The Ordering of Points on a Curve. Part I

Adam Grabowski ${ }^{1}$
University of Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Summary. Some auxiliary theorems needed to formalize the proof of the Jordan Curve Theorem according to [25] are proved.

MML Identifier: JORDAN5B.

The articles [26], [29], [13], [1], [22], [24], [31], [2], [4], [5], [11], [28], [20], [12], [16], [23], [9], [8], [27], [10], [30], [15], [17], [18], [14], [19], [21], [6], [7], and [3] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:
(1) For every natural number i_{1} such that $1 \leqslant i_{1}$ holds $i_{1}-^{\prime} 1<i_{1}$.
(2) For all natural numbers i, k such that $i+1 \leqslant k$ holds $1 \leqslant k-^{\prime} i$.
(3) For all natural numbers i, k such that $1 \leqslant i$ and $1 \leqslant k$ holds $k-^{\prime} i+1 \leqslant k$.
(4) For every real number r such that $r \in$ the carrier of \mathbb{I} holds $1-r \in$ the carrier of \mathbb{I}.
(5) For all points p, q, p_{1} of \mathcal{E}_{T}^{2} such that $p_{\mathbf{2}} \neq q_{\mathbf{2}}$ and $p_{1} \in \mathcal{L}(p, q)$ holds if $\left(p_{1}\right)_{\mathbf{2}}=p_{\mathbf{2}}$, then $\left(p_{1}\right)_{\mathbf{1}}=p_{1}$.
(6) For all points p, q, p_{1} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{\mathbf{1}} \neq q_{1}$ and $p_{1} \in \mathcal{L}(p, q)$ holds if $\left(p_{1}\right)_{\mathbf{1}}=p_{\mathbf{1}}$, then $\left(p_{1}\right)_{\mathbf{2}}=p_{\mathbf{2}}$.

[^0](7) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}, F$ be a map from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and i be a natural number. Suppose $1 \leqslant i$ and $i+1 \leqslant \operatorname{len} f$ and f is a special sequence and $P=\widetilde{\mathcal{L}}(f)$ and F is a homeomorphism and $F(0)=\pi_{1} f$ and $F(1)=\pi_{\text {len } f} f$. Then there exist real numbers p_{1}, p_{2} such that $p_{1}<p_{2}$ and $0 \leqslant p_{1}$ and $p_{1} \leqslant 1$ and $0 \leqslant p_{2}$ and $p_{2} \leqslant 1$ and $\mathcal{L}(f, i)=F^{\circ}\left[p_{1}, p_{2}\right]$ and $F\left(p_{1}\right)=\pi_{i} f$ and $F\left(p_{2}\right)=\pi_{i+1} f$.
(8) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, Q, R$ be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}, F$ be a map from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright Q, i$ be a natural number, and P be a non empty subset of \mathbb{I}. Suppose that
(i) f is a special sequence,
(ii) F is a homeomorphism,
(iii) $\quad F(0)=\pi_{1} f$,
(iv) $\quad F(1)=\pi_{\operatorname{len} f} f$,
(v) $1 \leqslant i$,
(vi) $i+1 \leqslant \operatorname{len} f$,
(vii) $\quad F^{\circ} P=\mathcal{L}(f, i)$,
(viii) $\quad Q=\widetilde{\mathcal{L}}(f)$, and
(ix) $\quad R=\mathcal{L}(f, i)$.

Then there exists a map G from $\mathbb{I}\left\lceil P\right.$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright R$ such that $G=F \upharpoonright P$ and G is a homeomorphism.

2. Some properties of Real intervals

One can prove the following propositions:
(9) For all points p_{1}, p_{2}, p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{1} \neq p_{2}$ and $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ holds $\mathrm{LE}\left(p, p, p_{1}, p_{2}\right)$.
(10) For all points p, p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{1} \neq p_{2}$ and $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ holds $\mathrm{LE}\left(p_{1}, p, p_{1}, p_{2}\right)$.
(11) For all points p, p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $p_{1} \neq p_{2}$ holds $\mathrm{LE}\left(p, p_{2}, p_{1}, p_{2}\right)$.
(12) For all points $p_{1}, p_{2}, q_{1}, q_{2}, q_{3}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{1} \neq p_{2}$ and $\mathrm{LE}\left(q_{1}, q_{2}, p_{1}, p_{2}\right)$ and $\mathrm{LE}\left(q_{2}, q_{3}, p_{1}, p_{2}\right)$ holds $\mathrm{LE}\left(q_{1}, q_{3}, p_{1}, p_{2}\right)$.
(13) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \neq q$ holds $\mathcal{L}(p, q)=\left\{p_{1} ; p_{1}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: \mathrm{LE}\left(p, p_{1}, p, q\right) \wedge \mathrm{LE}\left(p_{1}, q, p, q\right)\right\}$.
(14) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is an arc from p_{1} to p_{2}, then P is an arc from p_{2} to p_{1}.
(15) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, and i be a natural number. Suppose f is a special sequence and
$1 \leqslant i$ and $i+1 \leqslant \operatorname{len} f$ and $P=\mathcal{L}(f, i)$. Then P is an arc from $\pi_{i} f$ to $\pi_{i+1} f$.

3. Cutting off Sequences

One can prove the following propositions:
(16) Let g_{1} be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and i be a natural number. Suppose $1 \leqslant i$ and $i \leqslant \operatorname{len} g_{1}$ and g_{1} is a special sequence. If $\pi_{1} g_{1} \in$ $\widetilde{\mathcal{L}}\left(\operatorname{mid}\left(g_{1}, i\right.\right.$, len $\left.\left.g_{1}\right)\right)$, then $i=1$.
(17) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence and $p=f(\operatorname{len} f)$, then $\downharpoonleft p, f=\langle p, p\rangle$.
(18) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and k be a natural number. If $1 \leqslant k$ and $k \leqslant \operatorname{len} f$, then $\operatorname{mid}(f, k, k)=\left\langle\pi_{k} f\right\rangle$.
(19) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence and $p=f(1)$, then $\downharpoonright f, p=\langle p\rangle$.
(20) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence and $p \in \widetilde{\mathcal{L}}(f)$, then $\widetilde{\mathcal{L}}(\downharpoonright f, p) \subseteq \widetilde{\mathcal{L}}(f)$.
(21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in$ $\widetilde{\mathcal{L}}(f)$ and $p \neq f(\operatorname{len} f)$ and f is a special sequence, then $\operatorname{Index}(p, \downharpoonleft p, f)=1$.
(22) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2} \underset{\sim}{\mathcal{L}}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence, then $p \in \widetilde{\mathcal{L}}(\downharpoonleft p, f)$.
(23) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence and $p \neq f(1)$, then $p \in \widetilde{\mathcal{L}}(\lfloor f, p)$.
(24) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and $p \neq f(\operatorname{len} f)$ and f is a special sequence, then $\rfloor \downarrow p, f, p=\langle p\rangle$.
(25) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and $q \in \widetilde{\mathcal{L}}(f)$ and $p=f(\operatorname{len} f)$ and f is a special sequence, then $p \in \widetilde{\mathcal{L}}(\downharpoonleft q, f)$.
(26) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and $q \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence, then $p \in \widetilde{\mathcal{L}}(\downharpoonleft q, f)$ or $q \in \widetilde{\mathcal{L}}(J p, f)$.
(27) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p \in \widetilde{\mathcal{L}}(f)$ and $q \in \widetilde{\mathcal{L}}(f)$ and $p \neq f(\operatorname{len} f)$ or $q \neq f(\operatorname{len} f)$ and f is a special sequence. Then $\widetilde{\mathcal{L}}(\downharpoonleft \downarrow p, f, q) \subseteq \widetilde{\mathcal{L}}(f)$.
(28) Let f be a non constant standard special circular sequence and i, j be natural numbers. Suppose $1 \leqslant i$ and $j \leqslant$ len the Go-board of f and $i<j$. Then $\mathcal{L}\left((\text { the Go-board of } f)_{1 \text {, width the Go-board of } f}\right.$, (the Go-board of $\left.f)_{i \text {,width the Go-board of } f}\right) \cap \mathcal{L}\left((\text { the Go-board of } f)_{j \text {, width the Go-board of } f}\right.$, (the Go-board of $f)_{\text {len the }}$ Go-board of f, width the Go-board of $\left.f\right)=\emptyset$.
(29) Let f be a non constant standard special circular sequence and i, j be natural numbers. Suppose $1 \leqslant i$ and $j \leqslant$ width the Go-board of f and $i<j$. Then $\mathcal{L}\left((\text { the Go-board of } f)_{\text {len the Go-board of } f, 1}\right.$, (the Go-board of $\left.f)_{\text {len the Go-board of } f, i}\right) \cap \mathcal{L}\left((\text { the Go-board of } f)_{\text {len the }}\right.$ Go-board of f, j, (the Go-board of $f)_{\text {len the }}$ Go-board of f, width the Go-board of $\left.f\right)=\emptyset$.
(30) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence, then $\downharpoonleft \pi_{1} f, f=f$.
(31) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence, then $\downharpoonright f, \pi_{\operatorname{len} f} f=f$.
(32) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence and $p \neq f($ len $f)$, then $p \in \mathcal{L}\left(\pi_{\text {Index }(p, f)} f, \pi_{\text {Index }(p, f)+1} f\right)$.
(33) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, p$ be a point of $\mathcal{E}_{\mathrm{T}}^{2}$, and i be a natural number. If f is a special sequence, then if $\pi_{1} f \in \mathcal{L}(f, i)$, then $i=1$.
(34) Let f be a non constant standard special circular sequence, j be a natural number, and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $1 \leqslant j$ and $j \leqslant$ width the Go-board of f and $P=\mathcal{L}\left((\text { the Go-board of } f)_{1, j}\right.$, (the Goboard of $f)_{\text {len the }}$ Go-board of $\left.f, j\right)$. Then P is a special polygonal arc joining (the Go-board of $f)_{1, j}$ and (the Go-board of $\left.f\right)_{\text {len the Go-board of } f, j}$.
(35) Let f be a non constant standard special circular sequence, j be a natural number, and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $1 \leqslant j$ and $j \leqslant$ len the Go-board of f and $P=\mathcal{L}\left((\text { the Go-board of } f)_{j, 1}\right.$, (the Goboard of $\left.f)_{j, \text { width the Go-board of } f}\right)$. Then P is a special polygonal arc joining (the Go-board of $f)_{j, 1}$ and (the Go-board of $\left.f\right)_{j, \text { width the Go-board of } f}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[18] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[19] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[20] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[21] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[22] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[24] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[25] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
[26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[27] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[28] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[30] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85-88, 1992.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This paper was written while the author visited the Shinshu University in the winter of 1997.

