The Ordering of Points on a Curve. Part II

Adam Grabowski¹ University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. The proof of the Jordan Curve Theorem according to [14] is continued. The notions of the first and last point of a oriented arc are introduced as well as ordering of points on a curve in \mathcal{E}_T^2 .

 ${\rm MML} \ {\rm Identifier:} \ {\tt JORDAN5C}.$

The papers [15], [18], [10], [1], [13], [20], [2], [3], [4], [8], [17], [11], [9], [12], [6], [5], [16], [7], and [19] provide the terminology and notation for this paper.

1. FIRST AND LAST POINT OF A CURVE

One can prove the following proposition

- (1) Let P, Q be subsets of the carrier of \mathcal{E}_{T}^{2} , p_{1}, p_{2}, q_{1} be points of \mathcal{E}_{T}^{2} , f be a map from \mathbb{I} into $(\mathcal{E}_{T}^{2}) \upharpoonright P$, and s_{1} be a real number. Suppose that
- (i) P is an arc from p_1 to p_2 ,
- (ii) $q_1 \in P$,
- (iii) $q_1 \in Q$,
- (iv) $f(s_1) = q_1,$
- (v) f is a homeomorphism,
- (vi) $f(0) = p_1$,
- (vii) $f(1) = p_2$,
- (viii) $0 \leq s_1$,
- (ix) $s_1 \leq 1$, and

¹This paper was written while the author visited the Shinshu University in the winter of 1997.

C 1997 University of Białystok ISSN 1426-2630 (x) for every real number t such that $0 \leq t$ and $t < s_1$ holds $f(t) \notin Q$. Let g be a map from I into $(\mathcal{E}_T^2) \upharpoonright P$ and s_2 be a real number. Suppose g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = q_1$ and $0 \leq s_2$ and $s_2 \leq 1$. Let t be a real number. If $0 \leq t$ and $t < s_2$, then $g(t) \notin Q$.

Let P, Q be subsets of the carrier of \mathcal{E}_{T}^{2} and let p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Let us assume that P meets Q and $P \cap Q$ is closed and P is an arc from p_{1} to p_{2} . The functor FPoint (P, p_{1}, p_{2}, Q) yielding a point of \mathcal{E}_{T}^{2} is defined by the conditions (Def. 1).

- (Def. 1)(i) FPoint $(P, p_1, p_2, Q) \in P \cap Q$, and
 - (ii) for every map g from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$ and for every real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = \mathrm{FPoint}(P, p_1, p_2, Q)$ and $0 \leqslant s_2$ and $s_2 \leqslant 1$ and for every real number t such that $0 \leqslant t$ and $t < s_2$ holds $g(t) \notin Q$.

One can prove the following three propositions:

- (2) Let P, Q be subsets of the carrier of \mathcal{E}_{T}^{2} and p, p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . If $p \in P$ and P is an arc from p_{1} to p_{2} and $Q = \{p\}$, then FPoint $(P, p_{1}, p_{2}, Q) = p$.
- (3) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 \in Q$ and $P \cap Q$ is closed and P is an arc from p_1 to p_2 , then FPoint $(P, p_1, p_2, Q) = p_1$.
- (4) Let P, Q be subsets of the carrier of \mathcal{E}_{T}^{2} , p_{1}, p_{2}, q_{1} be points of \mathcal{E}_{T}^{2} , f be a map from \mathbb{I} into $(\mathcal{E}_{T}^{2}) \upharpoonright P$, and s_{1} be a real number. Suppose that
- (i) P is an arc from p_1 to p_2 ,
- (ii) $q_1 \in P$,
- (iii) $q_1 \in Q$,
- $(iv) \quad f(s_1) = q_1,$
- (v) f is a homeomorphism,
- $(vi) \quad f(0) = p_1,$
- $(vii) \quad f(1) = p_2,$
- (viii) $0 \leq s_1$,
 - (ix) $s_1 \leq 1$, and
 - (x) for every real number t such that $1 \ge t$ and $t > s_1$ holds $f(t) \notin Q$. Let g be a map from \mathbb{I} into $(\mathcal{E}^2_T) \upharpoonright P$ and s_2 be a real number. Suppose g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = q_1$ and $0 \le s_2$ and $s_2 \le 1$. Let t be a real number. If $1 \ge t$ and $t > s_2$, then $g(t) \notin Q$.

Let P, Q be subsets of the carrier of \mathcal{E}_{T}^{2} and let p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Let us assume that P meets Q and $P \cap Q$ is closed and P is an arc from p_{1} to p_{2} . The functor LPoint (P, p_{1}, p_{2}, Q) yielding a point of \mathcal{E}_{T}^{2} is defined by the conditions (Def. 2).

- (Def. 2)(i) LPoint $(P, p_1, p_2, Q) \in P \cap Q$, and
 - (ii) for every map g from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$ and for every real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) =$

468

LPoint (P, p_1, p_2, Q) and $0 \leq s_2$ and $s_2 \leq 1$ and for every real number t such that $1 \ge t$ and $t > s_2$ holds $g(t) \notin Q$.

One can prove the following propositions:

- (5) Let P, Q be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p, p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in$ P and P is an arc from p_1 to p_2 and $Q = \{p\}$, then LPoint $(P, p_1, p_2, Q) = p$.
- (6) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}^2_{\mathrm{T}}$, and p_1, p_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. If $p_2 \in Q$ and $P \cap Q$ is closed and P is an arc from p_1 to p_2 , then $\text{LPoint}(P, p_1, p_2, Q) = p_2$.
- (7) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} , Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P \subseteq Q$ and Pis closed and an arc from p_1 to p_2 . Then FPoint $(P, p_1, p_2, Q) = p_1$ and LPoint $(P, p_1, p_2, Q) = p_2$.

2. The ordering of points on a curve

Let P be a subset of the carrier of \mathcal{E}_{T}^{2} and let $p_{1}, p_{2}, q_{1}, q_{2}$ be points of \mathcal{E}_{T}^{2} . We say that LE q_1, q_2, P, p_1, p_2 if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) $q_1 \in P$,
 - (ii) $q_2 \in P$, and
 - for every map g from I into $(\mathcal{E}_{T}^{2}) \upharpoonright P$ and for all real numbers s_{1}, s_{2} such (iii) that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_1) = q_1$ and $0 \leq s_1$ and $s_1 \leq 1$ and $g(s_2) = q_2$ and $0 \leq s_2$ and $s_2 \leq 1$ holds $s_1 \leq s_2$. The following propositions are true:
 - (8) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , q_1 , q_2 be points of $\mathcal{E}^2_{\mathrm{T}}$, g be a map from \mathbb{I} into $(\mathcal{E}^2_{\mathrm{T}}){\upharpoonright}P$, and s_1, s_2 be real numbers. Suppose that
 - (i) P is an arc from p_1 to p_2 ,
 - q is a homeomorphism, (ii)
 - (iii) $g(0) = p_1,$
 - $g(1) = p_2,$ (iv)
 - $g(s_1) = q_1,$ (v)
 - (vi) $0 \leq s_1,$
 - (vii) $s_1 \leqslant 1$,
 - (viii) $q(s_2) = q_2,$
 - $0 \leq s_2,$ (ix)
 - (x)
 - $s_2 \leq 1$, and

 $s_1 \leqslant s_2$. (xi)

ADAM GRABOWSKI AND YATSUKA NAKAMURA

- (9) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q_1 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q_1 \in P$, then LE q_1, q_1, P, p_1, p_2 .
- (10) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q_1 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $q_1 \in P$. Then LE p_1, q_1, P, p_1, p_2 and LE q_1, p_2, P, p_1, p_2 .
- (11) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then LE p_1, p_2, P, p_1, p_2 .
- (12) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and LE q_{1} , q_{2} , P, p_{1} , p_{2} and LE q_{2} , q_{1} , P, p_{1} , p_{2} . Then $q_{1} = q_{2}$.
- (13) Let P be a non empty subset of the carrier of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} , q_{3} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and LE q_{1} , q_{2} , P, p_{1} , p_{2} and LE q_{2} , q_{3} , P, p_{1} , p_{2} . Then LE q_{1} , q_{3} , P, p_{1} , p_{2} .
- (14) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1 , p_2 , q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $q_1 \in P$ and $q_2 \in P$ and $q_1 \neq q_2$. Then LE q_1 , q_2 , P, p_1 , p_2 and not LE q_2 , q_1 , P, p_1 , p_2 or LE q_2 , q_1 , P, p_1 , p_2 and not LE q_1 , q_2 , P, p_1 , p_2 .

3. Some properties of the ordering of points on a curve

We now state a number of propositions:

- (15) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is a special sequence and $\widetilde{\mathcal{L}}(f) \cap Q$ is closed and $q \in \widetilde{\mathcal{L}}(f)$ and $q \in Q$. Then LE FPoint $(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len}\,f} f, Q),$ $q, \widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len}\,f} f.$
- (16) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is a special sequence and $\widetilde{\mathcal{L}}(f) \cap Q$ is closed and $q \in \widetilde{\mathcal{L}}(f)$ and $q \in Q$. Then LE q, LPoint($\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len}\,f} f, Q$), $\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len}\,f} f$.
- (17) For all points q_1 , q_2 , p_1 , p_2 of $\mathcal{E}_{\mathrm{T}}^2$ such that $p_1 \neq p_2$ holds if LE q_1 , q_2 , $\mathcal{L}(p_1, p_2)$, p_1 , p_2 , then LE (q_1, q_2, p_1, p_2) .
- (18) Let P, Q be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $P \cap Q \neq \emptyset$ and $P \cap Q$ is closed. Then $\mathrm{FPoint}(P, p_1, p_2, Q) = \mathrm{LPoint}(P, p_2, p_1, Q)$ and $\mathrm{LPoint}(P, p_1, p_2, Q) = \mathrm{FPoint}(P, p_2, p_1, Q)$.
- (19) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose $\widetilde{\mathcal{L}}(f)$ meets Q and Q is closed and f is a special sequence and $1 \leq i$

470

and $i + 1 \leq \text{len } f$ and $\text{FPoint}(\mathcal{L}(f), \pi_1 f, \pi_{\text{len } f} f, Q) \in \mathcal{L}(f, i)$. Then $\text{FPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\text{len } f} f, Q) = \text{FPoint}(\mathcal{L}(f, i), \pi_i f, \pi_{i+1} f, Q).$

- (20) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose $\widetilde{\mathcal{L}}(f)$ meets Q and Q is closed and f is a special sequence and $1 \leq i$ and $i + 1 \leq \mathrm{len} f$ and $\mathrm{LPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f, Q) \in \mathcal{L}(f, i)$. Then $\mathrm{LPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f, Q) = \mathrm{LPoint}(\mathcal{L}(f, i), \pi_i f, \pi_{i+1} f, Q)$.
- (21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and i be a natural number. Suppose $1 \leq i$ and $i+1 \leq \mathrm{len} f$ and f is a special sequence and $\mathrm{FPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f, \mathcal{L}(f, i)) \in \mathcal{L}(f, i)$. Then $\mathrm{FPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f, \mathcal{L}(f, i)) = \pi_i f$.
- (22) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and i be a natural number. Suppose $1 \leq i$ and $i+1 \leq \mathrm{len} f$ and f is a special sequence and $\mathrm{LPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f, \mathcal{L}(f, i)) \in \mathcal{L}(f, i)$. Then $\mathrm{LPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f, \mathcal{L}(f, i)) = \pi_{i+1} f$.
- (23) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and i be a natural number. Suppose f is a special sequence and $1 \leq i$ and $i+1 \leq \mathrm{len} f$. Then LE $\pi_i f$, $\pi_{i+1}f$, $\widetilde{\mathcal{L}}(f)$, $\pi_1 f$, $\pi_{\mathrm{len} f}f$.
- (24) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and i, k be natural numbers. Suppose f is a special sequence and $1 \leq i$ and $i + k + 1 \leq \mathrm{len} f$. Then LE $\pi_i f, \pi_{i+k} f, \widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f$.
- (25) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, q be a point of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose f is a special sequence and $1 \leq i$ and $i+1 \leq \mathrm{len} f$ and $q \in \mathcal{L}(f,i)$. Then LE $\pi_i f, q, \widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len} f} f$.
- (26) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, q be a point of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose f is a special sequence and $1 \leq i$ and $i+1 \leq \mathrm{len} f$ and $q \in \mathcal{L}(f,i)$. Then LE q, $\pi_{i+1}f$, $\widetilde{\mathcal{L}}(f)$, π_1f , $\pi_{\mathrm{len} f}f$.
- (27) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, q be a point of $\mathcal{E}_{\mathrm{T}}^2$, and i, j be natural numbers. Suppose that
 - (i) $\mathcal{L}(f)$ meets Q,
- (ii) f is a special sequence,
- (iii) Q is closed,
- (iv) FPoint($\mathcal{L}(f), \pi_1 f, \pi_{\operatorname{len} f} f, Q) \in \mathcal{L}(f, i),$
- (v) $1 \leq i$,
- (vi) $i+1 \leq \operatorname{len} f$,
- (vii) $q \in \mathcal{L}(f, j),$
- (viii) $1 \leq j$,
- (ix) $j+1 \leq \operatorname{len} f$,
- (x) $q \in Q$, and
- (xi) FPoint($\mathcal{L}(f), \pi_1 f, \pi_{\operatorname{len} f} f, Q) \neq q$.

Then $i \leq j$ and if i = j, then LE(FPoint($\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\text{len } f} f, Q), q, \pi_i f, \pi_{i+1} f)$.

- (28) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} , Q be a subset of the carrier of \mathcal{E}_{T}^{2} , q be a point of \mathcal{E}_{T}^{2} , and i, j be natural numbers. Suppose that
 - (i) $\mathcal{L}(f)$ meets Q,
 - (ii) f is a special sequence,
- (iii) Q is closed,
- (iv) LPoint($\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\operatorname{len} f} f, Q$) $\in \mathcal{L}(f, i),$
- $(\mathbf{v}) \quad 1 \leqslant i,$
- (vi) $i+1 \leq \operatorname{len} f$,
- (vii) $q \in \mathcal{L}(f, j),$
- (viii) $1 \leq j$,
- (ix) $j+1 \leq \operatorname{len} f$,
- (x) $q \in Q$, and
- (xi) LPoint($\mathcal{L}(f), \pi_1 f, \pi_{\text{len } f} f, Q) \neq q.$

Then $i \ge j$ and if i = j, then $\operatorname{LE}(q, \operatorname{LPoint}(\widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\operatorname{len} f} f, Q), \pi_i f, \pi_{i+1} f)$.

- (29) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose $q_1 \in \mathcal{L}(f,i)$ and $q_2 \in \mathcal{L}(f,i)$ and f is a special sequence and $1 \leq i$ and $i+1 \leq \text{len } f$. If LE $q_1, q_2, \widetilde{\mathcal{L}}(f), \pi_1 f$, $\pi_{\text{len } f} f$, then LE $q_1, q_2, \mathcal{L}(f,i), \pi_i f, \pi_{i+1} f$.
- (30) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and q_1, q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $q_1 \in \widetilde{\mathcal{L}}(f)$ and $q_2 \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence and $q_1 \neq q_2$. Then LE $q_1, q_2, \widetilde{\mathcal{L}}(f), \pi_1 f, \pi_{\mathrm{len}\,f} f$ if and only if for all natural numbers i, j such that $q_1 \in \mathcal{L}(f, i)$ and $q_2 \in \mathcal{L}(f, j)$ and $1 \leq i$ and $i+1 \leq \mathrm{len}\,f$ and $1 \leq j$ and $j+1 \leq \mathrm{len}\,f$ holds $i \leq j$ and if i = j, then $\mathrm{LE}(q_1, q_2, \pi_i f, \pi_{i+1} f)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255–263, 1997.

- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [14] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [16] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [19] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85–88, 1992.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received September 10, 1997