Projections in n-Dimensional Euclidean Space to Each Coordinates

Roman Matuszewski ${ }^{1}$
University of Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. In the n-dimensional Euclidean space $\mathcal{E}_{\mathrm{T}}^{n}$, a projection operator to each coordinate is defined. It is proven that such an operator is linear. Moreover, it is continuous as a mapping from $\mathcal{E}_{\mathrm{T}}^{n}$ to R^{1}, the carrier of which is a set of all reals. If n is 1 , the projection becomes a homeomorphism, which means that $\mathcal{E}_{\mathrm{T}}^{1}$ is homeomorphic to R^{1}.

MML Identifier: JORDAN2B.

The notation and terminology used in this paper are introduced in the following articles: [30], [35], [34], [20], [1], [37], [33], [27], [12], [29], [11], [26], [23], [36], [2], [8], [9], [5], [32], [3], [18], [17], [25], [15], [10], [14], [31], [16], [19], [22], [7], [24], [13], [21], [4], [6], and [28].

1. Projections

For simplicity, we use the following convention: $a, b, s, s_{1}, r, r_{1}, r_{2}$ denote real numbers, n, i denote natural numbers, X denotes a non empty topological space, p, p_{1}, p_{2}, q denote points of $\mathcal{E}_{\mathrm{T}}^{n}, P$ denotes a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and f denotes a map from $\mathcal{E}_{\mathrm{T}}^{n}$ into \mathbb{R}^{1}.

Let n, i be natural numbers and let p be an element of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\operatorname{Proj}(p, i)$ yielding a real number is defined as follows:
(Def. 1) For every finite sequence g of elements of \mathbb{R} such that $g=p$ holds $\operatorname{Proj}(p, i)=\pi_{i} g$.

[^0]The following propositions are true:
(1) For every i there exists a map f from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathbb{R}^{\mathbf{1}}$ such that for every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f(p)=\operatorname{Proj}(p, i)$.
(2) For every i such that $i \in \operatorname{Seg} n$ holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle(i)=0$.
(3) For every i such that $i \in \operatorname{Seg} n$ holds $\operatorname{Proj}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, i\right)=0$.
(4) For all r, p, i such that $i \in \operatorname{Seg} n$ holds $\operatorname{Proj}(r \cdot p, i)=r \cdot \operatorname{Proj}(p, i)$.
(5) For all p, i such that $i \in \operatorname{Seg} n$ holds $\operatorname{Proj}(-p, i)=-\operatorname{Proj}(p, i)$.
(6) For all p_{1}, p_{2}, i such that $i \in \operatorname{Seg} n$ holds $\operatorname{Proj}\left(p_{1}+p_{2}, i\right)=\operatorname{Proj}\left(p_{1}, i\right)+$ $\operatorname{Proj}\left(p_{2}, i\right)$.
(7) For all p_{1}, p_{2}, i such that $i \in \operatorname{Seg} n$ holds $\operatorname{Proj}\left(p_{1}-p_{2}, i\right)=\operatorname{Proj}\left(p_{1}, i\right)-$ $\operatorname{Proj}\left(p_{2}, i\right)$.
(8) $\operatorname{len}\langle\underbrace{0, \ldots, 0}_{n}\rangle=n$.
(9) For every i such that $i \leqslant n$ holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle \upharpoonright i=\langle\underbrace{0, \ldots, 0}_{i}\rangle$.
(10) For every i holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle_{l i}=\langle\underbrace{0, \ldots, 0}_{n-\prime^{\prime} i}\rangle$.
(11) For every i holds $\sum\langle\underbrace{0, \ldots, 0}_{i}\rangle=0$.
(12) For every finite sequence w and for all r, i holds $\operatorname{len}(w+\cdot(i, r))=\operatorname{len} w$.
(13) For every finite sequence w of elements of \mathbb{R} and for all r, i such that $i \in \operatorname{Seg}$ len w holds $w+\cdot(i, r)=\left(w \upharpoonright i-^{\prime} 1\right)^{\wedge}\langle r\rangle \wedge\left(w_{\mid i}\right)$.
(14) For all i, r such that $i \in \operatorname{Seg} n$ holds $\sum(\langle\underbrace{0, \ldots, 0}_{n}\rangle+\cdot(i, r))=r$.
(15) For every element q of \mathcal{R}^{n} and for all p, i such that $i \in \operatorname{Seg} n$ and $q=p$ holds $\operatorname{Proj}(p, i) \leqslant|q|$ and $(\operatorname{Proj}(p, i))^{2} \leqslant|q|^{\mathbf{2}}$.

2. Continuity of Projections

Next we state several propositions:
(16) For all s_{1}, P, i such that $P=\left\{p: s_{1}>\operatorname{Proj}(p, i)\right\}$ and $i \in \operatorname{Seg} n$ holds P is open.
(17) For all s_{1}, P, i such that $P=\left\{p: s_{1}<\operatorname{Proj}(p, i)\right\}$ and $i \in \operatorname{Seg} n$ holds P is open.
(18) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, a, b$ be real numbers, and given i. Suppose $P=\left\{p ; p\right.$ ranges over elements of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$: $a<\operatorname{Proj}(p, i) \wedge \operatorname{Proj}(p, i)<b\}$ and $i \in \operatorname{Seg} n$. Then P is open.
(19) Let a, b be real numbers, f be a map from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathbb{R}^{\mathbf{1}}$, and given i. Suppose that for every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{n} \operatorname{holds} f(p)=\operatorname{Proj}(p, i)$. Then $f^{-1}(\{s: a<s \wedge s<b\})=\{p ; p$ ranges over elements of the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{n}: a<\operatorname{Proj}(p, i) \wedge \operatorname{Proj}(p, i)<b\right\}$.
(20) Let M be a metric space and f be a map from X into $M_{\text {top }}$. Suppose that for every real number r and for every element u of the carrier of M and for every subset P of the carrier of $M_{\text {top }}$ such that $r>0$ and $P=\operatorname{Ball}(u, r)$ holds $f^{-1}(P)$ is open. Then f is continuous.
(21) Let u be a point of the metric space of real numbers and r, u_{1} be real numbers. If $u_{1}=u$ and $r>0$, then $\operatorname{Ball}(u, r)=\left\{s: u_{1}-r<s \wedge s<\right.$ $\left.u_{1}+r\right\}$.
(22) Let f be a map from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathbb{R}^{\mathbf{1}}$ and given i. Suppose $i \in \operatorname{Seg} n$ and for every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f(p)=\operatorname{Proj}(p, i)$. Then f is continuous.

3. 1-Dimensional and 2-Dimensional Cases

The following three propositions are true:
(23) For every s holds $|\langle s\rangle|=\langle | s| \rangle$.
(24) For every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{1}$ there exists r such that $p=\langle r\rangle$.
(25) For every element w of the carrier of \mathcal{E}^{1} there exists r such that $w=\langle r\rangle$.

Let us consider r. The functor $|[r]|$ yields a point of $\mathcal{E}_{\mathrm{T}}^{1}$ and is defined by:
(Def. 2) $\quad|[r]|=\langle r\rangle$.
The following propositions are true:
(26) For all r, s holds $s \cdot|[r]|=|[s \cdot r]|$.
(27) For all r_{1}, r_{2} holds $\left|\left[r_{1}+r_{2}\right]\right|=\left|\left[r_{1}\right]\right|+\left|\left[r_{2}\right]\right|$.
(28) $|[0]|=0_{\mathcal{E}_{\mathrm{T}}^{1}}$.
(29) For all r_{1}, r_{2} such that $\left|\left[r_{1}\right]\right|=\left|\left[r_{2}\right]\right|$ holds $r_{1}=r_{2}$.
(30) For every subset P of the carrier of $\mathbb{R}^{\mathbf{1}}$ and for every real number b such that $P=\{s: s<b\}$ holds P is open.
(31) For every subset P of the carrier of $\mathbb{R}^{\mathbf{1}}$ and for every real number a such that $P=\{s: a<s\}$ holds P is open.
(32) For every subset P of the carrier of $\mathbb{R}^{\mathbf{1}}$ and for all real numbers a, b such that $P=\{s: a<s \wedge s<b\}$ holds P is open.
(33) For every point u of \mathcal{E}^{1} and for all real numbers r, u_{1} such that $\left\langle u_{1}\right\rangle=u$ and $r>0$ holds $\operatorname{Ball}(u, r)=\left\{\langle s\rangle: u_{1}-r<s \wedge s<u_{1}+r\right\}$.
(34) Let f be a map from $\mathcal{E}_{\mathrm{T}}^{1}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that for every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{1}$ holds $f(p)=\operatorname{Proj}(p, 1)$. Then f is a homeomorphism.
(35) For every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{2} \operatorname{holds} \operatorname{Proj}(p, 1)=p_{\mathbf{1}}$ and $\operatorname{Proj}(p, 2)=p_{\mathbf{2}}$.
(36) For every element p of the carrier of $\mathcal{E}_{\mathrm{T}}^{2} \operatorname{hold} \operatorname{Proj}(p, 1)=(\operatorname{proj} 1)(p)$ and $\operatorname{Proj}(p, 2)=(\operatorname{proj} 2)(p)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[13] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[14] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[15] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[16] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[17] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[18] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[19] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
[20] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[21] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[22] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[23] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[24] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[25] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[26] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[27] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[28] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[29] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[30] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[31] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[32] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[33] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[34] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[35] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[36] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[37] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received November 3, 1997

[^0]: ${ }^{1}$ The work was done, while the author stayed at Nagano in the fall of 1996.

