The Ordering of Points on a Curve. Part I

Adam Grabowski¹ University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. Some auxiliary theorems needed to formalize the proof of the Jordan Curve Theorem according to [25] are proved.

MML Identifier: JORDAN5B.

The articles [26], [29], [13], [1], [22], [24], [31], [2], [4], [5], [11], [28], [20], [12], [16], [23], [9], [8], [27], [10], [30], [15], [17], [18], [14], [19], [21], [6], [7], and [3] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

- (1) For every natural number i_1 such that $1 \leq i_1$ holds $i_1 i_1 < i_1$.
- (2) For all natural numbers i, k such that $i + 1 \leq k$ holds $1 \leq k i$.
- (3) For all natural numbers i, k such that $1 \leq i$ and $1 \leq k$ holds $k i + 1 \leq k$.
- (4) For every real number r such that $r \in$ the carrier of \mathbb{I} holds $1 r \in$ the carrier of \mathbb{I} .
- (5) For all points p, q, p_1 of \mathcal{E}^2_T such that $p_2 \neq q_2$ and $p_1 \in \mathcal{L}(p,q)$ holds if $(p_1)_2 = p_2$, then $(p_1)_1 = p_1$.
- (6) For all points p, q, p_1 of \mathcal{E}^2_T such that $p_1 \neq q_1$ and $p_1 \in \mathcal{L}(p,q)$ holds if $(p_1)_1 = p_1$, then $(p_1)_2 = p_2$.

C 1997 University of Białystok ISSN 1426-2630

¹This paper was written while the author visited the Shinshu University in the winter of 1997.

ADAM GRABOWSKI AND YATSUKA NAKAMURA

- (7) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, F be a map from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and i be a natural number. Suppose $1 \leq i$ and $i+1 \leq \text{len } f$ and f is a special sequence and $P = \widetilde{\mathcal{L}}(f)$ and F is a homeomorphism and $F(0) = \pi_1 f$ and $F(1) = \pi_{\text{len } f} f$. Then there exist real numbers p_1 , p_2 such that $p_1 < p_2$ and $0 \leq p_1$ and $p_1 \leq 1$ and $0 \leq p_2$ and $p_2 \leq 1$ and $\mathcal{L}(f,i) = F^{\circ}[p_1,p_2]$ and $F(p_1) = \pi_i f$ and $F(p_2) = \pi_{i+1} f$.
- (8) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q, R be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, F be a map from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright Q$, i be a natural number, and P be a non empty subset of \mathbb{I} . Suppose that
- (i) f is a special sequence,
- (ii) F is a homeomorphism,
- (iii) $F(0) = \pi_1 f,$
- (iv) $F(1) = \pi_{\operatorname{len} f} f$,
- $(\mathbf{v}) \quad 1 \leqslant i,$
- (vi) $i+1 \leq \operatorname{len} f$,
- (vii) $F^{\circ}P = \mathcal{L}(f, i),$
- (viii) $Q = \widetilde{\mathcal{L}}(f)$, and
 - (ix) $R = \mathcal{L}(f, i).$

Then there exists a map G from $\mathbb{I} \upharpoonright P$ into $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright R$ such that $G = F \upharpoonright P$ and G is a homeomorphism.

2. Some properties of real intervals

One can prove the following propositions:

- (9) For all points p_1 , p_2 , p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p_1 \neq p_2$ and $p \in \mathcal{L}(p_1, p_2)$ holds $\mathrm{LE}(p, p, p_1, p_2)$.
- (10) For all points p, p_1 , p_2 of \mathcal{E}_T^2 such that $p_1 \neq p_2$ and $p \in \mathcal{L}(p_1, p_2)$ holds $LE(p_1, p, p_1, p_2)$.
- (11) For all points p, p_1 , p_2 of \mathcal{E}^2_T such that $p \in \mathcal{L}(p_1, p_2)$ and $p_1 \neq p_2$ holds $LE(p, p_2, p_1, p_2)$.
- (12) For all points p_1 , p_2 , q_1 , q_2 , q_3 of \mathcal{E}_T^2 such that $p_1 \neq p_2$ and $LE(q_1, q_2, p_1, p_2)$ and $LE(q_2, q_3, p_1, p_2)$ holds $LE(q_1, q_3, p_1, p_2)$.
- (13) For all points p, q of \mathcal{E}_{T}^{2} such that $p \neq q$ holds $\mathcal{L}(p,q) = \{p_{1}; p_{1} \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: LE $(p, p_{1}, p, q) \land \text{LE}(p_{1}, q, p, q)\}$.
- (14) Let P be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 , then P is an arc from p_2 to p_1 .
- (15) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose f is a special sequence and

462

 $1 \leq i$ and $i+1 \leq \text{len } f$ and $P = \mathcal{L}(f, i)$. Then P is an arc from $\pi_i f$ to $\pi_{i+1} f$.

3. Cutting off sequences

One can prove the following propositions:

- (16) Let g_1 be a finite sequence of elements of \mathcal{E}_T^2 and i be a natural number. Suppose $1 \leq i$ and $i \leq \text{len } g_1$ and g_1 is a special sequence. If $\pi_1 g_1 \in \widetilde{\mathcal{L}}(\text{mid}(g_1, i, \text{len } g_1))$, then i = 1.
- (17) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence and $p = f(\operatorname{len} f)$, then $\downarrow p, f = \langle p, p \rangle$.
- (18) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and k be a natural number. If $1 \leq k$ and $k \leq \mathrm{len} f$, then $\mathrm{mid}(f, k, k) = \langle \pi_k f \rangle$.
- (19) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence and p = f(1), then $|f, p = \langle p \rangle$.
- (20) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence and $p \in \widetilde{\mathcal{L}}(f)$, then $\widetilde{\mathcal{L}}(\downarrow f, p) \subseteq \widetilde{\mathcal{L}}(f)$.
- (21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(f)$ and $p \neq f(\operatorname{len} f)$ and f is a special sequence, then $\operatorname{Index}(p, | p, f) = 1$.
- (22) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} and p be a point of \mathcal{E}_{T}^{2} . If $p \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence, then $p \in \widetilde{\mathcal{L}}(|p, f)$.
- (23) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence and $p \neq f(1)$, then $p \in \widetilde{\mathcal{L}}(\downarrow f, p)$.
- (24) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(f)$ and $p \neq f(\operatorname{len} f)$ and f is a special sequence, then $|| p, f, p = \langle p \rangle$.
- (25) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(f)$ and $q \in \widetilde{\mathcal{L}}(f)$ and $p = f(\operatorname{len} f)$ and f is a special sequence, then $p \in \widetilde{\mathcal{L}}(\downarrow q, f)$.
- (26) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(f)$ and $q \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence, then $p \in \widetilde{\mathcal{L}}(\downarrow q, f)$ or $q \in \widetilde{\mathcal{L}}(\downarrow p, f)$.
- (27) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $p \in \widetilde{\mathcal{L}}(f)$ and $q \in \widetilde{\mathcal{L}}(f)$ and $p \neq f(\operatorname{len} f)$ or $q \neq f(\operatorname{len} f)$ and f is a special sequence. Then $\widetilde{\mathcal{L}}(\downarrow \mid p, f, q) \subseteq \widetilde{\mathcal{L}}(f)$.
- (28) Let f be a non constant standard special circular sequence and i, j be natural numbers. Suppose $1 \leq i$ and $j \leq \text{len the Go-board of } f$ and i < j. Then $\mathcal{L}((\text{the Go-board of } f)_{1,\text{width the Go-board of } f})$, (the Go-board of $f)_{i,\text{width the Go-board of } f}) \cap \mathcal{L}((\text{the Go-board of } f)_{j,\text{width the Go-board of } f})$, (the Go-board of $f)_{i,\text{width the Go-board of } f}) = \emptyset$.

ADAM GRABOWSKI AND YATSUKA NAKAMURA

- (29) Let f be a non constant standard special circular sequence and i, j be natural numbers. Suppose $1 \leq i$ and $j \leq$ width the Go-board of f and i < j. Then $\mathcal{L}((\text{the Go-board of } f)_{\text{len the Go-board of } f, 1}, (\text{the Go-board of } f)_{\text{len the Go-board of } f, i}) \cap \mathcal{L}((\text{the Go-board of } f)_{\text{len the Go-board of } f, j}, (\text{the Go-board of } f)_{\text{len the Go-board of } f, j}) \in \emptyset$.
- (30) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence, then $\exists \pi_1 f, f = f$.
- (31) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence, then $|f, \pi_{\mathrm{len}\,f}f = f$.
- (32) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence and $p \neq f(\operatorname{len} f)$, then $p \in \mathcal{L}(\pi_{\operatorname{Index}(p,f)}f, \pi_{\operatorname{Index}(p,f)+1}f)$.
- (33) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, p be a point of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. If f is a special sequence, then if $\pi_1 f \in \mathcal{L}(f, i)$, then i = 1.
- (34) Let f be a non constant standard special circular sequence, j be a natural number, and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $1 \leq j$ and $j \leq$ width the Go-board of f and $P = \mathcal{L}((\text{the Go-board of } f)_{1,j}, (\text{the Go-board of } f)_{\mathrm{len the Go-board of } f, j})$. Then P is a special polygonal arc joining (the Go-board of $f)_{1,j}$ and (the Go-board of $f)_{\mathrm{len the Go-board of } f, j}$.
- (35) Let f be a non constant standard special circular sequence, j be a natural number, and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $1 \leq j$ and $j \leq \text{len the Go-board of } f$ and $P = \mathcal{L}((\text{the Go-board of } f)_{j,1}, (\text{the Go-board of } f)_{j,\text{width the Go-board of } f})$. Then P is a special polygonal arc joining (the Go-board of $f)_{j,1}$ and (the Go-board of $f)_{j,\text{width the Go-board of } f}$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
 [6] D. B. M. H. Theorem and the set of the
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
- [8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.

464

- [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
- [17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [18] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [19] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101–106, 1992.
- [20] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255–263, 1997.
- [21] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [22] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [24] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [25] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [26] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [27] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [28] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [30] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85–88, 1992.
- [31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received September 10, 1997