A Decomposition of a Simple Closed Curves and the Order of Their Points

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec University of Białystok

Summary. The goal of the article is to introduce an order on a simple closed curve. To do this, we fix two points on the curve and devide it into two arcs. We prove that such a decomposition is unique. Other auxiliary theorems about arcs are proven for preparation of the proof of the above.

MML Identifier: JORDAN6.

The papers [41], [46], [45], [40], [26], [1], [49], [44], [37], [12], [39], [10], [36], [32], [48], [2], [7], [8], [4], [20], [21], [34], [33], [29], [11], [43], [28], [19], [35], [16], [9], [15], [42], [18], [22], [17], [6], [23], [27], [3], [31], [5], [38], [13], [25], [47], [14], [30], and [24] provide the notation and terminology for this paper.

1. MIDDLE POINTS OF ARCS

For simplicity, we use the following convention: a, b, c, s, r are real numbers, n is a natural number, p, q are points of \mathcal{E}_{T}^{2} , and P is a subset of the carrier of \mathcal{E}_{T}^{2} .

The following propositions are true:

- (1) If $a = \frac{a+b}{2}$, then a = b.
- (2) If $r \leq s$, then $r \leq \frac{r+s}{2}$ and $\frac{r+s}{2} \leq s$.
- (3) Let T_1 be a non empty topological space, P be a subset of the carrier of T_1 , A be a subset of the carrier of $T_1 \upharpoonright P$, and B be a subset of the carrier of T_1 . If B is closed and $A = B \cap P$, then A is closed.

C 1997 University of Białystok ISSN 1426-2630

- (4) Let T_1, T_2 be non empty topological spaces, P be a non empty subset of the carrier of T_2 , and f be a map from T_1 into $T_2 \upharpoonright P$. Then
- (i) f is a map from T_1 into T_2 , and
- (ii) for every map f_2 from T_1 into T_2 such that $f_2 = f$ and f is continuous holds f_2 is continuous.
- (5) Let r be a real number and P be a subset of the carrier of \mathcal{E}_{T}^{2} . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{1} \ge r\}$, then P is closed.
- (6) Let r be a real number and P be a subset of the carrier of \mathcal{E}_{T}^{2} . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{1} \leq r\}$, then P is closed.
- (7) Let r be a real number and P be a subset of the carrier of \mathcal{E}_{T}^{2} . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{1} = r\}$, then P is closed.
- (8) Let r be a real number and P be a subset of the carrier of \mathcal{E}_{T}^{2} . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \ge r\}$, then P is closed.
- (9) Let r be a real number and P be a subset of the carrier of \mathcal{E}_{T}^{2} . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \leq r\}$, then P is closed.
- (10) Let r be a real number and P be a subset of the carrier of \mathcal{E}_{T}^{2} . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} = r\}$, then P is closed.
- (11) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2} , then P is connected.
- (12) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then P is closed.
- (13) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 . Then there exists a point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in P$ and $q_1 = \frac{(p_1)_1 + (p_2)_1}{2}$.
- (14) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $Q = \{q : q_1 = \frac{(p_1)_1 + (p_2)_1}{2}\}$. Then P meets Q and $P \cap Q$ is closed.
- (15) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $Q = \{q : q_2 = \frac{(p_1)_2 + (p_2)_2}{2}\}$. Then P meets Q and $P \cap Q$ is closed.

Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and let p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Let us assume that P is an arc from p_{1} to p_{2} . The functor xMiddle (P, p_{1}, p_{2}) yields a point of \mathcal{E}_{T}^{2} and is defined as follows:

(Def. 1) For every subset Q of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ such that $Q = \{q : q_1 = \frac{(p_1)_1 + (p_2)_1}{2}\}$ holds xMiddle $(P, p_1, p_2) = \mathrm{FPoint}(P, p_1, p_2, Q)$.

Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and let p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Let us assume that P is an arc from p_{1} to p_{2} . The functor yMiddle (P, p_{1}, p_{2}) yields a point of \mathcal{E}_{T}^{2} and is defined by:

(Def. 2) For every subset Q of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ such that $Q = \{q : q_2 = \frac{(p_1)_2 + (p_2)_2}{2}\}$ holds yMiddle $(P, p_1, p_2) = \mathrm{FPoint}(P, p_1, p_2, Q)$.

One can prove the following propositions:

- (16) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then xMiddle $(P, p_1, p_2) \in P$ and yMiddle $(P, p_1, p_2) \in P$.
- (17) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then $p_1 = \mathrm{xMiddle}(P, p_1, p_2)$ iff $(p_1)_1 = (p_2)_1$.
- (18) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then $p_1 = \mathrm{yMiddle}(P, p_1, p_2)$ iff $(p_1)_2 = (p_2)_2$.

2. Segments of Arcs

The following proposition is true

(19) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} . If P is an arc from p_{1} to p_{2} and LE q_{1} , q_{2} , P, p_{1} , p_{2} , then LE q_{2} , q_{1} , P, p_{2} , p_{1} .

Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and let p_{1}, p_{2}, q_{1} be points of \mathcal{E}_{T}^{2} . The functor LSegment (P, p_{1}, p_{2}, q_{1}) yields a subset of the carrier of \mathcal{E}_{T}^{2} and is defined by:

(Def. 3) LSegment $(P, p_1, p_2, q_1) = \{q : LE q, q_1, P, p_1, p_2\}.$

Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and let p_{1}, p_{2}, q_{1} be points of \mathcal{E}_{T}^{2} . The functor RSegment (P, p_{1}, p_{2}, q_{1}) yielding a subset of the carrier of \mathcal{E}_{T}^{2} is defined as follows:

(Def. 4) RSegment $(P, p_1, p_2, q_1) = \{q : LE q_1, q, P, p_1, p_2\}.$

Next we state several propositions:

- (20) For every non empty subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and for all points p_1 , p_2 , q_1 of $\mathcal{E}_{\mathrm{T}}^2$ holds LSegment $(P, p_1, p_2, q_1) \subseteq P$.
- (21) For every non empty subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and for all points p_1 , p_2 , q_1 of $\mathcal{E}_{\mathrm{T}}^2$ holds RSegment $(P, p_1, p_2, q_1) \subseteq P$.
- (22) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . If P is an arc from p_{1} to p_{2} , then LSegment $(P, p_{1}, p_{2}, p_{1}) = \{p_{1}\}$.
- (23) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q \in P$, then LE q, p_2, P, p_1, p_2 .
- (24) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q \in P$, then LE p_1, q, P, p_1, p_2 .

- (25) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then $\mathrm{LSegment}(P, p_1, p_2, p_2) = P$.
- (26) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then RSegment $(P, p_1, p_2, p_2) = \{p_2\}$.
- (27) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then RSegment $(P, p_1, p_2, p_1) = P$.
- (28) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q_1 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q_1 \in P$, then $\mathrm{RSegment}(P, p_1, p_2, q_1) = \mathrm{LSegment}(P, p_2, p_1, q_1)$.

Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and let p_{1} , p_{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} . The functor Segment $(P, p_{1}, p_{2}, q_{1}, q_{2})$ yielding a subset of the carrier of \mathcal{E}_{T}^{2} is defined by:

- (Def. 5) Segment (P, p_1, p_2, q_1, q_2) = RSegment $(P, p_1, p_2, q_1) \cap$ LSegment (P, p_1, p_2, q_2) . Next we state four propositions:
 - (29) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1 , p_2 , q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Then Segment $(P, p_1, p_2, q_1, q_2) = \{q : \mathrm{LE} q_1, q, P, p_1, p_2 \land \mathrm{LE} q, q_2, P, p_1, p_2\}.$
 - (30) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} . Then LE q_{1} , q_{2} , P, p_{1} , p_{2} if and only if LE q_{2} , q_{1} , P, p_{2} , p_{1} .
 - (31) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q \in P$, then $\mathrm{LSegment}(P, p_1, p_2, q) = \mathrm{RSegment}(P, p_2, p_1, q)$.
 - (32) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of \mathcal{E}_{T}^{2} . If P is an arc from p_{1} to p_{2} and $q_{1} \in P$ and $q_{2} \in P$, then Segment $(P, p_{1}, p_{2}, q_{1}, q_{2}) = \text{Segment}(P, p_{2}, p_{1}, q_{2}, q_{1})$.

3. Decomposition of a Simple Closed Curve Into Two Arcs

Let s be a real number. The functor VerticalLines yields a subset of the carrier of \mathcal{E}_{T}^{2} and is defined as follows:

(Def. 6) VerticalLine $s = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s\}.$

The functor HorizontalLines yielding a subset of the carrier of \mathcal{E}_{T}^{2} is defined as follows:

(Def. 7) HorizontalLine $s = \{p : p_2 = s\}.$

Next we state several propositions:

(33) For every real number r holds VerticalLine r is closed and HorizontalLine r is closed.

566

- (34) For every real number r and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ VerticalLine r holds $p_1 = r$.
- (35) For every real number r and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ HorizontalLine r holds $p_2 = r$.
- (36) For every compact non empty subset P of $\mathcal{E}^2_{\mathrm{T}}$ holds W-min $P \in P$ and W-max $P \in P$.
- (37) For every compact non empty subset P of $\mathcal{E}^2_{\mathrm{T}}$ holds N-min $P \in P$ and N-max $P \in P$.
- (38) For every compact non empty subset P of $\mathcal{E}^2_{\mathrm{T}}$ holds E-min $P \in P$ and E-max $P \in P$.
- (39) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^2$ holds S-min $P \in P$ and S-max $P \in P$.
- (40) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is a simple closed curve. Then there exist non empty subsets P_1 , P_2 of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ such that
 - (i) P_1 is an arc from W-min P to E-max P,
- (ii) P_2 is an arc from E-max P to W-min P,
- (iii) $P_1 \cap P_2 = \{ W \operatorname{-min} P, \operatorname{E-max} P \},\$
- (iv) $P_1 \cup P_2 = P$, and
- (v) (FPoint(P_1 , W-min P, E-max P, VerticalLine $\frac{W$ -bound P+E-bound $P}{2}$))₂ > (LPoint(P_2 , E-max P, W-min P, VerticalLine $\frac{W$ -bound P+E-bound $P}{2}$))₂.
 - 4. UNIQUENESS OF DECOMPOSITION OF A SIMPLE CLOSED CURVE

One can prove the following propositions:

- (41) For every subset P of the carrier of I such that $P = (\text{the carrier of } I) \setminus \{0, 1\}$ holds P is open.
- (42) For all subsets B_1 , B_2 of \mathbb{R} such that B_2 is lower bounded and $B_1 \subseteq B_2$ holds B_1 is lower bounded.
- (43) For all subsets B_1 , B_2 of \mathbb{R} such that B_2 is upper bounded and $B_1 \subseteq B_2$ holds B_1 is upper bounded.
- (44) For all r, s holds $]r, s[\cap \{r, s\} = \emptyset$.
- (45) For all a, b, c holds $c \in [a, b]$ iff a < c and c < b.
- (46) For every subset P of the carrier of \mathbb{R}^1 and for all r, s such that P =]r, s[holds P is open.
- (47) Let S be a non empty topological space, P_1 , P_2 be subsets of the carrier of S, and P'_1 be a subset of the carrier of $S \upharpoonright P_2$. If $P_1 = P'_1$ and $P_1 \neq \emptyset$ and $P_1 \subseteq P_2$, then $S \upharpoonright P_1 = S \upharpoonright P_2 \upharpoonright P'_1$.

- (48) For every subset P_7 of the carrier of \mathbb{I} such that $P_7 =$ (the carrier of \mathbb{I}) $\setminus \{0,1\}$ holds $P_7 \neq \emptyset$ and P_7 is connected.
- (49) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2} , then $p_{1} \neq p_{2}$.
- (50) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, Q be a subset of the carrier of $(\mathcal{E}_{\mathrm{T}}^{n}) \upharpoonright P$, and p_{1} , p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2} and $Q = P \setminus \{p_{1}, p_{2}\}$, then Q is open.
- (51) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every non empty subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that P is an arc from p to q holds P is compact.
- (52) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, P_{1} , P_{2} be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, Q be a subset of the carrier of $(\mathcal{E}_{\mathrm{T}}^{n}) \upharpoonright P$, and p_{1} , p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $p_{1} \in P$ and $p_{2} \in P$ and P_{1} is an arc from p_{1} to p_{2} and P_{2} is an arc from p_{1} to p_{2} and $P_{1} \cup P_{2} = P$ and $P_{1} \cap P_{2} = \{p_{1}, p_{2}\}$ and $Q = P_{1} \setminus \{p_{1}, p_{2}\}$. Then Q is open.
- (53) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, Q be a subset of the carrier of $(\mathcal{E}_{\mathrm{T}}^{n}) \upharpoonright P$, and p_{1} , p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. If P is an arc from p_{1} to p_{2} and $Q = P \setminus \{p_{1}, p_{2}\}$, then Q is connected.
- (54) Let G_1 be a non empty topological space, P_1 , P be non empty subsets of the carrier of G_1 , Q' be a subset of the carrier of $G_1 \upharpoonright P_1$, and Q be a non empty subset of the carrier of $G_1 \upharpoonright P$. If $P_1 \subseteq P$ and Q = Q' and Q' is connected, then Q is connected.
- (55) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p_{1} , p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose P is an arc from p_{1} to p_{2} . Then there exists a point p_{3} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p_{3} \in P$ and $p_{3} \neq p_{1}$ and $p_{3} \neq p_{2}$.
- (56) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^n$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^n$. If P is an arc from p_1 to p_2 , then $P \setminus \{p_1, p_2\} \neq \emptyset$.
- (57) Let P_1 be a non empty subset of the carrier of $\mathcal{E}^n_{\mathrm{T}}$, P be a subset of the carrier of $\mathcal{E}^n_{\mathrm{T}}$, Q be a subset of the carrier of $(\mathcal{E}^n_{\mathrm{T}}) \upharpoonright P$, and p_1, p_2 be points of $\mathcal{E}^n_{\mathrm{T}}$. If P_1 is an arc from p_1 to p_2 and $P_1 \subseteq P$ and $Q = P_1 \setminus \{p_1, p_2\}$, then Q is connected.
- (58) Let T, S, V be non empty topological spaces, P_1 be a non empty subset of the carrier of S, P_2 be a subset of the carrier of S, f be a map from Tinto $S \upharpoonright P_1$, and g be a map from $S \upharpoonright P_2$ into V. Suppose $P_1 \subseteq P_2$ and f is continuous and g is continuous. Then there exists a map h from T into Vsuch that $h = g \cdot f$ and h is continuous.
- (59) Let P_1 , P_2 be non empty subsets of the carrier of \mathcal{E}_T^n and p_1 , p_2 be points of \mathcal{E}_T^n . If P_1 is an arc from p_1 to p_2 and P_2 is an arc from p_1 to p_2 and $P_1 \subseteq P_2$, then $P_1 = P_2$.
- (60) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is a simple closed

curve and $p_1 \in P$ and $p_2 \in P$ and $p_1 \neq p_2$ and $Q = P \setminus \{p_1, p_2\}$. Then Q is not connected.

- (61) Let P, P_1, P_2, P'_1, P'_2 be non empty subsets of the carrier of \mathcal{E}^2_T and p_1 , p_2 be points of \mathcal{E}^2_T . Suppose that
 - (i) P is a simple closed curve,
 - (ii) P_1 is an arc from p_1 to p_2 ,
- (iii) P_2 is an arc from p_1 to p_2 ,
- (iv) $P_1 \cup P_2 = P$,
- (v) $P_1 \cap P_2 = \{p_1, p_2\},\$
- (vi) P'_1 is an arc from p_1 to p_2 ,
- (vii) P'_2 is an arc from p_1 to p_2 ,
- (viii) $P'_1 \cup P'_2 = P$, and
- (ix) $P'_1 \cap P'_2 = \{p_1, p_2\}.$

Then $P_1 = P'_1$ and $P_2 = P'_2$ or $P_1 = P'_2$ and $P_2 = P'_1$.

5. Lower Arcs and Upper Arcs

One can prove the following propositions:

- (62) Let P_1 be a non empty subset of the carrier of \mathcal{E}_T^2 and p_1 , p_2 be points of \mathcal{E}_T^2 . If P_1 is an arc from p_1 to p_2 , then P_1 is closed.
- (63) Let G_1 , G_2 be non empty topological spaces, P be a non empty subset of the carrier of G_2 , f be a map from G_1 into $G_2 \upharpoonright P$, and f_1 be a map from G_1 into G_2 . If $f = f_1$ and f is continuous, then f_1 is continuous.
- (64) Let P_1 be a non empty subset of the carrier of \mathcal{E}_T^2 and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose $(p_1)_1 \leq (p_2)_1$ and P_1 is an arc from p_1 to p_2 . Then $P_1 \cap$ VerticalLine $\frac{(p_1)_1 + (p_2)_1}{2} \neq \emptyset$ and $P_1 \cap$ VerticalLine $\frac{(p_1)_1 + (p_2)_1}{2}$ is closed.

Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Let us assume that P is a simple closed curve. The functor UpperArc P yields a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and is defined by the conditions (Def. 8).

(Def. 8)(i) UpperArc P is an arc from W-min P to E-max P, and

(ii) there exists a non empty subset P_2 of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ such that P_2 is an arc from E-max P to W-min P and UpperArc $P \cap P_2 = \{\mathrm{W-min} P, \mathrm{E-max} P\}$ and UpperArc $P \cup P_2 = P$ and (FPoint(UpperArc $P, \mathrm{W-min} P, \mathrm{E-max} P, \mathrm{VerticalLine} \frac{\mathrm{W-bound} P + \mathrm{E-bound} P}{2}))_2 > (\mathrm{LPoint}(P_2, \mathrm{E-max} P, \mathrm{W-min} P, \mathrm{VerticalLine} \frac{\mathrm{W-bound} P + \mathrm{E-bound} P}{2}))_2.$

Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Let us assume that P is a simple closed curve. The functor LowerArc P yielding a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:

(Def. 9) LowerArc P is an arc from E-max P to W-min P and UpperArc $P \cap$ LowerArc $P = \{W-\min P, E-\max P\}$ and UpperArc $P \cup$ LowerArc P = Pand (FPoint(UpperArc P, W-min P, E-max P, VerticalLine $\frac{W-\text{bound } P+E-\text{bound } P}{2}$))₂ > (LPoint(LowerArc P, E-max P, W-min P, VerticalLine $\frac{W-\text{bound } P+E-\text{bound } P}{2}$))₂.

The following propositions are true:

- (65) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is a simple closed curve. Then
 - (i) UpperArc P is an arc from W-min P to E-max P,
 - (ii) UpperArc P is an arc from E-max P to W-min P,
- (iii) LowerArc P is an arc from E-max P to W-min P,
- (iv) LowerArc P is an arc from W-min P to E-max P,
- (v) UpperArc $P \cap \text{LowerArc } P = \{\text{W-min } P, \text{E-max } P\},\$
- (vi) UpperArc $P \cup$ LowerArc P = P, and
- $\begin{array}{ll} (\text{vii}) & (\text{FPoint}(\text{UpperArc}\,P, \text{W-min}\,P, \text{E-max}\,P, \\ & \text{VerticalLine}\, \frac{\text{W-bound}\,P + \text{E-bound}\,P}{2}))_{\mathbf{2}} > (\text{LPoint}(\text{LowerArc}\,P, \text{E-max}\,P, \\ & \text{W-min}\,P, \text{VerticalLine}\, \frac{\text{W-bound}\,P + \text{E-bound}\,P}{2}))_{\mathbf{2}}. \end{array}$
- (66) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. If P is a simple closed curve, then LowerArc $P = (P \setminus \mathrm{UpperArc} P) \cup \{\mathrm{W-min} P, \mathrm{E-max} P\}$ and UpperArc $P = (P \setminus \mathrm{LowerArc} P) \cup \{\mathrm{W-min} P, \mathrm{E-max} P\}$.
- (67) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$ and P_1 be a subset of the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$. If P is a simple closed curve and UpperArc $P \cap P_1 = \{\text{W-min } P, \text{E-max } P\}$ and UpperArc $P \cup P_1 = P$, then $P_1 = \text{LowerArc } P$.
- (68) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} and P_{1} be a subset of the carrier of $(\mathcal{E}_{T}^{2}) \upharpoonright P$. If P is a simple closed curve and $P_{1} \cap \text{LowerArc } P = \{\text{W-min } P, \text{E-max } P\}$ and $P_{1} \cup \text{LowerArc } P = P$, then $P_{1} = \text{UpperArc } P$.

6. An Order of Points in a Simple Closed Curve

One can prove the following propositions:

- (69) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1}, p_{2}, q be points of \mathcal{E}_{T}^{2} . If P is an arc from p_{1} to p_{2} and LE q, p_{1}, P, p_{1}, p_{2} , then $q = p_{1}$.
- (70) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1}, p_{2}, q be points of \mathcal{E}_{T}^{2} . If P is an arc from p_{1} to p_{2} and LE $p_{2}, q, P, p_{1}, p_{2}$, then $q = p_{2}$.

Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$ and let q_1, q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. The predicate $\mathrm{LE}(q_1, q_2, P)$ is defined by the conditions (Def. 10).

(Def. 10)(i) $q_1 \in \text{UpperArc } P \text{ and } q_2 \in \text{LowerArc } P \text{ and } q_2 \neq \text{W-min } P, \text{ or }$

(ii) $q_1 \in \text{UpperArc } P$ and $q_2 \in \text{UpperArc } P$ and LE $q_1, q_2, \text{UpperArc } P$, W-min P, E-max P, or

570

(iii) $q_1 \in \text{LowerArc } P \text{ and } q_2 \in \text{LowerArc } P \text{ and } q_2 \neq \text{W-min } P \text{ and LE } q_1, q_2, \text{LowerArc } P, \text{E-max } P, \text{W-min } P.$

Next we state three propositions:

- (71) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$ and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. If P is a simple closed curve and $q \in P$, then $\mathrm{LE}(q, q, P)$.
- (72) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} and q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} . If P is a simple closed curve and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{1}, P)$, then $q_{1} = q_{2}$.
- (73) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} and q_{1} , q_{2} , q_{3} be points of \mathcal{E}_{T}^{2} . If P is a simple closed curve and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$, then $LE(q_{1}, q_{3}, P)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [11] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [13] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701–709, 1991.
- [14] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [15] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [16] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [18] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
 [19] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [20] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [21] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [22] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635–642, 1991.

- [23] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991 Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, [24]
- 6(4):449-454, 1997.
- [25] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467-473, 1997.
- [26] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [27] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [28] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665–674, 1991.
- [29]Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Ma*thematics*, 3(1):1–16, 1992.
- [30] Zbigniew Karno. On Kolmogorov topological spaces. Formalized Mathematics, 5(1):119– 124, 1996.
- [31] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [32] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [33] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean space to each coordinates. Formalized Mathematics, 6(4):505-509, 1997.
- [34] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [35] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [36] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [37] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [38] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in \mathcal{E}_{T}^{N} . Formalized Mathematics, 5(1):93-96, 1996.
- [39] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(**2**):329-334, 1990.
- Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, [40]1(1):115–122, 1990.
- [41] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [42] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [43] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [44] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, [45] Isonovic and Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [46] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [47] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85-88, 1992.
- [48]Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [49] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received December 19, 1997

572