p_{1}\right.$, $\left.p_{2} \wedge \mathrm{LE} q, q_{2}, P, p_{1}, p_{2}\right\}$.
(30) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is an arc from p_{1} to p_{2}. Then LE $q_{1}, q_{2}, P, p_{1}, p_{2}$ if and only if LE $q_{2}, q_{1}, P, p_{2}, p_{1}$.
(31) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2}, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and $q \in P$, then $\operatorname{LSegment}\left(P, p_{1}, p_{2}, q\right)=$ RSegment $\left(P, p_{2}, p_{1}, q\right)$.
(32) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and $q_{1} \in P$ and $q_{2} \in P$, then $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right)=\operatorname{Segment}\left(P, p_{2}, p_{1}, q_{2}, q_{1}\right)$.

3. Decomposition of a Simple Closed Curve Into Two Arcs

Let s be a real number. The functor VerticalLine s yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 6) VerticalLine $s=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=s\right\}$.
The functor HorizontalLine s yielding a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 7) HorizontalLine $s=\left\{p: p_{2}=s\right\}$.
Next we state several propositions:
(33) For every real number r holds VerticalLiner is closed and HorizontalLine r is closed.
(34) For every real number r and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ VerticalLine r holds $p_{\mathbf{1}}=r$.
(35) For every real number r and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ HorizontalLine r holds $p_{2}=r$.
(36) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ holds W -min $P \in P$ and $W-\max P \in P$.
(37) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ holds N -min $P \in P$ and $N-\max P \in P$.
(38) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ holds E-min $P \in P$ and E-max $P \in P$.
(39) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathrm{S}-\mathrm{min} P \in P$ and $S-\max P \in P$.
(40) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve. Then there exist non empty subsets P_{1}, P_{2} of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
(i) $\quad P_{1}$ is an arc from $\mathrm{W}-\min P$ to $\mathrm{E}-\max P$,
(ii) $\quad P_{2}$ is an arc from E-max P to $\mathrm{W}-\min P$,
(iii) $\quad P_{1} \cap P_{2}=\{\mathrm{W}-\min P, \mathrm{E}-\max P\}$,
(iv) $\quad P_{1} \cup P_{2}=P$, and
(v) $\quad\left(\operatorname{FPoint}\left(P_{1}, \mathrm{~W}-\min P, \mathrm{E}-\text { max } P, \text { VerticalLine } \frac{\mathrm{W} \text {-bound } P+\mathrm{E} \text {-bound } P}{2}\right)\right)_{\mathbf{2}}>$ $\left(\operatorname{LPoint}\left(P_{2}, \mathrm{E}-\text { max } P, \mathrm{~W}-\text { min } P, \text { VerticalLine } \frac{\mathrm{W} \text {-bound } P+\mathrm{E}-\text { bound } P}{2}\right)\right)_{\mathbf{2}}$.

4. Uniqueness of Decomposition of a Simple Closed Curve

One can prove the following propositions:
(41) For every subset P of the carrier of \mathbb{I} such that $P=$ (the carrier of $\mathbb{I}) \backslash\{0,1\}$ holds P is open.
(42) For all subsets B_{1}, B_{2} of \mathbb{R} such that B_{2} is lower bounded and $B_{1} \subseteq B_{2}$ holds B_{1} is lower bounded.
(43) For all subsets B_{1}, B_{2} of \mathbb{R} such that B_{2} is upper bounded and $B_{1} \subseteq B_{2}$ holds B_{1} is upper bounded.
(44) For all r, s holds $] r, s[\cap\{r, s\}=\emptyset$.
(45) For all a, b, c holds $c \in] a, b[$ iff $a<c$ and $c<b$.
(46) For every subset P of the carrier of $\mathbb{R}^{\mathbf{1}}$ and for all r, s such that $\left.P=\right] r, s[$ holds P is open.
(47) Let S be a non empty topological space, P_{1}, P_{2} be subsets of the carrier of S, and P_{1}^{\prime} be a subset of the carrier of $S \upharpoonright P_{2}$. If $P_{1}=P_{1}^{\prime}$ and $P_{1} \neq \emptyset$ and $P_{1} \subseteq P_{2}$, then $S \upharpoonright P_{1}=S \upharpoonright P_{2} \upharpoonright P_{1}^{\prime}$.
(48) For every subset P_{7} of the carrier of \mathbb{I} such that $P_{7}=$ (the carrier of II) $\backslash\{0,1\}$ holds $P_{7} \neq \emptyset$ and P_{7} is connected.
(49) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2}, then $p_{1} \neq p_{2}$.
(50) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, Q$ be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2} and $Q=P \backslash\left\{p_{1}, p_{2}\right\}$, then Q is open.
(51) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every non empty subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that P is an arc from p to q holds P is compact.
(52) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, P_{1}, P_{2}$ be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, Q$ be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $p_{1} \in P$ and $p_{2} \in P$ and P_{1} is an arc from p_{1} to p_{2} and P_{2} is an arc from p_{1} to p_{2} and $P_{1} \cup P_{2}=P$ and $P_{1} \cap P_{2}=\left\{p_{1}, p_{2}\right\}$ and $Q=P_{1} \backslash\left\{p_{1}, p_{2}\right\}$. Then Q is open.
(53) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, Q$ be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2} and $Q=P \backslash\left\{p_{1}, p_{2}\right\}$, then Q is connected.
(54) Let G_{1} be a non empty topological space, P_{1}, P be non empty subsets of the carrier of G_{1}, Q^{\prime} be a subset of the carrier of $G_{1} \upharpoonright P_{1}$, and Q be a non empty subset of the carrier of $G_{1} \upharpoonright P$. If $P_{1} \subseteq P$ and $Q=Q^{\prime}$ and Q^{\prime} is connected, then Q is connected.
(55) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose P is an arc from p_{1} to p_{2}. Then there exists a point p_{3} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p_{3} \in P$ and $p_{3} \neq p_{1}$ and $p_{3} \neq p_{2}$.
(56) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2}, then $P \backslash\left\{p_{1}, p_{2}\right\} \neq \emptyset$.
(57) Let P_{1} be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, P$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, Q$ be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P_{1} is an arc from p_{1} to p_{2} and $P_{1} \subseteq P$ and $Q=P_{1} \backslash\left\{p_{1}, p_{2}\right\}$, then Q is connected.
(58) Let T, S, V be non empty topological spaces, P_{1} be a non empty subset of the carrier of S, P_{2} be a subset of the carrier of S, f be a map from T into $S \upharpoonright P_{1}$, and g be a map from $S \upharpoonright P_{2}$ into V. Suppose $P_{1} \subseteq P_{2}$ and f is continuous and g is continuous. Then there exists a map h from T into V such that $h=g \cdot f$ and h is continuous.
(59) Let P_{1}, P_{2} be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P_{1} is an arc from p_{1} to p_{2} and P_{2} is an arc from p_{1} to p_{2} and $P_{1} \subseteq P_{2}$, then $P_{1}=P_{2}$.
(60) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}, Q$ be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed
curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{1} \neq p_{2}$ and $Q=P \backslash\left\{p_{1}, p_{2}\right\}$. Then Q is not connected.
(61) Let $P, P_{1}, P_{2}, P_{1}^{\prime}, P_{2}^{\prime}$ be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $\quad P$ is a simple closed curve,
(ii) $\quad P_{1}$ is an arc from p_{1} to p_{2},
(iii) $\quad P_{2}$ is an arc from p_{1} to p_{2},
(iv) $P_{1} \cup P_{2}=P$,
(v) $P_{1} \cap P_{2}=\left\{p_{1}, p_{2}\right\}$,
(vi) $\quad P_{1}^{\prime}$ is an arc from p_{1} to p_{2},
(vii) $\quad P_{2}^{\prime}$ is an arc from p_{1} to p_{2},
(viii) $P_{1}^{\prime} \cup P_{2}^{\prime}=P$, and
(ix) $P_{1}^{\prime} \cap P_{2}^{\prime}=\left\{p_{1}, p_{2}\right\}$.

Then $P_{1}=P_{1}^{\prime}$ and $P_{2}=P_{2}^{\prime}$ or $P_{1}=P_{2}^{\prime}$ and $P_{2}=P_{1}^{\prime}$.

5. Lower Arcs and Upper Arcs

One can prove the following propositions:
(62) Let P_{1} be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P_{1} is an arc from p_{1} to p_{2}, then P_{1} is closed.
(63) Let G_{1}, G_{2} be non empty topological spaces, P be a non empty subset of the carrier of G_{2}, f be a map from G_{1} into $G_{2} \upharpoonright P$, and f_{1} be a map from G_{1} into G_{2}. If $f=f_{1}$ and f is continuous, then f_{1} is continuous.
(64) Let P_{1} be a non empty subset of the carrier of $\mathcal{E}_{\text {T }}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $\left(p_{1}\right)_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$ and P_{1} is an arc from p_{1} to p_{2}. Then $P_{1} \cap$ VerticalLine $\frac{\left(p_{1}\right)_{1}+\left(p_{2}\right)_{1}}{2} \neq \emptyset$ and $P_{1} \cap$ VerticalLine $\frac{\left(p_{1}\right)_{1}+\left(p_{2}\right)_{1}}{2}$ is closed.
Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Let us assume that P is a simple closed curve. The functor UpperArc P yields a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by the conditions (Def. 8).
(Def. 8)(i) UpperArc P is an arc from W-min P to E-max P, and
(ii) there exists a non empty subset P_{2} of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that P_{2} is an arc from E-max P to W-min P and UpperArc $P \cap P_{2}=$ $\{$ W-min P, E-max $P\}$ and UpperArc $P \cup P_{2}=P$ and
(FPoint(UpperArc P, W-min P, E-max P,
VerticalLine $\left.\left.\frac{\mathrm{W} \text {-bound } P+\mathrm{E} \text {-bound } P}{2}\right)\right)_{2}>$
(LPoint $\left(P_{2}, \mathrm{E}-\max P, \mathrm{~W}-\min P\right.$,
VerticalLine $\left.\left.\frac{\mathrm{W} \text {-bound } P+\mathrm{E} \text {-bound } P}{2}\right)\right)_{\mathbf{2}}$.
Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Let us assume that P is a simple closed curve. The functor LowerArc P yielding a non empty subset of the carrier of \mathcal{E}_{T}^{2} is defined as follows:
(Def. 9) LowerArc P is an arc from E-max P to W-min P and $\operatorname{UpperArc} P \cap$ LowerArc $P=\{\mathrm{W}-\min P, \mathrm{E}-\max P\}$ and $\operatorname{UpperArc} P \cup \operatorname{LowerArc} P=P$ and (FPoint(UpperArc P, W-min P, E-max P, VerticalLine $\left.\left.\frac{\mathrm{W} \text {-bound } P+\mathrm{E} \text {-bound } P}{2}\right)\right)_{2}>($ LPoint $($ Lower Arc P, E-max P, W-min P, VerticalLine $\left.\frac{\text { W-bound } P+\mathrm{E} \text {-bound } P}{2}\right)_{\mathbf{2}}$.
The following propositions are true:
(65) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve. Then
(i) UpperArc P is an arc from W-min P to E-max P,
(ii) UpperArc P is an arc from E-max P to W -min P,
(iii) LowerArc P is an arc from $\mathrm{E}-\max P$ to $\mathrm{W}-m i n ~ P$,
(iv) LowerArc P is an arc from W-min P to E-max P,
(v) UpperArc $P \cap$ LowerArc $P=\{\mathrm{W}-\min P$, E-max $P\}$,
(vi) UpperArc $P \cup$ LowerArc $P=P$, and
(vii) (FPoint(UpperArc $P, \mathrm{~W}-\min P, \mathrm{E}-m a x P$,

VerticalLine $\left.\left.\frac{\mathrm{W} \text {-bound } P+\mathrm{E} \text {-bound } P}{2}\right)\right)_{2}>($ LPoint $($ LowerArc P, E-max P, W-min P, VerticalLine $\left.\frac{{ }^{2} \text {-bound } P+\mathrm{E}-\text { bound } P}{2}\right)_{\mathbf{2}}$.
(66) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is a simple closed curve, then LowerArc $P=(P \backslash$ UpperArc $P) \cup\{\mathrm{W}-m i n ~ P, \mathrm{E}-m a x P\}$ and UpperArc $P=(P \backslash$ LowerArc $P) \cup\{\mathrm{W}-\min P$, E-max $P\}$.
(67) Let P be a compact non empty subset of $\mathcal{E}_{\text {T }}^{2}$ and P_{1} be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$. If P is a simple closed curve and $\operatorname{UpperArc} P \cap P_{1}=$ $\{$ W-min P, E-max $P\}$ and UpperArc $P \cup P_{1}=P$, then $P_{1}=$ LowerArc P.
(68) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and P_{1} be a subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$. If P is a simple closed curve and $P_{1} \cap$ LowerArc $P=$ $\{\mathrm{W}-m i n P, \mathrm{E}-m a x P\}$ and $P_{1} \cup$ LowerArc $P=P$, then $P_{1}=\operatorname{UpperArc} P$.

6. An Order of Points in a Simple Closed Curve

One can prove the following propositions:
(69) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1}, p_{2}, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and LE $q, p_{1}, P, p_{1}, p_{2}$, then $q=p_{1}$.
(70) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2}, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2} and LE $p_{2}, q, P, p_{1}, p_{2}$, then $q=p_{2}$.
Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let q_{1}, q_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$.
The predicate $\mathrm{LE}\left(q_{1}, q_{2}, P\right)$ is defined by the conditions (Def. 10).
(Def. 10)(i) $\quad q_{1} \in \operatorname{UpperArc} P$ and $q_{2} \in \operatorname{LowerArc} P$ and $q_{2} \neq \mathrm{W}$-min P, or
(ii) $\quad q_{1} \in \operatorname{UpperArc} P$ and $q_{2} \in \operatorname{UpperArc} P$ and LE q_{1}, q_{2}, UpperArc P, W-min P, E-max P, or
(iii) $\quad q_{1} \in$ LowerArc P and $q_{2} \in \operatorname{LowerArc} P$ and $q_{2} \neq \mathrm{W}-\min P$ and LE q_{1}, q_{2}, LowerArc $P, \mathrm{E}-\max P, \mathrm{~W}-\min P$.
Next we state three propositions:
(71) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is a simple closed curve and $q \in P$, then $\operatorname{LE}(q, q, P)$.
(72) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and q_{1}, q_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is a simple closed curve and $\mathrm{LE}\left(q_{1}, q_{2}, P\right)$ and $\mathrm{LE}\left(q_{2}, q_{1}, P\right)$, then $q_{1}=q_{2}$.
(73) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and q_{1}, q_{2}, q_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is a simple closed curve and $\mathrm{LE}\left(q_{1}, q_{2}, P\right)$ and $\mathrm{LE}\left(q_{2}, q_{3}, P\right)$, then $\mathrm{LE}\left(q_{1}, q_{3}, P\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[13] Czesław Bylinski. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[14] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[15] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[16] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[18] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[19] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[20] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[21] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[22] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
[23] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
[24] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
[25] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467-473, 1997.
[26] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[27] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[28] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[29] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1-16, 1992.
[30] Zbigniew Karno. On Kolmogorov topological spaces. Formalized Mathematics, 5(1):119124, 1996.
[31] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[32] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[33] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean space to each coordinates. Formalized Mathematics, 6(4):505-509, 1997.
[34] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[35] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[36] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[37] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[38] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[39] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[40] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[41] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[42] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[43] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[44] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[45] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[46] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[47] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85-88, 1992.
[48] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[49] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

