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The terminology and notation used in this paper are introduced in the following

articles: [30], [37], [10], [2], [25], [14], [29], [38], [8], [9], [35], [3], [1], [36], [27],

[39], [13], [26], [31], [17], [28], [18], [12], [4], [16], [41], [19], [20], [33], [6], [32], [5],

[11], [21], [7], [40], [23], [24], [22], and [34].

1. Preliminaries

The following propositions are true:

(1) Let X be a set and F be a finite family of subsets of X. Then there

exists a finite family G of subsets of X such that G ⊆ F and
⋃

G =
⋃

F

and for every subset g of X such that g ∈ G holds g 6⊆
⋃

(G \ {g}).

(2) Let S be a 1-sorted structure and X be a subset of the carrier of S. Then

−X = the carrier of S if and only if X is empty.

(3) Let R be an antisymmetric transitive non empty relational structure

with g.l.b.’s and x, y be elements of R. Then ↓(x ⊓ y) = ↓x ∩ ↓y.

(4) Let R be an antisymmetric transitive non empty relational structure

with l.u.b.’s and x, y be elements of R. Then ↑(x ⊔ y) = ↑x ∩ ↑y.
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(5) Let L be a complete antisymmetric non empty relational structure and

X be a lower subset of L. If supX ∈ X, then X = ↓supX.

(6) Let L be a complete antisymmetric non empty relational structure and

X be an upper subset of L. If infX ∈ X, then X = ↑infX.

(7) Let R be a non empty reflexive transitive relational structure and x, y

be elements of R. Then x≪ y if and only if ↑y ⊆ ↑↑x.

(8) Let R be a non empty reflexive transitive relational structure and x, y

be elements of R. Then x≪ y if and only if ↓x ⊆ ↓↓y.

(9) Let R be a complete reflexive antisymmetric non empty relational struc-

ture and x be an element of R. Then sup ↓↓x ¬ x and x ¬ inf ↑↑x.

(10) For every lower-bounded antisymmetric non empty relational structure

L holds ↑(⊥L) = the carrier of L.

(11) For every upper-bounded antisymmetric non empty relational structure

L holds ↓(⊤L) = the carrier of L.

(12) For every poset P with l.u.b.’s and for all elements x, y of P holds

↑↑x ⊔ ↑↑y ⊆ ↑(x ⊔ y).

(13) For every poset P with g.l.b.’s and for all elements x, y of P holds

↓↓x ⊓ ↓↓y ⊆ ↓(x ⊓ y).

(14) Let R be a non empty poset with l.u.b.’s and l be an element of R. Then

l is co-prime if and only if for all elements x, y of R such that l ¬ x ⊔ y

holds l ¬ x or l ¬ y.

(15) For every complete non empty poset P and for every non empty subset

V of P holds ↓inf V =
⋂
{↓u, u ranges over elements of P : u ∈ V }.

(16) For every complete non empty poset P and for every non empty subset

V of P holds ↑supV =
⋂
{↑u, u ranges over elements of P : u ∈ V }.

Let L be a sup-semilattice and let x be an element of L.

Note that compactbelow(x) is directed.

We now state four propositions:

(17) Let T be a non empty topological space, S be an irreducible subset of

T , and V be an element of 〈the topology of T , ⊆〉. If V = −S, then V is

prime.

(18) Let T be a non empty topological space and x, y be elements of 〈the

topology of T , ⊆〉. Then x ⊔ y = x ∪ y and x ⊓ y = x ∩ y.

(19) Let T be a non empty topological space and V be an element of 〈the

topology of T , ⊆〉. Then V is prime if and only if for all elements X, Y of

〈the topology of T , ⊆〉 such that X ∩ Y ⊆ V holds X ⊆ V or Y ⊆ V.

(20) Let T be a non empty topological space and V be an element of 〈the

topology of T , ⊆〉. Then V is co-prime if and only if for all elements X, Y

of 〈the topology of T , ⊆〉 such that V ⊆ X ∪ Y holds V ⊆ X or V ⊆ Y.
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Let T be a non empty topological space. One can check that 〈the topology

of T , ⊆〉 is distributive.

The following propositions are true:

(21) Let T be a non empty topological space, L be a TopLattice, t be a point

of T , l be a point of L, and X be a family of subsets of the carrier of L.

Suppose the topological structure of T = the topological structure of L

and t = l and X is a basis of l. Then X is a basis of t.

(22) Let L be a TopLattice and x be an element of L. Suppose that for every

subset X of L such that X is open holds X is upper. Then ↑x is compact.

2. The Scott topology2

For simplicity, we use the following convention: L is a complete Scott To-

pLattice, x is an element of L, X, Y are subsets of L, V , W are elements of

〈σ(L),⊆〉, and V1 is a subset of 〈σ(L),⊆〉.

Let L be a complete lattice. One can check that σ(L) is non empty.

The following four propositions are true:

(23) σ(L) = the topology of L.

(24) X ∈ σ(L) iff X is open.

(25) For every filtered subset X of L such that V1 = {−↓x : x ∈ X} holds V1

is directed.

(26) If X is open and x ∈ X, then infX ≪ x.

Let R be a non empty reflexive relational structure and let f be a map

from [:R, R :] into R. We say that f is jointly Scott-continuous if and only if the

condition (Def. 1) is satisfied.

(Def. 1) Let T be a non empty topological space. Suppose the topological struc-

ture of T = ConvergenceSpace(the Scott convergence of R). Then there

exists a map f1 from [:T, T :] into T such that f1 = f and f1 is continuous.

One can prove the following propositions:

(27) If V = X, then V is co-prime iff X is filtered and upper.

(28) If V = X and there exists x such that X = −↓x, then V is prime and

V 6= the carrier of L.

(29) If V = X and ⊔L is jointly Scott-continuous and V is prime and V 6= the

carrier of L, then there exists x such that X = −↓x.

(30) If L is continuous, then ⊔L is jointly Scott-continuous.

(31) If ⊔L is jointly Scott-continuous, then L is sober.

2
σ(L) = sigmaL, as defined in [34, p. 316, Def. 12] and ⊔L = sup op(L), as defined in [21,

p. 163, Def. 5].
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(32) If L is continuous, then L is compact, locally-compact, sober, and Baire.

(33) If L is continuous and X ∈ σ(L), then X =
⋃
{↑↑x : x ∈ X}.

(34) If for every X such that X ∈ σ(L) holds X =
⋃
{↑↑x : x ∈ X}, then L is

continuous.

(35) If L is continuous, then there exists a basis B of x such that for every

X such that X ∈ B holds X is open and filtered.

(36) If L is continuous, then 〈σ(L),⊆〉 is continuous.

(37) Suppose for every x there exists a basis B of x such that for every Y

such that Y ∈ B holds Y is open and filtered and 〈σ(L),⊆〉 is continuous.

Then x =
⊔

L
{infX : x ∈ X ∧ X ∈ σ(L)}.

(38) If for every x holds x =
⊔

L
{infX : x ∈ X ∧ X ∈ σ(L)}, then L is

continuous.

(39) The following statements are equivalent

(i) for every x there exists a basis B of x such that for every Y such that

Y ∈ B holds Y is open and filtered,

(ii) for every V there exists V1 such that V = supV1 and for every W such

that W ∈ V1 holds W is co-prime.

(40) For every V there exists V1 such that V = supV1 and for every W such

that W ∈ V1 holds W is co-prime and 〈σ(L),⊆〉 is continuous if and only

if 〈σ(L),⊆〉 is completely-distributive.

(41) 〈σ(L),⊆〉 is completely-distributive iff 〈σ(L),⊆〉 is continuous and

(〈σ(L),⊆〉)op is continuous.

(42) If L is algebraic, then there exists a basis B of L such that B = {↑x :

x ∈ the carrier of CompactSublatt(L)}.

(43) Given a basis B of L such that B = {↑x : x ∈ the carrier of

CompactSublatt(L)}. Then 〈σ(L),⊆〉 is algebraic and for every V there

exists V1 such that V = supV1 and for every W such that W ∈ V1 holds

W is co-prime.

(44) Suppose 〈σ(L),⊆〉 is algebraic and for every V there exists V1 such that

V = supV1 and for every W such that W ∈ V1 holds W is co-prime.

Then there exists a basis B of L such that B = {↑x : x ∈ the carrier of

CompactSublatt(L)}.

(45) If there exists a basis B of L such that B = {↑x : x ∈ the carrier of

CompactSublatt(L)}, then L is algebraic.
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