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Summary. The goal of the article is to introduce an order on a simple
closed curve. To do this, we fix two points on the curve and devide it into two
arcs. We prove that such a decomposition is unique. Other auxiliary theorems
about arcs are proven for preparation of the proof of the above.
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The papers [41], [46], [45], [40], [26], [1], [49], [44], [37], [12], [39], [10], [36], [32],

[48], [2], [7], [8], [4], [20], [21], [34], [33], [29], [11], [43], [28], [19], [35], [16], [9],

[15], [42], [18], [22], [17], [6], [23], [27], [3], [31], [5], [38], [13], [25], [47], [14], [30],

and [24] provide the notation and terminology for this paper.

1. Middle Points of Arcs

For simplicity, we use the following convention: a, b, c, s, r are real numbers,

n is a natural number, p, q are points of E2
T
, and P is a subset of the carrier of

E2
T
.

The following propositions are true:

(1) If a = a+b
2 , then a = b.

(2) If r ¬ s, then r ¬ r+s
2 and

r+s
2 ¬ s.

(3) Let T1 be a non empty topological space, P be a subset of the carrier of

T1, A be a subset of the carrier of T1↾P, and B be a subset of the carrier

of T1. If B is closed and A = B ∩ P, then A is closed.

563
c© 1997 University of Białystok

ISSN 1426–2630



564 yatsuka nakamura and andrzej trybulec

(4) Let T1, T2 be non empty topological spaces, P be a non empty subset of

the carrier of T2, and f be a map from T1 into T2↾P. Then

(i) f is a map from T1 into T2, and

(ii) for every map f2 from T1 into T2 such that f2 = f and f is continuous

holds f2 is continuous.

(5) Let r be a real number and P be a subset of the carrier of E2
T
. If P = {p; p

ranges over points of E2
T
: p1  r}, then P is closed.

(6) Let r be a real number and P be a subset of the carrier of E2
T
. If P = {p; p

ranges over points of E2
T
: p1 ¬ r}, then P is closed.

(7) Let r be a real number and P be a subset of the carrier of E2
T
. If P = {p; p

ranges over points of E2
T
: p1 = r}, then P is closed.

(8) Let r be a real number and P be a subset of the carrier of E2
T
. If P = {p; p

ranges over points of E2
T
: p2  r}, then P is closed.

(9) Let r be a real number and P be a subset of the carrier of E2
T
. If P = {p; p

ranges over points of E2
T
: p2 ¬ r}, then P is closed.

(10) Let r be a real number and P be a subset of the carrier of E2
T
. If P = {p; p

ranges over points of E2
T
: p2 = r}, then P is closed.

(11) Let P be a non empty subset of the carrier of En
T
and p1, p2 be points of

En
T
. If P is an arc from p1 to p2, then P is connected.

(12) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then P is closed.

(13) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. Suppose P is an arc from p1 to p2. Then there exists a point q of E2

T

such that q ∈ P and q1 = (p1)1+(p2)1
2 .

(14) Let P be a non empty subset of the carrier of E2
T
, Q be a subset of the

carrier of E2
T
, and p1, p2 be points of E

2
T
. Suppose P is an arc from p1 to

p2 and Q = {q : q1 = (p1)1+(p2)1
2 }. Then P meets Q and P ∩Q is closed.

(15) Let P be a non empty subset of the carrier of E2
T
, Q be a subset of the

carrier of E2
T
, and p1, p2 be points of E

2
T
. Suppose P is an arc from p1 to

p2 and Q = {q : q2 = (p1)2+(p2)2
2 }. Then P meets Q and P ∩Q is closed.

Let P be a non empty subset of the carrier of E2
T
and let p1, p2 be points of

E2
T
. Let us assume that P is an arc from p1 to p2. The functor xMiddle(P, p1, p2)

yields a point of E2
T
and is defined as follows:

(Def. 1) For every subset Q of the carrier of E2
T
such that Q = {q : q1 =

(p1)1+(p2)1
2 } holds xMiddle(P, p1, p2) = FPoint(P, p1, p2, Q).

Let P be a non empty subset of the carrier of E2
T
and let p1, p2 be points of

E2
T
. Let us assume that P is an arc from p1 to p2. The functor yMiddle(P, p1, p2)

yields a point of E2
T
and is defined by:
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(Def. 2) For every subset Q of the carrier of E2
T
such that Q = {q : q2 =

(p1)2+(p2)2
2 } holds yMiddle(P, p1, p2) = FPoint(P, p1, p2, Q).

One can prove the following propositions:

(16) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points

of E2
T
. If P is an arc from p1 to p2, then xMiddle(P, p1, p2) ∈ P and

yMiddle(P, p1, p2) ∈ P.

(17) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then p1 = xMiddle(P, p1, p2) iff (p1)1 =

(p2)1.

(18) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then p1 = yMiddle(P, p1, p2) iff (p1)2 =

(p2)2.

2. Segments of Arcs

The following proposition is true

(19) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q1, q2 be

points of E2
T
. If P is an arc from p1 to p2 and LE q1, q2, P , p1, p2, then

LE q2, q1, P , p2, p1.

Let P be a non empty subset of the carrier of E2
T
and let p1, p2, q1 be points

of E2
T
. The functor LSegment(P, p1, p2, q1) yields a subset of the carrier of E

2
T

and is defined by:

(Def. 3) LSegment(P, p1, p2, q1) = {q : LE q, q1, P , p1, p2}.

Let P be a non empty subset of the carrier of E2
T
and let p1, p2, q1 be points

of E2
T
. The functor RSegment(P, p1, p2, q1) yielding a subset of the carrier of E

2
T

is defined as follows:

(Def. 4) RSegment(P, p1, p2, q1) = {q : LE q1, q, P , p1, p2}.

Next we state several propositions:

(20) For every non empty subset P of the carrier of E2
T
and for all points p1,

p2, q1 of E
2
T
holds LSegment(P, p1, p2, q1) ⊆ P.

(21) For every non empty subset P of the carrier of E2
T
and for all points p1,

p2, q1 of E
2
T
holds RSegment(P, p1, p2, q1) ⊆ P.

(22) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then LSegment(P, p1, p2, p1) = {p1}.

(23) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q be points

of E2
T
. If P is an arc from p1 to p2 and q ∈ P, then LE q, p2, P , p1, p2.

(24) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q be points

of E2
T
. If P is an arc from p1 to p2 and q ∈ P, then LE p1, q, P , p1, p2.



566 yatsuka nakamura and andrzej trybulec

(25) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then LSegment(P, p1, p2, p2) = P.

(26) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then RSegment(P, p1, p2, p2) = {p2}.

(27) Let P be a non empty subset of the carrier of E2
T
and p1, p2 be points of

E2
T
. If P is an arc from p1 to p2, then RSegment(P, p1, p2, p1) = P.

(28) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q1 be points of

E2
T
. If P is an arc from p1 to p2 and q1 ∈ P, then RSegment(P, p1, p2, q1) =

LSegment(P, p2, p1, q1).

Let P be a non empty subset of the carrier of E2
T
and let p1, p2, q1, q2

be points of E2
T
. The functor Segment(P, p1, p2, q1, q2) yielding a subset of the

carrier of E2
T
is defined by:

(Def. 5) Segment(P, p1, p2, q1, q2) = RSegment(P, p1, p2, q1)∩LSegment(P, p1, p2, q2).

Next we state four propositions:

(29) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q1, q2

be points of E2
T
. Then Segment(P, p1, p2, q1, q2) = {q : LE q1, q, P , p1,

p2 ∧ LE q, q2, P , p1, p2}.

(30) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q1, q2 be

points of E2
T
. Suppose P is an arc from p1 to p2. Then LE q1, q2, P , p1, p2

if and only if LE q2, q1, P , p2, p1.

(31) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q be points

of E2
T
. If P is an arc from p1 to p2 and q ∈ P, then LSegment(P, p1, p2, q) =

RSegment(P, p2, p1, q).

(32) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q1, q2 be

points of E2
T
. If P is an arc from p1 to p2 and q1 ∈ P and q2 ∈ P, then

Segment(P, p1, p2, q1, q2) = Segment(P, p2, p1, q2, q1).

3. Decomposition of a Simple Closed Curve Into Two Arcs

Let s be a real number. The functor VerticalLine s yields a subset of the

carrier of E2
T
and is defined as follows:

(Def. 6) VerticalLine s = {p; p ranges over points of E2
T
: p1 = s}.

The functor HorizontalLine s yielding a subset of the carrier of E2
T
is defined as

follows:

(Def. 7) HorizontalLine s = {p : p2 = s}.

Next we state several propositions:

(33) For every real number r holds VerticalLine r is closed and

HorizontalLine r is closed.
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(34) For every real number r and for every point p of E2
T
such that p ∈

VerticalLine r holds p1 = r.

(35) For every real number r and for every point p of E2
T
such that p ∈

HorizontalLine r holds p2 = r.

(36) For every compact non empty subset P of E2
T
holds W-minP ∈ P and

W-maxP ∈ P.

(37) For every compact non empty subset P of E2
T
holds N-minP ∈ P and

N-maxP ∈ P.

(38) For every compact non empty subset P of E2
T
holds E-minP ∈ P and

E-maxP ∈ P.

(39) For every compact non empty subset P of E2
T
holds S-minP ∈ P and

S-maxP ∈ P.

(40) Let P be a compact non empty subset of E2
T
. Suppose P is a simple

closed curve. Then there exist non empty subsets P1, P2 of the carrier of

E2
T
such that

(i) P1 is an arc from W-minP to E-maxP,

(ii) P2 is an arc from E-maxP to W-minP,

(iii) P1 ∩ P2 = {W-minP,E-maxP},

(iv) P1 ∪ P2 = P, and

(v) (FPoint(P1,W-minP,E-maxP,VerticalLine W-boundP+E-boundP
2 ))2 >

(LPoint(P2,E-maxP,W-minP,VerticalLine W-boundP+E-boundP
2 ))2.

4. Uniqueness of Decomposition of a Simple Closed Curve

One can prove the following propositions:

(41) For every subset P of the carrier of I such that P = (the carrier of

I) \ {0, 1} holds P is open.

(42) For all subsets B1, B2 of R such that B2 is lower bounded and B1 ⊆ B2

holds B1 is lower bounded.

(43) For all subsets B1, B2 of R such that B2 is upper bounded and B1 ⊆ B2

holds B1 is upper bounded.

(44) For all r, s holds ]r, s[ ∩ {r, s} = ∅.

(45) For all a, b, c holds c ∈ ]a, b[ iff a < c and c < b.

(46) For every subset P of the carrier of R1 and for all r, s such that P = ]r, s[

holds P is open.

(47) Let S be a non empty topological space, P1, P2 be subsets of the carrier

of S, and P ′1 be a subset of the carrier of S↾P2. If P1 = P ′1 and P1 6= ∅ and

P1 ⊆ P2, then S↾P1 = S↾P2↾P
′

1.
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(48) For every subset P7 of the carrier of I such that P7 = (the carrier of

I) \ {0, 1} holds P7 6= ∅ and P7 is connected.

(49) Let P be a non empty subset of the carrier of En
T
and p1, p2 be points of

En
T
. If P is an arc from p1 to p2, then p1 6= p2.

(50) Let P be a non empty subset of the carrier of En
T
, Q be a subset of the

carrier of (En
T
)↾P, and p1, p2 be points of E

n
T
. If P is an arc from p1 to p2

and Q = P \ {p1, p2}, then Q is open.

(51) For all points p, q of En
T
and for every non empty subset P of En

T
such

that P is an arc from p to q holds P is compact.

(52) Let P be a subset of the carrier of En
T
, P1, P2 be non empty subsets of

the carrier of En
T
, Q be a subset of the carrier of (En

T
)↾P, and p1, p2 be

points of En
T
. Suppose p1 ∈ P and p2 ∈ P and P1 is an arc from p1 to p2

and P2 is an arc from p1 to p2 and P1 ∪ P2 = P and P1 ∩ P2 = {p1, p2}

and Q = P1 \ {p1, p2}. Then Q is open.

(53) Let P be a non empty subset of the carrier of En
T
, Q be a subset of the

carrier of (En
T
)↾P, and p1, p2 be points of E

n
T
. If P is an arc from p1 to p2

and Q = P \ {p1, p2}, then Q is connected.

(54) Let G1 be a non empty topological space, P1, P be non empty subsets

of the carrier of G1, Q
′ be a subset of the carrier of G1↾P1, and Q be a

non empty subset of the carrier of G1↾P. If P1 ⊆ P and Q = Q′ and Q′ is

connected, then Q is connected.

(55) Let P be a non empty subset of the carrier of En
T
and p1, p2 be points of

En
T
. Suppose P is an arc from p1 to p2. Then there exists a point p3 of E

n
T

such that p3 ∈ P and p3 6= p1 and p3 6= p2.

(56) Let P be a non empty subset of the carrier of En
T
and p1, p2 be points of

En
T
. If P is an arc from p1 to p2, then P \ {p1, p2} 6= ∅.

(57) Let P1 be a non empty subset of the carrier of E
n
T
, P be a subset of the

carrier of En
T
, Q be a subset of the carrier of (En

T
)↾P, and p1, p2 be points

of En
T
. If P1 is an arc from p1 to p2 and P1 ⊆ P and Q = P1 \ {p1, p2},

then Q is connected.

(58) Let T , S, V be non empty topological spaces, P1 be a non empty subset

of the carrier of S, P2 be a subset of the carrier of S, f be a map from T

into S↾P1, and g be a map from S↾P2 into V . Suppose P1 ⊆ P2 and f is

continuous and g is continuous. Then there exists a map h from T into V

such that h = g · f and h is continuous.

(59) Let P1, P2 be non empty subsets of the carrier of E
n
T
and p1, p2 be points

of En
T
. If P1 is an arc from p1 to p2 and P2 is an arc from p1 to p2 and

P1 ⊆ P2, then P1 = P2.

(60) Let P be a non empty subset of the carrier of E2
T
, Q be a subset of the

carrier of (E2
T
)↾P, and p1, p2 be points of E

2
T
. Suppose P is a simple closed
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curve and p1 ∈ P and p2 ∈ P and p1 6= p2 and Q = P \ {p1, p2}. Then Q

is not connected.

(61) Let P , P1, P2, P
′

1, P
′

2 be non empty subsets of the carrier of E
2
T
and p1,

p2 be points of E
2
T
. Suppose that

(i) P is a simple closed curve,

(ii) P1 is an arc from p1 to p2,

(iii) P2 is an arc from p1 to p2,

(iv) P1 ∪ P2 = P,

(v) P1 ∩ P2 = {p1, p2},

(vi) P ′1 is an arc from p1 to p2,

(vii) P ′2 is an arc from p1 to p2,

(viii) P ′1 ∪ P ′2 = P, and

(ix) P ′1 ∩ P ′2 = {p1, p2}.

Then P1 = P ′1 and P2 = P ′2 or P1 = P ′2 and P2 = P ′1.

5. Lower Arcs and Upper Arcs

One can prove the following propositions:

(62) Let P1 be a non empty subset of the carrier of E
2
T
and p1, p2 be points

of E2
T
. If P1 is an arc from p1 to p2, then P1 is closed.

(63) Let G1, G2 be non empty topological spaces, P be a non empty subset

of the carrier of G2, f be a map from G1 into G2↾P, and f1 be a map from

G1 into G2. If f = f1 and f is continuous, then f1 is continuous.

(64) Let P1 be a non empty subset of the carrier of E
2
T
and p1, p2 be points

of E2
T
. Suppose (p1)1 ¬ (p2)1 and P1 is an arc from p1 to p2. Then P1 ∩

VerticalLine (p1)1+(p2)1
2 6= ∅ and P1 ∩VerticalLine

(p1)1+(p2)1
2 is closed.

Let P be a compact non empty subset of E2
T
. Let us assume that P is a

simple closed curve. The functor UpperArcP yields a non empty subset of the

carrier of E2
T
and is defined by the conditions (Def. 8).

(Def. 8)(i) UpperArcP is an arc from W-minP to E-maxP, and

(ii) there exists a non empty subset P2 of the carrier of E
2
T
such that

P2 is an arc from E-maxP to W-minP and UpperArcP ∩ P2 =

{W-minP,E-maxP} and UpperArcP ∪ P2 = P and

(FPoint(UpperArcP,W-minP,E-maxP,

VerticalLine W-boundP+E-boundP
2 ))2 >

(LPoint(P2,E-maxP,W-minP,

VerticalLine W-boundP+E-boundP
2 ))2.

Let P be a compact non empty subset of E2
T
. Let us assume that P is a

simple closed curve. The functor LowerArcP yielding a non empty subset of

the carrier of E2
T
is defined as follows:
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(Def. 9) LowerArcP is an arc from E-maxP to W-minP and UpperArcP ∩

LowerArcP = {W-minP,E-maxP} and UpperArcP ∪ LowerArcP = P

and (FPoint(UpperArcP,W-minP,E-maxP,

VerticalLine W-boundP+E-boundP
2 ))2 > (LPoint(LowerArcP,E-maxP,

W-minP,VerticalLine W-boundP+E-boundP
2 ))2.

The following propositions are true:

(65) Let P be a compact non empty subset of E2
T
. Suppose P is a simple

closed curve. Then

(i) UpperArcP is an arc from W-minP to E-maxP,

(ii) UpperArcP is an arc from E-maxP to W-minP,

(iii) LowerArcP is an arc from E-maxP to W-minP,

(iv) LowerArcP is an arc from W-minP to E-maxP,

(v) UpperArcP ∩ LowerArcP = {W-minP,E-maxP},

(vi) UpperArcP ∪ LowerArcP = P, and

(vii) (FPoint(UpperArcP,W-minP,E-maxP,

VerticalLine W-boundP+E-boundP
2 ))2 > (LPoint(LowerArcP,E-maxP,

W-minP,VerticalLine W-boundP+E-boundP
2 ))2.

(66) Let P be a compact non empty subset of E2
T
. If P is a simple closed

curve, then LowerArcP = (P \ UpperArcP ) ∪ {W-minP,E-maxP} and

UpperArcP = (P \ LowerArcP ) ∪ {W-minP,E-maxP}.

(67) Let P be a compact non empty subset of E2
T
and P1 be a subset of the

carrier of (E2
T
)↾P. If P is a simple closed curve and UpperArcP ∩ P1 =

{W-minP,E-maxP} and UpperArcP ∪ P1 = P, then P1 = LowerArcP.

(68) Let P be a compact non empty subset of E2
T
and P1 be a subset of the

carrier of (E2
T
)↾P. If P is a simple closed curve and P1 ∩ LowerArcP =

{W-minP,E-maxP} and P1 ∪ LowerArcP = P, then P1 = UpperArcP.

6. An Order of Points in a Simple Closed Curve

One can prove the following propositions:

(69) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q be points

of E2
T
. If P is an arc from p1 to p2 and LE q, p1, P , p1, p2, then q = p1.

(70) Let P be a non empty subset of the carrier of E2
T
and p1, p2, q be points

of E2
T
. If P is an arc from p1 to p2 and LE p2, q, P , p1, p2, then q = p2.

Let P be a compact non empty subset of E2
T
and let q1, q2 be points of E

2
T
.

The predicate LE(q1, q2, P ) is defined by the conditions (Def. 10).

(Def. 10)(i) q1 ∈ UpperArcP and q2 ∈ LowerArcP and q2 6=W-minP, or

(ii) q1 ∈ UpperArcP and q2 ∈ UpperArcP and LE q1, q2, UpperArcP,

W-minP, E-maxP, or
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(iii) q1 ∈ LowerArcP and q2 ∈ LowerArcP and q2 6=W-minP and LE q1,

q2, LowerArcP, E-maxP, W-minP.

Next we state three propositions:

(71) Let P be a compact non empty subset of E2
T
and q be a point of E2

T
. If

P is a simple closed curve and q ∈ P, then LE(q, q, P ).

(72) Let P be a compact non empty subset of E2
T
and q1, q2 be points of

E2
T
. If P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q1, P ), then

q1 = q2.

(73) Let P be a compact non empty subset of E2
T
and q1, q2, q3 be points of

E2
T
. If P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q3, P ), then

LE(q1, q3, P ).
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