Some Properties of Real Maps

Adam Grabowski¹ University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. The main goal of the paper is to show logical equivalence of the two definitions of the *open subset*: one from [2] and the other from [23]. This has been used to show that the other two definitions are equivalent: the continuity of the map as in [20] and in [22]. We used this to show that continuous and one-to-one maps are monotone (see theorems 16 and 17 for details).

 ${\rm MML} \ {\rm Identifier:} \ {\tt JORDAN5A}.$

The terminology and notation used here are introduced in the following articles: [26], [13], [27], [28], [4], [5], [24], [22], [17], [18], [10], [3], [23], [6], [25], [29], [16], [14], [19], [11], [20], [8], [7], [9], [15], [21], [2], [1], and [12].

1. Preliminaries

One can prove the following four propositions:

- (1) For all points p, q of $\mathcal{E}_{\mathrm{T}}^2$ and for every subset P of $\mathcal{E}_{\mathrm{T}}^2$ such that P is an arc from p to q holds P is compact.
- (2) For every real number r holds $0 \leq r$ and $r \leq 1$ iff $r \in$ the carrier of \mathbb{I} .
- (3) For all points p_1 , p_2 of \mathcal{E}_T^2 and for all real numbers r_1 , r_2 such that $(1-r_1) \cdot p_1 + r_1 \cdot p_2 = (1-r_2) \cdot p_1 + r_2 \cdot p_2$ holds $r_1 = r_2$ or $p_1 = p_2$.
- (4) Let p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose $p_1 \neq p_2$. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright \mathcal{L}(p_1, p_2)$ such that for every real number x such that $x \in [0, 1]$ holds $f(x) = (1 x) \cdot p_1 + x \cdot p_2$ and f is a homeomorphism and $f(0) = p_1$ and $f(1) = p_2$.

C 1997 University of Białystok ISSN 1426-2630

¹This paper was written while the author visited the Shinshu University in the winter of 1997.

One can verify that $\mathcal{E}_{\mathrm{T}}^2$ is arcwise connected.

One can check that there exists a subspace of $\mathcal{E}_{\mathrm{T}}^2$ which is compact and non empty.

The following proposition is true

(5) Let a, b be points of $\mathcal{E}_{\mathrm{T}}^2$, f be a path from a to b, P be a non empty compact subspace of $\mathcal{E}_{\mathrm{T}}^2$, and g be a map from I into P. If f is one-to-one and g = f and $\Omega_P = \operatorname{rng} f$, then g is a homeomorphism.

2. Equivalence of analytical and topological definitions of continuity

We now state a number of propositions:

- (6) Let X be a subset of \mathbb{R} . Then $X \in$ the open set family of the metric space of real numbers if and only if X is open.
- (7) Let f be a map from \mathbb{R}^1 into \mathbb{R}^1 , x be a point of \mathbb{R}^1 , g be a partial function from \mathbb{R} to \mathbb{R} , and x_1 be a real number. If f is continuous at x and f = g and $x = x_1$, then g is continuous in x_1 .
- (8) Let f be a continuous map from \mathbb{R}^1 into \mathbb{R}^1 and g be a partial function from \mathbb{R} to \mathbb{R} . If f = g, then g is continuous on \mathbb{R} .
- (9) Let f be a continuous one-to-one map from \mathbb{R}^1 into \mathbb{R}^1 . Then
- (i) for all points x, y of \mathbb{I} and for all real numbers p, q, f_1, f_2 such that x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$ holds $f_1 < f_2$, or
- (ii) for all points x, y of \mathbb{I} and for all real numbers p, q, f_1, f_2 such that x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$ holds $f_1 > f_2$.
- (10) Let r, g_1, a, b be real numbers and x be an element of the carrier of $[a, b]_{\mathrm{M}}$. If $a \leq b$ and x = r and $g_1 > 0$ and $|r g_1, r + g_1| \subseteq [a, b]$, then $|r g_1, r + g_1| = \mathrm{Ball}(x, g_1)$.
- (11) Let a, b be real numbers and X be a subset of \mathbb{R} . Suppose a < b and $a \notin X$ and $b \notin X$. If $X \in$ the open set family of $[a, b]_{\mathrm{M}}$, then X is open.
- (12) For every open subset X of \mathbb{R} and for all real numbers a, b such that $X \subseteq [a, b]$ holds $a \notin X$ and $b \notin X$.
- (13) Let a, b be real numbers, X be a subset of \mathbb{R} , and V be a subset of the carrier of $[a, b]_{\mathrm{M}}$. Suppose $a \leq b$ and V = X. If X is open, then $V \in$ the open set family of $[a, b]_{\mathrm{M}}$.
- (14) Let a, b, c, d, x_1 be real numbers, f be a map from $[a, b]_T$ into $[c, d]_T$, x be a point of $[a, b]_T$, and g be a partial function from \mathbb{R} to \mathbb{R} . Suppose a < b and c < d and f is continuous at x and f(a) = c and f(b) = d and f is one-to-one and f = g and $x = x_1$. Then $g \upharpoonright [a, b]$ is continuous in x_1 .

(15) Let a, b, c, d be real numbers, f be a map from $[a, b]_T$ into $[c, d]_T$, and g be a partial function from \mathbb{R} to \mathbb{R} . Suppose f is continuous and one-to-one and a < b and c < d and f = g and f(a) = c and f(b) = d. Then g is continuous on [a, b].

3. On the monotonicity of continuous maps

One can prove the following propositions:

- (16) Let a, b, c, d be real numbers and f be a map from $[a, b]_{T}$ into $[c, d]_{T}$. Suppose a < b and c < d and f is continuous and one-to-one and f(a) = cand f(b) = d. Let x, y be points of $[a, b]_{T}$ and p, q, f_1, f_2 be real numbers. If x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$, then $f_1 < f_2$.
- (17) Let f be a continuous one-to-one map from \mathbb{I} into \mathbb{I} . Suppose f(0) = 0and f(1) = 1. Let x, y be points of \mathbb{I} and p, q, f_1, f_2 be real numbers. If x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$, then $f_1 < f_2$.
- (18) Let a, b, c, d be real numbers, f be a map from $[a, b]_{\mathrm{T}}$ into $[c, d]_{\mathrm{T}}$, P be a non empty subset of $[a, b]_{\mathrm{T}}$, and P_1, Q_1 be subsets of \mathbb{R}^1 . Suppose a < b and c < d and $P_1 = P$ and f is continuous and one-to-one and P_1 is compact and f(a) = c and f(b) = d and $f^{\circ}P = Q_1$. Then $f(\inf(\Omega_{(P_1)})) = \inf(\Omega_{(Q_1)})$.
- (19) Let a, b, c, d be real numbers, f be a map from $[a, b]_{\mathrm{T}}$ into $[c, d]_{\mathrm{T}}, P$, Q be non empty subsets of $[a, b]_{\mathrm{T}}$, and P_1, Q_1 be subsets of \mathbb{R}^1 . Suppose a < b and c < d and $P_1 = P$ and $Q_1 = Q$ and f is continuous and oneto-one and P_1 is compact and f(a) = c and f(b) = d and $f^{\circ}P = Q$. Then $f(\sup(\Omega_{(P_1)})) = \sup(\Omega_{(Q_1)})$.
- (20) For all real numbers a, b such that $a \leq b$ holds $\inf[a, b] = a$ and $\sup[a, b] = b$.
- (21) Let a, b, c, d, e, f, g, h be real numbers and F be a map from $[a, b]_T$ into $[c, d]_T$. Suppose a < b and c < d and e < f and $a \leq e$ and $f \leq b$ and F is a homeomorphism and F(a) = c and F(b) = d and g = F(e) and h = F(f). Then $F^{\circ}[e, f] = [g, h]$.
- (22) Let P, Q be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P meets Q and $P \cap Q$ is closed and P is an arc from p_1 to p_2 . Then there exists a point E_1 of $\mathcal{E}_{\mathrm{T}}^2$ such that
 - (i) $E_1 \in P \cap Q$, and
 - (ii) there exists a map g from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$ and there exists a real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = E_1$ and $0 \leqslant s_2$ and $s_2 \leqslant 1$ and for every real number t such that $0 \leqslant t$ and $t < s_2$ holds $g(t) \notin Q$.

- (23) Let P, Q be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P meets Q and $P \cap Q$ is closed and P is an arc from p_1 to p_2 . Then there exists a point E_1 of $\mathcal{E}_{\mathrm{T}}^2$ such that
 - (i) $E_1 \in P \cap Q$, and
 - (ii) there exists a map g from \mathbb{I} into $(\mathcal{E}_{T}^{2}) \upharpoonright P$ and there exists a real number s_{2} such that g is a homeomorphism and $g(0) = p_{1}$ and $g(1) = p_{2}$ and $g(s_{2}) = E_{1}$ and $0 \leq s_{2}$ and $s_{2} \leq 1$ and for every real number t such that $1 \geq t$ and $t > s_{2}$ holds $g(t) \notin Q$.

References

- Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353–359, 1996.
- [2] Leszek Borys. Paracompact and metrizable spaces. *Formalized Mathematics*, 2(4):481–485, 1991.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
 [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.
- Formalized Mathematics, 1(2):257–261, 1990. a) Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [10] Agata Darmochwał. The Euclidean space. Formatized Mathematics, 2(4):555–505, 1941.
 [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [12] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [14] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [15] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1–16, 1992.
- [16] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [17] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703–709, 1990.
- [18] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
- [19] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
- [20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [21] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [22] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [23] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.

458

- [26] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
 [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
 [20] Film and the state of the
- [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
 [29] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized
- [29] Mirostaw Wysocki and Agata Darmochwał. Subsets of topological spaces. Formatized Mathematics, 1(1):231–237, 1990.

Received September 10, 1997