Lattice of Substitutions

Adam Grabowski
Warsaw University
Białystok

MML Identifier: SUBSTLAT.

The articles [8], [6], [5], [7], [1], [9], [2], [4], [11], [3], and [10] provide the terminology and notation for this paper.

1. Preliminaries

In this paper V, C are sets.
Let us consider V, C. The functor $\operatorname{SubstitutionSet}(V, C)$ yielding a subset of $\operatorname{Fin}(V \dot{\rightarrow} C)$ is defined as follows:
(Def. 1) $\operatorname{SubstitutionSet}(V, C)=\{A, A$ ranges over elements of $\operatorname{Fin}(V \dot{\rightarrow} C)$: $\left.\bigwedge_{s, t: \text { element of } V \rightarrow C}(s \in A \wedge t \in A \wedge s \subseteq t \Rightarrow s=t)\right\}$.
Next we state two propositions:
(1) $\emptyset \in \operatorname{SubstitutionSet}(V, C)$.
(2) $\{\emptyset\} \in \operatorname{SubstitutionSet}(V, C)$.

Let us consider V, C. One can check that $\operatorname{SubstitutionSet}(V, C)$ is non empty.
Let us consider V, C and let A, B be elements of $\operatorname{SubstitutionSet}(V, C)$. Then $A \cup B$ is an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$.

Let us consider V, C. Note that there exists an element of $\operatorname{SubstitutionSet}(V, C)$ which is non empty.

Let us consider V, C. Note that every element of $\operatorname{SubstitutionSet}(V, C)$ is finite.

Let us consider V, C and let A be an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$. The functor$A_{A}$ yields an element of $\operatorname{SubstitutionSet}(V, C)$ and is defined by:
(Def. 2) $\square^{\mathrm{c}}{ }_{A}=\left\{t, t\right.$ ranges over elements of $V \dot{\rightarrow} C: \bigwedge_{s: \text { element of } V \dot{\rightarrow}_{C}}(s \in A \wedge$ $s \subseteq t \Leftrightarrow s=t)\}$.

Let us consider V, C and let A be a non empty element of $\operatorname{SubstitutionSet}(V, C)$. Note that every element of A is function-like and relation-like.

Let us consider V, C. One can verify that every element of $V \dot{\rightarrow} C$ is functionlike and relation-like.

Let us consider V, C and let A, B be elements of $\operatorname{Fin}(V \dot{\rightarrow} C)$. The functor $A^{\wedge} B$ yields an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$ and is defined as follows:
(Def. 3) $A^{\frown} B=\{s \cup t, s$ ranges over elements of $V \dot{\rightarrow} C, t$ ranges over elements of $V \dot{\rightarrow} C: s \in A \wedge t \in B \wedge s \approx t\}$.
In the sequel A, B, D are elements of $\operatorname{Fin}(V \dot{\rightarrow} C)$.
One can prove the following propositions:
(3) $A^{\wedge} B=B^{\frown} A$.
(4) If $B=\{\emptyset\}$, then $A^{\wedge} B=A$.
(5) For all sets a, b such that $B \in \operatorname{SubstitutionSet}(V, C)$ and $a \in B$ and $b \in B$ and $a \subseteq b$ holds $a=b$.
(6) For every set a such that $a \in \square^{\mathrm{c}}{ }_{B}$ holds $a \in B$ and for every set b such that $b \in B$ and $b \subseteq a$ holds $b=a$.
(7) For every set a such that $a \in B$ and for every set b such that $b \in B$ and $b \subseteq a$ holds $b=a$ holds $a \in \square^{\mathrm{C}}{ }_{B}$.
(8) $\square^{\mathrm{c}}{ }_{A} \subseteq A$.
(9) If $A=\emptyset$, then $\square^{\mathrm{c}}{ }_{A}=\emptyset$.
(10) For every set b such that $b \in B$ there exists a set c such that $c \subseteq b$ and $c \in \square^{\mathrm{C}}{ }_{B}$.
(11) For every element K of $\operatorname{SubstitutionSet}(V, C)$ holds $\square^{\mathrm{c}}{ }_{K}=K$.
(12) $\square^{\mathrm{c}}{ }_{A \cup B} \subseteq \square^{\mathrm{c}} A \cup B$.
(13) $\square^{\mathrm{c}} \square^{\mathrm{c}}{ }_{A} \cup B=\square^{\mathrm{c}}{ }_{A \cup B}$.
(14) If $A \subseteq B$, then $A^{\frown} \subseteq B^{\frown} D$.
(15) For every set a such that $a \in A \frown B$ there exist sets b, c such that $b \in A$ and $c \in B$ and $a=b \cup c$.
(16) For all elements b, c of $V \dot{\rightarrow} C$ such that $b \in A$ and $c \in B$ and $b \approx c$ holds $b \cup c \in A \frown B$.
(17) $\square^{\mathrm{c}}{ }_{A \sim B} \subseteq\left(\square^{\mathrm{c}}{ }_{A}\right)^{\wedge} B$.
(18) If $A \subseteq B$, then $D^{\wedge} A \subseteq D^{\wedge} B$.
(19) $\square^{\mathrm{c}}{ }_{\left(\square^{\mathrm{c}}{ }_{A}\right) \wedge B}=\square^{\mathrm{c}}{ }_{A \wedge B}$.
(20) $\square^{\mathrm{c}}{ }_{A \wedge\left(\square^{\mathrm{c}}{ }_{B}\right)}=\square^{\mathrm{c}}{ }_{A \sim B}{ }^{\circ}$.
(21) For all elements K, L, M of $\operatorname{Fin}(V \rightarrow C)$ holds $K^{\frown}\left(L^{\frown} M\right)=\left(K^{\frown} L\right)^{\wedge} M$.
(22) For all elements K, L, M of $\operatorname{Fin}(V \rightarrow C)$ holds $K^{\frown}(L \cup M)=K^{\frown} L \cup$ $K^{\frown} M$.
(23) $B \subseteq B^{\frown} B$.
(24)

$$
\square_{A \vee A}^{\mathrm{c}}=\square_{A}^{\mathrm{c}}{ }_{A}
$$

(25) For every element K of $\operatorname{SubstitutionSet(V,C)~holds~} \square^{\mathrm{c}}{ }_{K}{ }_{K}=K$.

2. Definition of the lattice

Let us consider V, C. The functor $\operatorname{SubstLatt}(V, C)$ yielding a strict lattice structure is defined by the conditions (Def. 4).
(Def. 4)(i) The carrier of $\operatorname{SubstLatt}(V, C)=\operatorname{SubstitutionSet}(V, C)$, and
(ii) for all elements A, B of $\operatorname{SubstitutionSet}(V, C)$ holds (the join operation of $\operatorname{SubstLatt}(V, C))(A, B)=\square^{\mathrm{c}}{ }_{A \cup B}$ and (the meet operation of $\operatorname{SubstLatt}(V, C))(A, B)=\square^{\mathrm{c}}{ }_{A}{ }^{\prime} B$.
Let us consider V, C. One can verify that $\operatorname{SubstLatt}(V, C)$ is non empty.
Let us consider V, C. Note that $\operatorname{SubstLatt}(V, C)$ is lattice-like.
Let us consider V, C. Observe that $\operatorname{SubstLatt}(V, C)$ is distributive and bounded.

One can prove the following two propositions:
(26) $\perp_{\text {SubstLatt }(V, C)}=\emptyset$.
$\top_{\text {SubstLatt }(V, C)}=\{\emptyset\}$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[10] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[11] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215$222,1990$.

Received May 21, 1997

