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Summary. In the n-dimensional Euclidean space En

T, a projection opera-
tor to each coordinate is defined. It is proven that such an operator is linear.
Moreover, it is continuous as a mapping from En

T to R
1, the carrier of which is a

set of all reals. If n is 1, the projection becomes a homeomorphism, which means
that E1

T is homeomorphic to R
1.

MML Identifier: JORDAN2B.

The notation and terminology used in this paper are introduced in the following

articles: [30], [35], [34], [20], [1], [37], [33], [27], [12], [29], [11], [26], [23], [36], [2],

[8], [9], [5], [32], [3], [18], [17], [25], [15], [10], [14], [31], [16], [19], [22], [7], [24],

[13], [21], [4], [6], and [28].

1. Projections

For simplicity, we use the following convention: a, b, s, s1, r, r1, r2 denote

real numbers, n, i denote natural numbers, X denotes a non empty topological

space, p, p1, p2, q denote points of E
n

T, P denotes a subset of the carrier of E
n

T,

and f denotes a map from En

T into R
1.

Let n, i be natural numbers and let p be an element of the carrier of En

T.

The functor Proj(p, i) yielding a real number is defined as follows:

(Def. 1) For every finite sequence g of elements of R such that g = p holds

Proj(p, i) = πig.

1The work was done, while the author stayed at Nagano in the fall of 1996.
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The following propositions are true:

(1) For every i there exists a map f from En

T into R
1 such that for every

element p of the carrier of En

T holds f(p) = Proj(p, i).

(2) For every i such that i ∈ Segn holds 〈0, . . . , 0
︸ ︷︷ ︸

n

〉(i) = 0.

(3) For every i such that i ∈ Segn holds Proj(0En

T
, i) = 0.

(4) For all r, p, i such that i ∈ Seg n holds Proj(r · p, i) = r · Proj(p, i).

(5) For all p, i such that i ∈ Seg n holds Proj(−p, i) = −Proj(p, i).

(6) For all p1, p2, i such that i ∈ Seg n holds Proj(p1 + p2, i) = Proj(p1, i) +

Proj(p2, i).

(7) For all p1, p2, i such that i ∈ Seg n holds Proj(p1− p2, i) = Proj(p1, i)−

Proj(p2, i).

(8) len〈0, . . . , 0
︸ ︷︷ ︸

n

〉 = n.

(9) For every i such that i ¬ n holds 〈0, . . . , 0
︸ ︷︷ ︸

n

〉↾i = 〈0, . . . , 0
︸ ︷︷ ︸

i

〉.

(10) For every i holds 〈0, . . . , 0
︸ ︷︷ ︸

n

〉⇂i = 〈0, . . . , 0
︸ ︷︷ ︸

n−′i

〉.

(11) For every i holds
∑
〈0, . . . , 0
︸ ︷︷ ︸

i

〉 = 0.

(12) For every finite sequence w and for all r, i holds len(w +· (i, r)) = lenw.

(13) For every finite sequence w of elements of R and for all r, i such that

i ∈ Seg lenw holds w +· (i, r) = (w↾i−′ 1) a 〈r〉 a (w⇂i).

(14) For all i, r such that i ∈ Seg n holds
∑

(〈0, . . . , 0
︸ ︷︷ ︸

n

〉+· (i, r)) = r.

(15) For every element q of Rn and for all p, i such that i ∈ Seg n and q = p

holds Proj(p, i) ¬ |q| and (Proj(p, i))2 ¬ |q|2.

2. Continuity of Projections

Next we state several propositions:

(16) For all s1, P , i such that P = {p : s1 > Proj(p, i)} and i ∈ Segn holds

P is open.

(17) For all s1, P , i such that P = {p : s1 < Proj(p, i)} and i ∈ Segn holds

P is open.

(18) Let P be a subset of the carrier of En

T, a, b be real numbers, and gi-

ven i. Suppose P = {p; p ranges over elements of the carrier of En

T:

a < Proj(p, i) ∧ Proj(p, i) < b} and i ∈ Seg n. Then P is open.
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(19) Let a, b be real numbers, f be a map from En

T into R
1, and given i. Sup-

pose that for every element p of the carrier of En

T holds f(p) = Proj(p, i).

Then f−1({s : a < s ∧ s < b}) = {p; p ranges over elements of the carrier

of En

T: a < Proj(p, i) ∧ Proj(p, i) < b}.

(20) LetM be a metric space and f be a map fromX intoMtop. Suppose that

for every real number r and for every element u of the carrier ofM and for

every subset P of the carrier of Mtop such that r > 0 and P = Ball(u, r)

holds f−1(P ) is open. Then f is continuous.

(21) Let u be a point of the metric space of real numbers and r, u1 be real

numbers. If u1 = u and r > 0, then Ball(u, r) = {s : u1 − r < s ∧ s <

u1 + r}.

(22) Let f be a map from En

T into R
1 and given i. Suppose i ∈ Segn and

for every element p of the carrier of En

T holds f(p) = Proj(p, i). Then f is

continuous.

3. 1-dimensional and 2-dimensional Cases

The following three propositions are true:

(23) For every s holds |〈s〉| = 〈|s|〉.

(24) For every element p of the carrier of E1

T there exists r such that p = 〈r〉.

(25) For every element w of the carrier of E1 there exists r such that w = 〈r〉.

Let us consider r. The functor |[r]| yields a point of E1

T and is defined by:

(Def. 2) |[r]| = 〈r〉.

The following propositions are true:

(26) For all r, s holds s · |[r]| = |[s · r]|.

(27) For all r1, r2 holds |[r1 + r2]| = |[r1]|+ |[r2]|.

(28) |[0]| = 0E1
T

.

(29) For all r1, r2 such that |[r1]| = |[r2]| holds r1 = r2.

(30) For every subset P of the carrier of R1 and for every real number b such

that P = {s : s < b} holds P is open.

(31) For every subset P of the carrier of R1 and for every real number a such

that P = {s : a < s} holds P is open.

(32) For every subset P of the carrier of R1 and for all real numbers a, b such

that P = {s : a < s ∧ s < b} holds P is open.

(33) For every point u of E1 and for all real numbers r, u1 such that 〈u1〉 = u

and r > 0 holds Ball(u, r) = {〈s〉 : u1 − r < s ∧ s < u1 + r}.

(34) Let f be a map from E1

T into R
1. Suppose that for every element p of

the carrier of E1

T holds f(p) = Proj(p, 1). Then f is a homeomorphism.
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(35) For every element p of the carrier of E2

T holds Proj(p, 1) = p1 and

Proj(p, 2) = p2.

(36) For every element p of the carrier of E2

T holds Proj(p, 1) = (proj1)(p)

and Proj(p, 2) = (proj2)(p).
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