Bounding Boxes for Compact Sets in \mathcal{E}^2

Czesław Byliński¹ Warsaw University Białystok Piotr Rudnicki² University of Alberta Edmonton

Summary. We define pseudocompact topological spaces and prove that every compact space is pseudocompact. We also solve an exercise from [16] p.225 that the for a topological space X the following are equivalent:

- Every continuous real map from X is bounded (i.e. X is pseudocompact).
- Every continuous real map from X attains minimum.
- Every continuous real map from X attains maximum.

Finally, for a compact set in E^2 we define its bounding rectangle and introduce a collection of notions associated with the box.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{PSCOMP_1}.$

The papers [25], [30], [19], [7], [29], [24], [18], [17], [27], [21], [23], [10], [1], [26], [31], [3], [4], [14], [12], [13], [11], [22], [15], [20], [6], [5], [2], [8], [9], and [28] provide the notation and terminology for this paper.

1. Preliminaries

Let X be a set. Let us observe that X has non empty elements if and only if:

(Def. 1) $0 \notin X$.

We introduce X is without zero as a synonym of X has non empty elements. We introduce X has zero as an antonym of X has non empty elements.

Let us observe that \mathbb{R} has zero and \mathbb{N} has zero.

C 1997 Warsaw University - Białystok ISSN 1426-2630

 $^{^1{\}rm This}$ work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368. $^2{\rm This}$ work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

Let us observe that there exists a set which is non empty and without zero and there exists a set which is non empty and has zero.

Let us observe that there exists a subset of \mathbb{R} which is non empty and without zero and there exists a subset of \mathbb{R} which is non empty and has zero.

Next we state the proposition

(1) For every set F such that F is non empty and \subseteq -linear and has non empty elements holds F is centered.

Let F be a set. Note that every family of subsets of F which is non empty and \subseteq -linear and has non empty elements is also centered.

Let A, B be sets and let f be a function from A into B. Then rng f is a subset of B.

Let X, Y be non empty sets and let f be a function from X into Y. Note that $f^{\circ}X$ is non empty.

Let X, Y be sets and let f be a function from X into Y. The functor ${}^{-1}f$ yields a function from 2^{Y} into 2^{X} and is defined by:

(Def. 2) For every subset y of Y holds $(^{-1}f)(y) = f^{-1}(y)$.

We now state the proposition

(2) Let X, Y, x be sets, S be a subset of 2^Y , and f be a function from X into Y. If $x \in \bigcap(({}^{-1}f)^{\circ}S)$, then $f(x) \in \bigcap S$.

We follow the rules: p, q, r, r_1, r_2, s, t are real numbers, s_1 is a sequence of real numbers, and X, Y are subsets of \mathbb{R} .

One can prove the following propositions:

- (3) If |r| + |s| = 0, then r = 0 and s = 0.
- (4) If r < s and s < t, then |s| < |r| + |t|.
- (5) If -s < r and r < s, then |r| < s.
- (6) If s_1 is convergent and non-zero and $\lim s_1 = 0$, then s_1^{-1} is non bounded.
- (7) $\operatorname{rng} s_1$ is bounded iff s_1 is bounded.

Next we state four propositions:

- (8) Let X be a non empty subset of \mathbb{R} and given r. Suppose X is lower bounded. Then $r = \inf X$ if and only if the following conditions are satisfied:
- (i) for every p such that $p \in X$ holds $p \ge r$, and
- (ii) for every q such that for every p such that $p \in X$ holds $p \ge q$ holds $r \ge q$.
- (9) Let X be a non empty subset of \mathbb{R} and given r. Suppose X is upper bounded. Then $r = \sup X$ if and only if the following conditions are satisfied:
- (i) for every p such that $p \in X$ holds $p \leq r$, and
- (ii) for every q such that for every p such that $p \in X$ holds $p \leq q$ holds $r \leq q$.

- (10) For every non empty subset X of \mathbb{R} and for every subset Y of \mathbb{R} such that $X \subseteq Y$ and Y is lower bounded holds inf $Y \leq \inf X$.
- (11) For every non empty subset X of \mathbb{R} and for every subset Y of \mathbb{R} such that $X \subseteq Y$ and Y is upper bounded holds $\sup X \leq \sup Y$.

Let X be a subset of \mathbb{R} . We say that X has maximum if and only if:

(Def. 3) X is upper bounded and $\sup X \in X$.

We say that X has minimum if and only if:

(Def. 4) X is lower bounded and $\inf X \in X$.

One can verify that there exists a subset of \mathbb{R} which is non empty, closed, and bounded.

Let R be a family of subsets of \mathbb{R} . We say that R is open if and only if:

(Def. 5) For every subset X of \mathbb{R} such that $X \in R$ holds X is open.

We say that R is closed if and only if:

(Def. 6) For every subset X of \mathbb{R} such that $X \in R$ holds X is closed.

Let X be a subset of \mathbb{R} . The functor -X yielding a subset of \mathbb{R} is defined by:

(Def. 7)
$$-X = \{-r : r \in X\}.$$

Next we state the proposition

(12) $r \in X$ iff $-r \in -X$.

Let X be a non empty subset of \mathbb{R} . One can check that -X is non empty. One can prove the following propositions:

- $(13) \quad --X = X.$
- (14) X is upper bounded iff -X is lower bounded.
- (15) X is lower bounded iff -X is upper bounded.
- (16) For every non empty subset X of \mathbb{R} such that X is lower bounded holds $\inf X = -\sup(-X)$.
- (17) For every non empty subset X of \mathbb{R} such that X is upper bounded holds $\sup X = -\inf(-X)$.
- (18) X is closed iff -X is closed.

Let X be a subset of \mathbb{R} and let p be a real number. The functor p + X yields a subset of \mathbb{R} and is defined by:

(Def. 8) $p + X = \{p + r : r \in X\}.$

One can prove the following proposition

(19) $r \in X$ iff $s + r \in s + X$.

Let X be a non empty subset of \mathbb{R} and let s be a real number. Observe that s + X is non empty.

One can prove the following propositions:

(20) X = 0 + X.

- (21) s + (t + X) = (s + t) + X.
- (22) X is upper bounded iff s + X is upper bounded.
- (23) X is lower bounded iff s + X is lower bounded.
- (24) For every non empty subset X of \mathbb{R} such that X is lower bounded holds $\inf(s+X) = s + \inf X$.
- (25) For every non empty subset X of \mathbb{R} such that X is upper bounded holds $\sup(s+X) = s + \sup X$.
- (26) X is closed iff s + X is closed.

Let X be a subset of \mathbb{R} . The functor Inv X yielding a subset of \mathbb{R} is defined by:

(Def. 9) Inv $X = \{\frac{1}{r} : r \in X\}.$

The following proposition is true

(27) For every without zero subset X of \mathbb{R} such that $r \neq 0$ holds $r \in X$ iff $\frac{1}{r} \in \text{Inv } X$.

Let X be a non empty without zero subset of \mathbb{R} . One can verify that Inv X is non empty and without zero.

Let X be a without zero subset of \mathbb{R} . One can verify that Inv X is without zero.

The following propositions are true:

- (28) For every without zero subset X of \mathbb{R} holds Inv Inv X = X.
- (29) For every without zero subset X of \mathbb{R} such that X is closed and bounded holds Inv X is closed.
- (30) For every family Z of subsets of \mathbb{R} such that Z is closed holds $\bigcap Z$ is closed.

Let X be a subset of \mathbb{R} . The functor \overline{X} yielding a subset of \mathbb{R} is defined by:

(Def. 10) $\overline{X} = \bigcap \{A, A \text{ ranges over elements of } 2^{\mathbb{R}} \colon X \subseteq A \land A \text{ is closed} \}.$

Let X be a subset of \mathbb{R} . Observe that \overline{X} is closed. Next we state several propositions:

- (31) For every closed subset Y of \mathbb{R} such that $X \subseteq Y$ holds $\overline{X} \subseteq Y$.
- $(32) \quad X \subseteq \overline{X}.$
- (33) X is closed iff $X = \overline{X}$.
- $(34) \quad \overline{\emptyset_{\mathbb{R}}} = \emptyset.$
- (35) $\overline{\Omega_{\mathbb{R}}} = \mathbb{R}.$
- (36) $\overline{X} = \overline{\overline{X}}$.
- (37) If $X \subseteq Y$, then $\overline{X} \subseteq \overline{Y}$.
- (38) $r \in \overline{X}$ iff for every open subset O of \mathbb{R} such that $r \in O$ holds $O \cap X$ is non empty.

(39) If $r \in \overline{X}$, then there exists s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent and $\lim s_1 = r$.

2. Functions into Reals

Let A be a set, let f be a function from A into \mathbb{R} , and let a be a set. Then f(a) is a real number.

Let X be a set and let f be a function from X into \mathbb{R} . We say that f is lower bounded if and only if:

(Def. 11) $f^{\circ}X$ is lower bounded.

We say that f is upper bounded if and only if:

(Def. 12) $f^{\circ}X$ is upper bounded.

Let X be a set and let f be a function from X into \mathbb{R} . We say that f is bounded if and only if:

(Def. 13) f is lower bounded and upper bounded.

We say that f has maximum if and only if:

(Def. 14) $f^{\circ}X$ has maximum.

We say that f has minimum if and only if:

(Def. 15) $f^{\circ}X$ has minimum.

Let X be a set. One can check that every function from X into \mathbb{R} which is bounded is also lower bounded and upper bounded and every function from X into \mathbb{R} which is lower bounded and upper bounded is also bounded.

Let X be a set and let f be a function from X into \mathbb{R} . The functor -f yields a function from X into \mathbb{R} and is defined as follows:

(Def. 16) For every set p such that $p \in X$ holds (-f)(p) = -f(p).

The following propositions are true:

- (40) For all sets X, A and for every function f from X into \mathbb{R} holds $(-f)^{\circ}A = -f^{\circ}A$.
- (41) For every set X and for every function f from X into \mathbb{R} holds --f = f.
- (42) For every non empty set X and for every function f from X into \mathbb{R} holds f has minimum iff -f has maximum.
- (43) For every non empty set X and for every function f from X into \mathbb{R} holds f has maximum iff -f has minimum.
- (44) For every set X and for every subset A of \mathbb{R} and for every function f from X into \mathbb{R} holds $(-f)^{-1}(A) = f^{-1}(-A)$.

Let X be a set, let r be a real number, and let f be a function from X into \mathbb{R} . The functor r + f yielding a function from X into \mathbb{R} is defined as follows:

(Def. 17) For every set p such that $p \in X$ holds (r+f)(p) = r + f(p).

One can prove the following two propositions:

- (45) For all sets X, A and for every function f from X into \mathbb{R} and for every real number s holds $(s + f)^{\circ}A = s + f^{\circ}A$.
- (46) For every set X and for every subset A of \mathbb{R} and for every function f from X into \mathbb{R} and for every s holds $(s+f)^{-1}(A) = f^{-1}(-s+A)$.

Let X be a set and let f be a function from X into \mathbb{R} . The functor Inv f yields a function from X into \mathbb{R} and is defined by:

(Def. 18) For every set
$$p$$
 such that $p \in X$ holds $(\text{Inv } f)(p) = \frac{1}{f(p)}$.

We now state the proposition

(47) Let X be a set, A be a without zero subset of \mathbb{R} , and f be a function from X into \mathbb{R} . If $0 \notin \operatorname{rng} f$, then $(\operatorname{Inv} f)^{-1}(A) = f^{-1}(\operatorname{Inv} A)$.

3. Real maps

Let T be a 1-sorted structure.

(Def. 19) A function from the carrier of T into \mathbb{R} is called a real map of T.

Let T be a non empty 1-sorted structure. Note that there exists a real map of T which is bounded.

In this article we present several logical schemes. The scheme NonUniqExRF deals with a non empty topological structure \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists a real map f of \mathcal{A} such that for every element x of the carrier of \mathcal{A} holds $\mathcal{P}[x, f(x)]$

provided the parameters meet the following requirement:

• For every set x such that $x \in$ the carrier of \mathcal{A} there exists r such that $\mathcal{P}[x, r]$.

The scheme LambdaRF deals with a non empty topological structure \mathcal{A} and a unary functor \mathcal{F} yielding a real number, and states that:

There exists a real map f of \mathcal{A} such that for every element x of the carrier of \mathcal{A} holds $f(x) = \mathcal{F}(x)$

for all values of the parameters.

Let T be a 1-sorted structure, let f be a real map of T, and let P be a set. Then $f^{-1}(P)$ is a subset of T.

Let T be a 1-sorted structure and let f be a real map of T. The functor $\inf f$ yielding a real number is defined by:

(Def. 20) inf $f = \inf(f^{\circ}(\text{the carrier of } T))$.

The functor $\sup f$ yields a real number and is defined by:

(Def. 21) $\sup f = \sup(f^{\circ}(\text{the carrier of } T)).$

Next we state three propositions:

- (48) Let T be a non empty topological space and f be a lower bounded real map of T. Then $r = \inf f$ if and only if the following conditions are satisfied:
 - (i) for every point p of T holds $f(p) \ge r$, and
- (ii) for every real number q such that for every point p of T holds $f(p) \ge q$ holds $r \ge q$.
- (49) Let T be a non empty topological space and f be an upper bounded real map of T. Then $r = \sup f$ if and only if the following conditions are satisfied:
 - (i) for every point p of T holds $f(p) \leq r$, and
 - (ii) for every real number q such that for every point p of T holds $f(p) \leq q$ holds $r \leq q$.
- (50) For every non empty 1-sorted structure T and for every bounded real map f of T holds inf $f \leq \sup f$.

Let T be a 1-sorted structure and let f be a real map of T. The functor -f yielding a real map of T is defined by:

(Def. 22) -f = -f.

Let T be a 1-sorted structure, let r be a real number, and let f be a real map of T. The functor r + f yields a real map of T and is defined by:

(Def. 23) r + f = r + f.

Let T be a 1-sorted structure and let f be a real map of T. The functor Inv f yields a real map of T and is defined by:

(Def. 24) Inv f = Inv f.

Let T be a topological structure and let f be a real map of T. We say that f is continuous if and only if:

(Def. 25) For every subset Y of \mathbb{R} such that Y is closed holds $f^{-1}(Y)$ is closed.

Let T be a non empty topological space. Note that there exists a real map of T which is continuous.

Let T be a non empty topological space and let S be a non empty subspace of T. One can check that there exists a real map of S which is continuous.

In the sequel T is a topological space and f is a real map of T. Next we state several propositions:

- (51) f is continuous iff for every subset Y of \mathbb{R} such that Y is open holds $f^{-1}(Y)$ is open.
- (52) If f is continuous, then -f is continuous.
- (53) If f is continuous, then r + f is continuous.
- (54) If f is continuous and $0 \notin \operatorname{rng} f$, then Inv f is continuous.

- (55) For every family R of subsets of \mathbb{R} such that f is continuous and R is open holds $(^{-1}f)^{\circ}R$ is open.
- (56) For every family R of subsets of \mathbb{R} such that f is continuous and R is closed holds $({}^{-1}f)^{\circ}R$ is closed.

Let T be a non empty topological space, let X be a subset of T, and let f be a real map of T. The functor $f \upharpoonright X$ yielding a real map of $T \upharpoonright X$ is defined as follows:

(Def. 26) $f \upharpoonright X = f \upharpoonright X$.

Let T be a non empty topological space. One can check that there exists a subset of T which is compact and non empty.

Let T be a non empty topological space, let f be a continuous real map of T, and let X be a compact non empty subset of T. Note that $f \upharpoonright X$ is continuous.

Let T be a non empty topological space and let P be a compact non empty subset of T. Note that $T \upharpoonright P$ is compact.

4. Pseudocompact spaces

We now state two propositions:

- (57) Let T be a non empty topological space. Then for every real map f of T such that f is continuous holds f has maximum if and only if for every real map f of T such that f is continuous holds f has minimum.
- (58) Let T be a non empty topological space. Then for every real map f of T such that f is continuous holds f is bounded if and only if for every real map f of T such that f is continuous holds f has maximum.

Let T be a topological space. We say that T is pseudocompact if and only if:

(Def. 27) For every real map f of T such that f is continuous holds f is bounded.

Let us mention that every non empty topological space which is compact is also pseudocompact.

Let us mention that there exists a topological space which is compact and non empty.

Let T be a pseudocompact non empty topological space. One can check that every real map of T which is continuous is also bounded and has maximum and minimum.

We now state two propositions:

(59) Let T be a non empty topological space, X, Y be non empty compact subsets of T, and f be a continuous real map of T. If $X \subseteq Y$, then $\inf(f \upharpoonright Y) \leq \inf(f \upharpoonright X)$.

(60) Let T be a non empty topological space, X, Y be non empty compact subsets of T, and f be a continuous real map of T. If $X \subseteq Y$, then $\sup(f \upharpoonright X) \leq \sup(f \upharpoonright Y)$.

5. Bounding boxes for compact sets in \mathcal{E}^2

Let n be a natural number and let p_1, p_2 be points of \mathcal{E}^n_T . Note that $\mathcal{L}(p_1, p_2)$ is compact.

One can prove the following proposition

(61) For every natural number n and for all compact subsets X, Y of $\mathcal{E}^n_{\mathrm{T}}$ holds $X \cap Y$ is compact.

In the sequel p is a point of $\mathcal{E}_{\mathrm{T}}^2$, P is a subset of $\mathcal{E}_{\mathrm{T}}^2$, and X is a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$.

The real map proj1 of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:

(Def. 28) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $(\mathrm{proj1})(p) = p_1$.

The real map proj2 of $\mathcal{E}_{\mathrm{T}}^2$ is defined by:

- (Def. 29) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $(\mathrm{proj2})(p) = p_2$. One can prove the following propositions:
 - (62) $(\operatorname{proj1})^{-1}(|r,s|) = \{[r_1, r_2] : r < r_1 \land r_1 < s\}.$
 - (63) For all r, s such that $P = \{ [r_1, r_2] : r < r_1 \land r_1 < s \}$ holds P is open.
 - (64) $(\operatorname{proj} 2)^{-1}(]r, s[) = \{ [r_1, r_2] : r < r_2 \land r_2 < s \}.$
 - (65) For all r, s such that $P = \{[r_1, r_2] : r < r_2 \land r_2 < s\}$ holds P is open. One can verify that proj1 is continuous and proj2 is continuous. One can prove the following two propositions:
 - (66) For every non empty subset X of $\mathcal{E}_{\mathrm{T}}^2$ and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in X$ holds $(\operatorname{proj1} \upharpoonright X)(p) = p_1$.
 - (67) For every non empty subset X of $\mathcal{E}_{\mathrm{T}}^2$ and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in X$ holds $(\operatorname{proj2} \upharpoonright X)(p) = p_2$.

Let X be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$. The functor W-bound X yielding a real number is defined by:

(Def. 30) W-bound $X = \inf(\operatorname{proj1} \upharpoonright X)$.

The functor N-bound X yielding a real number is defined as follows:

(Def. 31) N-bound $X = \sup(\operatorname{proj2} \upharpoonright X)$.

The functor E-bound X yielding a real number is defined by:

(Def. 32) E-bound $X = \sup(\operatorname{proj1} \upharpoonright X)$.

The functor S-bound X yielding a real number is defined by:

(Def. 33) S-bound $X = \inf(\operatorname{proj2} \upharpoonright X)$.

We now state the proposition

(68) If $p \in X$, then W-bound $X \leq p_1$ and $p_1 \leq \text{E-bound } X$ and S-bound $X \leq p_2$ and $p_2 \leq \text{N-bound } X$.

Let X be a non empty subset of \mathcal{E}_{T}^{2} . The functor SW-corner X yields a point of \mathcal{E}_{T}^{2} and is defined as follows:

(Def. 34) SW-corner X = [W-bound X, S-bound X].

The functor NW-corner X yielding a point of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:

(Def. 35) NW-corner X = [W-bound X, N-bound X].

The functor NE-corner X yields a point of \mathcal{E}_{T}^{2} and is defined as follows:

(Def. 36) NE-corner X = [E-bound X, N-bound X].

The functor SE-corner X yields a point of $\mathcal{E}^2_{\mathrm{T}}$ and is defined as follows:

(Def. 37) SE-corner X = [E-bound X, S-bound X].

Let X be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$. The functor W-most X yielding a subset of $\mathcal{E}^2_{\mathrm{T}}$ is defined as follows:

(Def. 38) W-most $X = \mathcal{L}(\text{SW-corner } X, \text{NW-corner } X) \cap X$.

The functor N-most X yielding a subset of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:

(Def. 39) N-most $X = \mathcal{L}($ NW-corner X, NE-corner $X) \cap X$.

The functor E-most X yields a subset of $\mathcal{E}^2_{\mathrm{T}}$ and is defined by:

(Def. 40) E-most $X = \mathcal{L}(\text{SE-corner } X, \text{NE-corner } X) \cap X$.

The functor S-most X yielding a subset of \mathcal{E}_{T}^{2} is defined by:

(Def. 41) S-most $X = \mathcal{L}(SW$ -corner X, SE-corner $X) \cap X$.

Let X be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$. One can check the following observations:

- * W-most X is non empty and compact,
- * N-most X is non empty and compact,
- * E-most X is non empty and compact, and
- * S-most X is non empty and compact.

Let X be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$. The functor W-min X yielding a point of $\mathcal{E}_{\mathrm{T}}^2$ is defined by:

(Def. 42) W-min X = [W-bound X, inf(proj2 $\upharpoonright W$ -most X)].

The functor W-max X yielding a point of \mathcal{E}_{T}^{2} is defined by:

(Def. 43) W-max X = [W-bound X, sup $(\text{proj}2 \upharpoonright W$ -most X)].

The functor N-min X yielding a point of $\mathcal{E}_{\mathrm{T}}^2$ is defined by:

(Def. 44) N-min $X = [\inf(\operatorname{proj1} \upharpoonright \operatorname{N-most} X), \operatorname{N-bound} X].$

The functor N-max X yielding a point of $\mathcal{E}_{\mathrm{T}}^2$ is defined by:

(Def. 45) N-max $X = [\sup(\operatorname{proj1} \upharpoonright \operatorname{N-most} X), \operatorname{N-bound} X].$

The functor E-max X yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined by:

- (Def. 46) E-max $X = [\text{E-bound } X, \sup(\text{proj2} \upharpoonright \text{E-most } X)].$ The functor E-min X yields a point of \mathcal{E}_{T}^{2} and is defined by:
- (Def. 47) E-min $X = [\text{E-bound } X, \inf(\text{proj}2 \upharpoonright \text{E-most } X)].$

The functor S-max X yields a point of \mathcal{E}_{T}^{2} and is defined by:

(Def. 48) S-max $X = [sup(proj1 \upharpoonright S-most X), S-bound X].$

The functor S-min X yielding a point of \mathcal{E}_{T}^{2} is defined by:

- (Def. 49) S-min $X = [\inf(\operatorname{proj1} \upharpoonright \operatorname{S-most} X), \operatorname{S-bound} X].$ Next we state a number of propositions:
 - (69) $(\text{SW-corner } X)_1 = \text{W-bound } X$ and $(\text{W-min } X)_1 = \text{W-bound } X$ and $(\text{W-max } X)_1 = \text{W-bound } X$ and $(\text{NW-corner } X)_1 = \text{W-bound } X$.
 - (70) $(\text{SW-corner } X)_1 = (\text{NW-corner } X)_1 \text{ and } (\text{SW-corner } X)_1 = (\text{W-min } X)_1$ and $(\text{SW-corner } X)_1 = (\text{W-max } X)_1$ and $(\text{W-min } X)_1 = (\text{W-max } X)_1$ and $(\text{W-min } X)_1 = (\text{NW-corner } X)_1$ and $(\text{W-max } X)_1 = (\text{NW-corner } X)_1$.
 - (71) $(\text{SW-corner } X)_2 = \text{S-bound } X$ and $(\text{W-min } X)_2 = \inf(\text{proj} 2 \upharpoonright \text{W-most } X)$ and $(\text{W-max } X)_2 = \sup(\text{proj} 2 \upharpoonright \text{W-most } X)$ and $(\text{NW-corner } X)_2 = \text{N-bound } X.$
 - (72) $(\text{SW-corner } X)_2 \leq (\text{W-min } X)_2$ and $(\text{SW-corner } X)_2 \leq (\text{W-max } X)_2$ and $(\text{SW-corner } X)_2 \leq (\text{NW-corner } X)_2$ and $(\text{W-min } X)_2 \leq (\text{W-max } X)_2$ and $(\text{W-min } X)_2 \leq (\text{NW-corner } X)_2$ and $(\text{W-max } X)_2 \leq (\text{NW-corner } X)_2$.
 - (73) If $p \in W$ -most X, then $p_1 = (W$ -min $X)_1$ and (W-min $X)_2 \leq p_2$ and $p_2 \leq (W$ -max $X)_2$.
 - (74) W-most $X \subseteq \mathcal{L}(W-\min X, W-\max X)$.
 - (75) $\mathcal{L}(W-\min X, W-\max X) \subseteq \mathcal{L}(SW-\operatorname{corner} X, NW-\operatorname{corner} X).$
 - (76) W-min $X \in$ W-most X and W-max $X \in$ W-most X.
 - (77) $\mathcal{L}(\text{SW-corner } X, \text{W-min } X) \cap X = \{\text{W-min } X\}$ and $\mathcal{L}(\text{W-max } X, \text{NW-corner } X) \cap X = \{\text{W-max } X\}.$
 - (78) If W-min X =W-max X, then W-most X ={W-min X}.
 - (79) $(\text{NW-corner } X)_2 = \text{N-bound } X$ and $(\text{N-min } X)_2 = \text{N-bound } X$ and $(\text{N-max } X)_2 = \text{N-bound } X$ and $(\text{NE-corner } X)_2 = \text{N-bound } X$.
 - (80) (NW-corner X)₂ = (NE-corner X)₂ and (NW-corner X)₂ = (N-min X)₂ and (NW-corner X)₂ = (N-max X)₂ and (N-min X)₂ = (N-max X)₂ and (N-min X)₂ = (NE-corner X)₂ and (N-max X)₂ = (NE-corner X)₂.
 - (81) $(\text{NW-corner } X)_1 = \text{W-bound } X$ and $(\text{N-min } X)_1 = \inf(\text{proj1} \upharpoonright \text{N-most } X)$ and $(\text{N-max } X)_1 = \sup(\text{proj1} \upharpoonright \text{N-most } X)$ and $(\text{NE-corner } X)_1 = \text{E-bound } X.$
 - (82) $(\text{NW-corner } X)_1 \leq (\text{N-min } X)_1$ and $(\text{NW-corner } X)_1 \leq (\text{N-max } X)_1$ and $(\text{NW-corner } X)_1 \leq (\text{NE-corner } X)_1$ and $(\text{N-min } X)_1 \leq (\text{N-max } X)_1$ and $(\text{N-min } X)_1 \leq (\text{NE-corner } X)_1$ and $(\text{N-max } X)_1 \leq (\text{NE-corner } X)_1$.

- (83) If $p \in \text{N-most } X$, then $p_2 = (\text{N-min } X)_2$ and $(\text{N-min } X)_1 \leq p_1$ and $p_1 \leq (\text{N-max } X)_1$.
- (84) N-most $X \subseteq \mathcal{L}(\operatorname{N-min} X, \operatorname{N-max} X)$.
- (85) $\mathcal{L}(\operatorname{N-min} X, \operatorname{N-max} X) \subseteq \mathcal{L}(\operatorname{NW-corner} X, \operatorname{NE-corner} X).$
- (86) N-min $X \in$ N-most X and N-max $X \in$ N-most X.
- (87) $\mathcal{L}(\text{NW-corner } X, \text{N-min } X) \cap X = \{\text{N-min } X\}$ and $\mathcal{L}(\text{N-max } X, \text{NE-corner } X) \cap X = \{\text{N-max } X\}.$
- (88) If N-min X =N-max X, then N-most $X = \{$ N-min $X \}$.
- (89) (SE-corner X)₁ = E-bound X and (E-min X)₁ = E-bound X and (E-max X)₁ = E-bound X and (NE-corner X)₁ = E-bound X.
- (90) (SE-corner X)₁ = (NE-corner X)₁ and (SE-corner X)₁ = (E-min X)₁ and (SE-corner X)₁ = (E-max X)₁ and (E-min X)₁ = (E-max X)₁ and (E-min X)₁ = (NE-corner X)₁ and (E-max X)₁ = (NE-corner X)₁.
- (91) (SE-corner X)₂ = S-bound X and (E-min X)₂ = inf(proj2 \upharpoonright E-most X) and (E-max X)₂ = sup(proj2 \upharpoonright E-most X) and (NE-corner X)₂ = N-bound X.
- (92) (SE-corner X)₂ \leq (E-min X)₂ and (SE-corner X)₂ \leq (E-max X)₂ and (SE-corner X)₂ \leq (NE-corner X)₂ and (E-min X)₂ \leq (E-max X)₂ and (E-min X)₂ \leq (NE-corner X)₂ and (E-max X)₂ \leq (NE-corner X)₂.
- (93) If $p \in \text{E-most } X$, then $p_1 = (\text{E-min } X)_1$ and $(\text{E-min } X)_2 \leq p_2$ and $p_2 \leq (\text{E-max } X)_2$.
- (94) E-most $X \subseteq \mathcal{L}(\text{E-min } X, \text{E-max } X)$.
- (95) $\mathcal{L}(\text{E-min } X, \text{E-max } X) \subseteq \mathcal{L}(\text{SE-corner } X, \text{NE-corner } X).$
- (96) E-min $X \in$ E-most X and E-max $X \in$ E-most X.
- (97) $\mathcal{L}(\text{SE-corner } X, \text{E-min } X) \cap X = \{\text{E-min } X\}$ and $\mathcal{L}(\text{E-max } X, \text{NE-corner } X) \cap X = \{\text{E-max } X\}.$
- (98) If E-min X = E-max X, then E-most $X = \{\text{E-min } X\}$.
- (99) (SW-corner X)₂ = S-bound X and (S-min X)₂ = S-bound X and (S-max X)₂ = S-bound X and (SE-corner X)₂ = S-bound X.
- (100) $(\text{SW-corner } X)_2 = (\text{SE-corner } X)_2 \text{ and } (\text{SW-corner } X)_2 = (\text{S-min } X)_2$ and $(\text{SW-corner } X)_2 = (\text{S-max } X)_2$ and $(\text{S-min } X)_2 = (\text{S-max } X)_2$ and $(\text{S-min } X)_2 = (\text{SE-corner } X)_2$ and $(\text{S-max } X)_2 = (\text{SE-corner } X)_2$.
- (101) (SW-corner X)₁ = W-bound X and (S-min X)₁ = inf(proj1 \upharpoonright S-most X) and (S-max X)₁ = sup(proj1 \upharpoonright S-most X) and (SE-corner X)₁ = E-bound X.
- (102) $(\operatorname{SW-corner} X)_1 \leq (\operatorname{S-min} X)_1$ and $(\operatorname{SW-corner} X)_1 \leq (\operatorname{S-max} X)_1$ and $(\operatorname{SW-corner} X)_1 \leq (\operatorname{SE-corner} X)_1$ and $(\operatorname{S-min} X)_1 \leq (\operatorname{SE-corner} X)_1$ and $(\operatorname{S-max} X)_1 \leq (\operatorname{SE-corner} X)_1$.

- (103) If $p \in \text{S-most } X$, then $p_2 = (\text{S-min } X)_2$ and $(\text{S-min } X)_1 \leq p_1$ and $p_1 \leq (\text{S-max } X)_1$.
- (104) S-most $X \subseteq \mathcal{L}(\operatorname{S-min} X, \operatorname{S-max} X)$.
- (105) $\mathcal{L}(\operatorname{S-min} X, \operatorname{S-max} X) \subseteq \mathcal{L}(\operatorname{SW-corner} X, \operatorname{SE-corner} X).$
- (106) S-min $X \in$ S-most X and S-max $X \in$ S-most X.
- (107) $\mathcal{L}(\operatorname{SW-corner} X, \operatorname{S-min} X) \cap X = \{\operatorname{S-min} X\}$ and $\mathcal{L}(\operatorname{S-max} X, \operatorname{SE-corner} X) \cap X = \{\operatorname{S-max} X\}.$
- (108) If S-min X =S-max X, then S-most X ={S-min X}.
- (109) If W-max X =N-min X, then W-max X = NW-corner X.
- (110) If N-max X = E-max X, then N-max X = NE-corner X.
- (111) If E-min X =S-max X, then E-min X = SE-corner X.
- (112) If S-min X = W-min X, then S-min X = SW-corner X.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Leszek Borys. Paracompact and metrizable spaces. *Formalized Mathematics*, 2(4):481–485, 1991.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [13] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [15] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17–28, 1991.
- [16] M.G. Murdeshwar. General Topology. Wiley Eastern, 1990.
- [17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- [18] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics, 4(1):29–34, 1993.
- [19] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [21] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.

- [22] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [23] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Formalized Mathematics, 6(3):339–343, 1997.
- [24] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990. J. Turkerker, Latenary, Formalized Mathematics, 1(2):501–505, 1000.
- [26] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [28] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [30] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [31] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received July 29, 1997