Subsequences of Standard Special Circular Sequences in $\mathcal{E}_{\mathrm{T}}^{2}$

Yatsuka Nakamura
Shinshu University
Nagano
Roman Matuszewski ${ }^{1}$
Adam Grabowski ${ }^{2}$
Warsaw University
Białystok

Summary. It is known that a standard special circular sequence in \mathcal{E}_{T}^{2} properly defines a special polygon. We are interested in a part of such a sequence. It is shown that if the first point and the last point of the subsequence are different, it becomes a special polygonal sequence. The concept of „a part of" is introduced, and the subsequence having this property can be characterized by using „mid" function. For such subsequences, the concepts of „Upper" and „Lower" parts are introduced.

MML Identifier: JORDAN4.

The notation and terminology used here are introduced in the following papers: [16], [19], [8], [1], [14], [20], [2], [3], [18], [4], [6], [7], [11], [10], [13], [15], [5], [17], [9], and [12].

1. Preliminaries

We adopt the following convention: $i, i_{1}, i_{2}, i_{3}, j, k, n$ denote natural numbers and r_{1}, r_{2}, s, s_{1} denote real numbers.

The following propositions are true:
(1) If $n-^{\prime} i=0$, then $n \leqslant i$.
(2) If $i \leqslant j$, then $(j+k)-^{\prime} i=(j+k)-i$.

[^0](3) If $i \leqslant j$, then $(j+k)-{ }^{\prime} i=j-{ }^{\prime} i+k$.
(4) If $i_{1} \neq 0$ and $i_{2}=i_{3} \cdot i_{1}$, then $i_{3} \leqslant i_{2}$.
(5) If $i_{1}<i_{2}$, then $i_{1} \div i_{2}=0$.
(6) If $0<j$ and $j<i$ and $i<j+j$, then $i \bmod j \neq 0$.
(7) If $0<j$ and $j \leqslant i$ and $i<j+j$, then $i \bmod j=i-j$ and $i \bmod j=i-{ }^{\prime} j$.
(8) If $0<j$, then $(j+j) \bmod j=0$ and $k \cdot j \bmod j=0$.
(9) If $0<k$ and $k \leqslant j$ and $k \bmod j=0$, then $k=j$.
(10) $\left(r_{1}+s_{1}+r_{2}\right)-s_{1}=r_{1}+r_{2}$ and $\left(r_{1}-s_{1}\right)+r_{2}+s_{1}=r_{1}+r_{2}$ and $\left(r_{1}+s_{1}\right)-r_{2}-s_{1}=r_{1}-r_{2}$ and $\left(r_{1}-s_{1}-r_{2}\right)+s_{1}=r_{1}-r_{2}$.
(11) $r_{1}-r_{1}-r_{2}=-r_{2}$ and $\left(-r_{1}+r_{1}\right)-r_{2}=-r_{2}$ and $r_{1}-r_{2}-r_{1}=-r_{2}$ and $\left(-r_{1}-r_{2}\right)+r_{1}=-r_{2}$.
(12) If $0<s$ and if $s \cdot r_{1} \leqslant s \cdot r_{2}$ or $r_{1} \cdot s \leqslant r_{2} \cdot s$, then $r_{1} \leqslant r_{2}$.
(13) If $0<s$ and if $s \cdot r_{1}<s \cdot r_{2}$ or $r_{1} \cdot s<r_{2} \cdot s$, then $r_{1}<r_{2}$.

2. Some facts about cutting of finite sequences

In the sequel D denotes a non empty set, f_{1} denotes a finite sequence of elements of D, and f denotes a non constant standard special circular sequence.

We now state a number of propositions:
(14) For every f_{1} such that f_{1} is circular and $1 \leqslant \operatorname{len} f_{1}$ holds $f_{1}(1)=$ $f_{1}\left(\operatorname{len} f_{1}\right)$.
(15) For all f_{1}, i_{1}, i_{2} such that $i_{1} \leqslant i_{2}$ holds $f_{1} \upharpoonright i_{1} \upharpoonright i_{2}=f_{1} \upharpoonright i_{1}$ and $f_{1} \upharpoonright i_{2} \upharpoonright i_{1}=$ $f_{1} \upharpoonright i_{1}$.
(16) $\varepsilon_{D} \upharpoonright i=\varepsilon_{D}$.
(17) $\operatorname{Rev}\left(\varepsilon_{D}\right)=\varepsilon_{D}$.
(18) For all f_{1}, k such that $k<\operatorname{len} f_{1}$ holds $\left(f_{1}\right)_{\mid k}\left(\operatorname{len}\left(\left(f_{1}\right)_{\mid k}\right)\right)=f_{1}\left(\operatorname{len} f_{1}\right)$ and $\pi_{\operatorname{len}\left(\left(f_{1}\right)_{\downharpoonright k}\right)}\left(f_{1}\right)_{\downharpoonright k}=\pi_{\text {len } f_{1}} f_{1}$.
(19) Let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i. If g is a special sequence and $i+1<\operatorname{len} g$, then $g_{\downarrow i}$ is a special sequence.
(20) For all f_{1}, i_{1}, i_{2} such that $1 \leqslant i_{2}$ and $i_{2} \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} f_{1}$ holds len $\operatorname{mid}\left(f_{1}, i_{2}, i_{1}\right)=i_{1}-^{\prime} i_{2}+1$.
(21) For all f_{1}, i_{1}, i_{2} such that $1 \leqslant i_{2}$ and $i_{2} \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} f_{1}$ holds len $\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)=i_{1}-^{\prime} i_{2}+1$.
(22) For all f_{1}, i_{1}, i_{2}, j such that $1 \leqslant i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} f_{1}$ holds $\left(\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)\left(\operatorname{len} \operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)=f_{1}\left(i_{2}\right)$.
(23) For all f_{1}, i_{1}, i_{2}, j such that $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} f_{1}$ and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} f_{1}$ holds $\left(\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)\left(\operatorname{len} \operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)=f_{1}\left(i_{2}\right)$.
(24) For all f_{1}, i_{1}, i_{2}, j such that $1 \leqslant i_{2}$ and $i_{2} \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} f_{1}$ and $1 \leqslant j$ and $j \leqslant i_{1}-^{\prime} i_{2}+1$ holds $\left(\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)(j)=f_{1}\left(i_{1}-^{\prime} j+1\right)$.
(25) Let given f_{1}, i_{1}, i_{2}. Suppose $1 \leqslant i_{2}$ and $i_{2} \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} f_{1}$ and $1 \leqslant j$ and $j \leqslant i_{1}-^{\prime} i_{2}+1$. Then $\left(\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)(j)=\left(\operatorname{mid}\left(f_{1}, i_{2}, i_{1}\right)\right)\left(\left(\left(\left(i_{1}-\right.\right.\right.\right.$ $\left.\left.\left.\left.i_{2}\right)+1\right)-j\right)+1\right)$ and $\left(\left(\left(i_{1}-i_{2}\right)+1\right)-j\right)+1=\left(i_{1}-^{\prime} i_{2}+1\right)-^{\prime} j+1$.
(26) Let given f_{1}, i_{1}, i_{2}. Suppose $1 \leqslant i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} f_{1}$ and $1 \leqslant j$ and $j \leqslant i_{2}{ }^{\prime}{ }^{\prime} i_{1}+1$. Then $\left(\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)\right)(j)=\left(\operatorname{mid}\left(f_{1}, i_{2}, i_{1}\right)\right)\left(\left(\left(\left(i_{2}-\right.\right.\right.\right.$ $\left.\left.\left.\left.i_{1}\right)+1\right)-j\right)+1\right)$ and $\left(\left(\left(i_{2}-i_{1}\right)+1\right)-j\right)+1=\left(i_{2}-^{\prime} i_{1}+1\right)-^{\prime} j+1$.
(27) For all f_{1}, k such that $1 \leqslant k$ and $k \leqslant \operatorname{len} f_{1} \operatorname{holds} \operatorname{mid}\left(f_{1}, k, k\right)=\left\langle\pi_{k} f_{1}\right\rangle$ and len $\operatorname{mid}\left(f_{1}, k, k\right)=1$.
(28) $\operatorname{mid}\left(f_{1}, 0,0\right)=f_{1} \upharpoonright 1$.
(29) For all f_{1}, k such that len $f_{1}<k$ holds $\operatorname{mid}\left(f_{1}, k, k\right)=\varepsilon_{D}$.
(30) For all f_{1}, i_{1}, i_{2} holds $\operatorname{mid}\left(f_{1}, i_{1}, i_{2}\right)=\operatorname{Rev}\left(\operatorname{mid}\left(f_{1}, i_{2}, i_{1}\right)\right)$.
(31) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i_{1}, i_{2}, i. If $1 \leqslant$ i_{1} and $i_{1}<i_{2}$ and $i_{2} \leqslant \operatorname{len} f$ and $1 \leqslant i$ and $i<i_{2}-^{\prime} i_{1}+1$, then $\mathcal{L}\left(\operatorname{mid}\left(f, i_{1}, i_{2}\right), i\right)=\mathcal{L}\left(f,\left(i+i_{1}\right)-^{\prime} 1\right)$.
(32) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i_{1}, i_{2}, i. If $1 \leqslant$ i_{1} and $i_{1}<i_{2}$ and $i_{2} \leqslant \operatorname{len} f$ and $1 \leqslant i$ and $i<i_{2}{ }^{\prime}{ }^{\prime} i_{1}+1$, then $\mathcal{L}\left(\operatorname{mid}\left(f, i_{2}, i_{1}\right), i\right)=\mathcal{L}\left(f, i_{2}-^{\prime} i\right)$.

3. Dividing of special circular sequences into parts

Let n be a natural number and let f be a finite sequence. The functor S_Drop (n, f) yields a natural number and is defined by:
(Def. 1) \quad S_Drop $(n, f)=\left\{\begin{array}{l}n \bmod \operatorname{len} f-^{\prime} 1, \text { if } n \bmod \operatorname{len} f-^{\prime} 1 \neq 0, \\ \operatorname{len} f-^{\prime} 1, \text { otherwise. }\end{array}\right.$
Next we state three propositions:
(33) For every finite sequence f such that $0<\operatorname{len} f-^{\prime} 1$ holds S_Drop(len $f-^{\prime}$ $1, f)=\operatorname{len} f-^{\prime} 1$.
(34) For every natural number n and for every finite sequence f such that $1 \leqslant n$ and $n \leqslant$ len $f-^{\prime} 1$ holds S_Drop $(n, f)=n$.
(35) Let n be a natural number and f be a finite sequence. If len $f>1$ or len $f-^{\prime} 1>0$, then $\operatorname{S_ Drop}(n, f)=\operatorname{S_ Drop}\left(n+\operatorname{len} f-^{\prime} 1, f\right)$ and S_Drop $(n, f)=$ S_Drop $\left(\operatorname{len} f-^{\prime} 1+n, f\right)$.
Let f be a non constant standard special circular sequence, let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and let i_{1}, i_{2} be natural numbers. We say that g is a right part of f from i_{1} to i_{2} if and only if the conditions (Def. 2) are satisfied. (Def. 2)(i) $1 \leqslant i_{1}$,
(ii) $i_{1}+1 \leqslant \operatorname{len} f$,
(iii) $1 \leqslant i_{2}$,
(iv) $i_{2}+1 \leqslant \operatorname{len} f$,
(v) $g(\operatorname{len} g)=f\left(i_{2}\right)$,
(vi) $1 \leqslant \operatorname{len} g$,
(vii) $\operatorname{len} g<\operatorname{len} f$, and
(viii) for every natural number i such that $1 \leqslant i$ and $i \leqslant \operatorname{len} g$ holds $g(i)=$ $f\left(\right.$ S_Drop $\left.\left(\left(i_{1}+i\right)-^{\prime} 1, f\right)\right)$.
Let f be a non constant standard special circular sequence, let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and let i_{1}, i_{2} be natural numbers. We say that g is a left part of f from i_{1} to i_{2} if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) $1 \leqslant i_{1}$,
(ii) $i_{1}+1 \leqslant \operatorname{len} f$,
(iii) $1 \leqslant i_{2}$,
(iv) $i_{2}+1 \leqslant \operatorname{len} f$,
(v) $g(\operatorname{len} g)=f\left(i_{2}\right)$,
(vi) $1 \leqslant \operatorname{len} g$,
(vii) $\quad \operatorname{len} g<\operatorname{len} f$, and
(viii) for every natural number i such that $1 \leqslant i$ and $i \leqslant \operatorname{len} g$ holds $g(i)=$ $f\left(\right.$ S_Drop $\left.\left(\left(\operatorname{len} f+i_{1}\right)-^{\prime} i, f\right)\right)$.
Let f be a non constant standard special circular sequence, let g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and let i_{1}, i_{2} be natural numbers. We say that g is a part of f from i_{1} to i_{2} if and only if:
(Def. 4) g is a right part of f from i_{1} to i_{2} or a left part of f from i_{1} to i_{2}.
We now state a number of propositions:
(36) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a part of f from i_{1} to i_{2}. Then
(i) $1 \leqslant i_{1}$,
(ii) $i_{1}+1 \leqslant \operatorname{len} f$,
(iii) $1 \leqslant i_{2}$,
(iv) $i_{2}+1 \leqslant \operatorname{len} f$,
(v) $\quad g(\operatorname{len} g)=f\left(i_{2}\right)$,
(vi) $1 \leqslant \operatorname{len} g$,
(vii) $\operatorname{len} g<\operatorname{len} f$, and
(viii) for every natural number i such that $1 \leqslant i$ and $i \leqslant \operatorname{len} g$ holds $g(i)=$ $f\left(\right.$ S_Drop $\left.\left(\left(i_{1}+i\right)-^{\prime} 1, f\right)\right)$ or for every natural number i such that $1 \leqslant i$ and $i \leqslant \operatorname{len} g$ holds $g(i)=f\left(\right.$ S_Drop $\left.\left(\left(\operatorname{len} f+i_{1}\right)-^{\prime} i, f\right)\right)$.
(37) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is
a right part of f from i_{1} to i_{2} and $i_{1} \leqslant i_{2}$. Then len $g=i_{2}-^{\prime} i_{1}+1$ and $g=\operatorname{mid}\left(f, i_{1}, i_{2}\right)$.
(38) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2}, and i_{1}, i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2} and $i_{1}>i_{2}$. Then len $g=\left(\operatorname{len} f+i_{2}\right)-^{\prime} i_{1}$ and $g=\left(\operatorname{mid}\left(f, i_{1}, \operatorname{len} f-^{\prime} 1\right)\right)^{\wedge}\left(f \upharpoonright i_{2}\right)$ and $g=\left(\operatorname{mid}\left(f, i_{1}, \operatorname{len} f-^{\prime} 1\right)\right)^{\wedge}$ $\operatorname{mid}\left(f, 1, i_{2}\right)$.
(39) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2}, and i_{1}, i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1} \geqslant i_{2}$. Then len $g=i_{1}-^{\prime} i_{2}+1$ and $g=\operatorname{mid}\left(f, i_{1}, i_{2}\right)$.
(40) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1}<i_{2}$. Then len $g=\left(\operatorname{len} f+i_{1}\right)-^{\prime} i_{2}$ and $g=\left(\operatorname{mid}\left(f, i_{1}, 1\right)\right)^{\wedge} \operatorname{mid}\left(f, \operatorname{len} f-^{\prime} 1, i_{2}\right)$.
(41) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2}. Then $\operatorname{Rev}(g)$ is a left part of f from i_{2} to i_{1}.
(42) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2}. Then $\operatorname{Rev}(g)$ is a right part of f from i_{2} to i_{1}.
(43) Let f be a non constant standard special circular sequence and i_{1}, i_{2} be natural numbers. If $1 \leqslant i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2}<\operatorname{len} f$, then $\operatorname{mid}\left(f, i_{1}, i_{2}\right)$ is a right part of f from i_{1} to i_{2}.
(44) Let f be a non constant standard special circular sequence and i_{1}, i_{2} be natural numbers. If $1 \leqslant i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2}<\operatorname{len} f$, then $\operatorname{mid}\left(f, i_{2}, i_{1}\right)$ is a left part of f from i_{2} to i_{1}.
(45) Let f be a non constant standard special circular sequence and i_{1}, i_{2} be natural numbers. Suppose $1 \leqslant i_{2}$ and $i_{1}>i_{2}$ and $i_{1}<\operatorname{len} f$. Then $\left(\operatorname{mid}\left(f, i_{1}, \operatorname{len} f-^{\prime} 1\right)\right)^{\wedge} \operatorname{mid}\left(f, 1, i_{2}\right)$ is a right part of f from i_{1} to i_{2}.
(46) Let f be a non constant standard special circular sequence and i_{1}, i_{2} be natural numbers. Suppose $1 \leqslant i_{1}$ and $i_{1}<i_{2}$ and $i_{2}<\operatorname{len} f$. Then $\left(\operatorname{mid}\left(f, i_{1}, 1\right)\right)^{\wedge} \operatorname{mid}\left(f\right.$, len $\left.f-^{\prime} 1, i_{2}\right)$ is a left part of f from i_{1} to i_{2}.
(47) Let h be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i_{1}, i_{2}. If $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} h$ and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} h$, then $\widetilde{\mathcal{L}}\left(\operatorname{mid}\left(h, i_{1}, i_{2}\right)\right) \subseteq \widetilde{\mathcal{L}}(h)$.
(48) Let g be a finite sequence of elements of D. Then g is one-to-one if and only if for all i_{1}, i_{2} such that $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} g$ and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} g$ and $g\left(i_{1}\right)=g\left(i_{2}\right)$ or $\pi_{i_{1}} g=\pi_{i_{2}} g$ holds $i_{1}=i_{2}$.
(49) Let f be a non constant standard special circular sequence and given i_{2}. If $1<i_{2}$ and $i_{2}+1 \leqslant \operatorname{len} f$, then $f \upharpoonright i_{2}$ is a special sequence.
(50) Let f be a non constant standard special circular sequence and given i_{2}. If $1 \leqslant i_{2}$ and $i_{2}+1<\operatorname{len} f$, then $f_{l i_{2}}$ is a special sequence.
(51) Let f be a non constant standard special circular sequence and given i_{1}, i_{2}. If $1 \leqslant i_{1}$ and $i_{1}<i_{2}$ and $i_{2}+1 \leqslant \operatorname{len} f$, then $\operatorname{mid}\left(f, i_{1}, i_{2}\right)$ is a special sequence.
(52) Let f be a non constant standard special circular sequence and given i_{1}, i_{2}. If $1<i_{1}$ and $i_{1}<i_{2}$ and $i_{2} \leqslant \operatorname{len} f$, then $\operatorname{mid}\left(f, i_{1}, i_{2}\right)$ is a special sequence.
(53) For all points p_{0}, p, q_{1}, q_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{0} \in \mathcal{L}\left(p, q_{1}\right)$ and $p_{0} \in \mathcal{L}\left(p, q_{2}\right)$ and $p \neq p_{0}$ holds $q_{1} \in \mathcal{L}\left(p, q_{2}\right)$ or $q_{2} \in \mathcal{L}\left(p, q_{1}\right)$.
(54) For every non constant standard special circular sequence f holds $\mathcal{L}(f, 1) \cap \mathcal{L}\left(f\right.$, len $\left.f-^{\prime} 1\right)=\{f(1)\}$.
(55) Let f be a non constant standard special circular sequence, i_{1}, i_{2} be natural numbers, and g_{1}, g_{2} be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $1 \leqslant i_{1}$ and $i_{1}<i_{2}$ and $i_{2}<\operatorname{len} f$ and $g_{1}=\operatorname{mid}\left(f, i_{1}, i_{2}\right)$ and $g_{2}=$ $\left(\operatorname{mid}\left(f, i_{1}, 1\right)\right)^{\wedge} \operatorname{mid}\left(f\right.$, len $\left.f-^{\prime} 1, i_{2}\right)$. Then $\widetilde{\mathcal{L}}\left(g_{1}\right) \cap \widetilde{\mathcal{L}}\left(g_{2}\right)=\left\{f\left(i_{1}\right), f\left(i_{2}\right)\right\}$ and $\widetilde{\mathcal{L}}\left(g_{1}\right) \cup \widetilde{\mathcal{L}}\left(g_{2}\right)=\widetilde{\mathcal{L}}(f)$.
(56) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2} and $i_{1}<i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$.
(57) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1}>i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$.
(58) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2} and $i_{1} \neq i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$.
(59) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1} \neq i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$.
(60) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a part of f from i_{1} to i_{2} and $i_{1} \neq i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$.
(61) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i_{1}, i_{2} be natural numbers. Suppose g is a part of f from i_{1} to i_{2} and $g(1) \neq g$ (len $\left.g\right)$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal
arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$.
(62) Let f be a non constant standard special circular sequence and i_{1}, i_{2} be natural numbers. Suppose $1 \leqslant i_{1}$ and $i_{1}+1 \leqslant \operatorname{len} f$ and $1 \leqslant i_{2}$ and $i_{2}+1 \leqslant \operatorname{len} f$ and $i_{1} \neq i_{2}$. Then there exist finite sequences g_{1}, g_{2} of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
(i) g_{1} is a part of f from i_{1} to i_{2},
(ii) g_{2} is a part of f from i_{1} to i_{2},
(iii) $\widetilde{\mathcal{L}}\left(g_{1}\right) \cap \widetilde{\mathcal{L}}\left(g_{2}\right)=\left\{f\left(i_{1}\right), f\left(i_{2}\right)\right\}$,
(iv) $\widetilde{\mathcal{L}}\left(g_{1}\right) \cup \widetilde{\mathcal{L}}\left(g_{2}\right)=\widetilde{\mathcal{L}}(f)$,
(v) $\widetilde{\mathcal{L}}\left(g_{1}\right)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$,
(vi) $\widetilde{\mathcal{L}}\left(g_{2}\right)$ is a special polygonal arc joining $\pi_{i_{1}} f$ and $\pi_{i_{2}} f$, and
(vii) for every finite sequence g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that g is a part of f from i_{1} to i_{2} holds $g=g_{1}$ or $g=g_{2}$.
In the sequel g_{1}, g_{2} are finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$.
We now state several propositions:
(63) Let f be a non constant standard special circular sequence and P be a non empty subset of the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right)$.If $P=\widetilde{\mathcal{L}}(f)$, then P is a simple closed curve.
(64) Let f be a non constant standard special circular sequence and given g_{1}, g_{2}. Suppose g_{1} is a right part of f from i_{1} to i_{2} and g_{2} is a right part of f from i_{1} to i_{2}. Then $g_{1}=g_{2}$.
(65) Let f be a non constant standard special circular sequence and given g_{1}, g_{2}. Suppose g_{1} is a left part of f from i_{1} to i_{2} and g_{2} is a left part of f from i_{1} to i_{2}. Then $g_{1}=g_{2}$.
(66) Let f be a non constant standard special circular sequence and given g_{1}, g_{2}. Suppose $i_{1} \neq i_{2}$ and g_{1} is a right part of f from i_{1} to i_{2} and g_{2} is a left part of f from i_{1} to i_{2}. Then $g_{1}(2) \neq g_{2}(2)$.
(67) Let f be a non constant standard special circular sequence and given g_{1}, g_{2}. Suppose $i_{1} \neq i_{2}$ and g_{1} is a part of f from i_{1} to i_{2} and g_{2} is a part of f from i_{1} to i_{2} and $g_{1}(2)=g_{2}(2)$. Then $g_{1}=g_{2}$.

Let f be a non constant standard special circular sequence and let i_{1}, i_{2} be natural numbers. Let us assume that $1 \leqslant i_{1}$ and $i_{1}+1 \leqslant \operatorname{len} f$ and $1 \leqslant i_{2}$ and $i_{2}+1 \leqslant \operatorname{len} f$ and $i_{1} \neq i_{2}$. The functor $\operatorname{Lower}\left(f, i_{1}, i_{2}\right)$ yields a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by the conditions (Def. 5).
(Def. 5)(i) Lower $\left(f, i_{1}, i_{2}\right)$ is a part of f from i_{1} to i_{2},
(ii) if $\left(\pi_{i_{1}+1} f\right)_{\mathbf{1}}<\left(\pi_{i_{1}} f\right)_{\mathbf{1}}$ or $\left(\pi_{i_{1}+1} f\right)_{\mathbf{2}}<\left(\pi_{i_{1}} f\right)_{\mathbf{2}}$, then $\left(\operatorname{Lower}\left(f, i_{1}, i_{2}\right)\right)(2)=$ $f\left(i_{1}+1\right)$, and
(iii) if $\left(\pi_{i_{1}+1} f\right)_{\mathbf{1}} \geqslant\left(\pi_{i_{1}} f\right)_{\mathbf{1}}$ and $\left(\pi_{i_{1}+1} f\right)_{\mathbf{2}} \geqslant\left(\pi_{i_{1}} f\right)_{\mathbf{2}}$, then $\left(\operatorname{Lower}\left(f, i_{1}, i_{2}\right)\right)(2)=f\left(\operatorname{S_ Drop}\left(i_{1}-^{\prime} 1, f\right)\right)$.

The functor $\operatorname{Upper}\left(f, i_{1}, i_{2}\right)$ yielding a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by the conditions (Def. 6).
(Def. 6)(i) $\operatorname{Upper}\left(f, i_{1}, i_{2}\right)$ is a part of f from i_{1} to i_{2},
(ii) if $\left(\pi_{i_{1}+1} f\right)_{\mathbf{1}}>\left(\pi_{i_{1}} f\right)_{\mathbf{1}}$ or $\left(\pi_{i_{1}+1} f\right)_{\mathbf{2}}>\left(\pi_{i_{1}} f\right)_{\mathbf{2}}$, then $\left(\operatorname{Upper}\left(f, i_{1}, i_{2}\right)\right)(2)=$ $f\left(i_{1}+1\right)$, and
(iii) if $\left(\pi_{i_{1}+1} f\right)_{\mathbf{1}} \leqslant\left(\pi_{i_{1}} f\right)_{\mathbf{1}}$ and $\left(\pi_{i_{1}+1} f\right)_{\mathbf{2}} \leqslant\left(\pi_{i_{1}} f\right)_{\mathbf{2}}$, then $\left(\operatorname{Upper}\left(f, i_{1}, i_{2}\right)\right)(2)=f\left(\operatorname{S_ Drop}\left(i_{1}-^{\prime} 1, f\right)\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[6] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[10] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[11] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[12] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[13] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, $5(\mathbf{3}): 317-322,1996$.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 12, 1997

[^0]: ${ }^{1}$ This paper was written while the author visited Shinshu University in fall 1996.
 ${ }^{2}$ This paper was written while the author visited Shinshu University in winter 1997.

