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Summary. This article is concerned with the Euler’s function [10] that
plays an important role in cryptograms. In the first section, we present some
selected theorems on integers. Next, we define the Euler’s function. Finally, three
theorems relating to the Euler’s function are proved. The third theorem concerns
two relatively prime integers which make up the Euler’s function parameter. In
the public key cryptography these two integer values are used as public and secret
keys.

MML Identifier: EULER 1.

The notation and terminology used here are introduced in the following papers:

[12], [6], [1], [13], [9], [2], [3], [7], [8], [14], [11], [15], [4], and [5].

1. Preliminary

We follow the rules: a, b, c, k, l, m, n are natural numbers and i, j, x, y are

integers.

The following propositions are true:

(1) k ∈ n iff k < n.

(2) n and n are relative prime iff n = 1.

(3) If k 6= 0 and k < n and n is prime, then k and n are relative prime.

(4) n is prime and k ∈ {k1; k1 ranges over natural numbers: n and k1 are

relative prime ∧ k1  1 ∧ k1 ¬ n} if and only if n is prime and k ∈ n and

k /∈ {0}.

(5) For every finite set A and for every set x such that x ∈ A holds A \ {x} =

A − {x} .
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(6) If gcd(a, b) = 1, then for every c holds gcd(a · c, b · c) = c.

(7) If a 6= 0 and b 6= 0 and c 6= 0 and gcd(a · c, b · c) = c, then a and b are

relative prime.

(8) If gcd(a, b) = 1, then gcd(a + b, b) = 1.

(9) For every c holds gcd(a + b · c, b) = gcd(a, b).

(10) Suppose m and n are relative prime. Then there exists k such that

(i) there exist integers i0, j0 such that k = i0 ·m + j0 · n and k > 0, and

(ii) for every l such that there exist integers i, j such that l = i ·m + j · n

and l > 0 holds k ¬ l.

(11) If m and n are relative prime, then for every k there exist i, j such that

i ·m + j · n = k.

(12) For all non empty finite sets A, B such that there exists a function from

A into B which is one-to-one and onto holds A = B.

(13) For all integers i, k, n such that n 6= 0 holds (i + k ·n)modn = imodn.

(14) If a 6= 0 and b 6= 0 and c 6= 0 and c | a · b and a and c are relative prime,

then c | b.

(15) Suppose a 6= 0 and b 6= 0 and c 6= 0 and a and c are relative prime and

b and c are relative prime. Then a · b and c are relative prime.

(16) If x 6= 0 and y 6= 0 and i > 0, then i · x gcd i · y = i · (x gcd y).

(17) For every x such that a 6= 0 and b 6= 0 holds a + x · b gcd b = a gcd b.

2. Definition of Euler’s Function

Let n be a natural number. The functor Eulern yields a natural number and

is defined as follows:

(Def. 1) Eulern = {k; k ranges over natural numbers: n and k are

{relative prime ∧ k  1 ∧ k ¬ n} .

We now state several propositions:

(18) Euler 1 = 1.

(19) Euler 2 = 1.

(20) If n > 1, then Eulern ¬ n− 1.

(21) If n is prime, then Eulern = n− 1.

(22) If m > 1 and n > 1 and m and n are relative prime, then Eulerm · n =

Eulerm · Eulern.
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