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Summary.We prove the Euler theorem on existence of Euler circuits and
paths in multigraphs.
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The notation and terminology used in this paper are introduced in the following

papers: [19], [23], [13], [10], [22], [24], [6], [9], [7], [4], [8], [2], [20], [12], [3], [5],

[21], [1], [14], [15], [11], [16], [17], and [18].

1. Preliminaries

Let D be a set, let T be a non empty set of finite sequences of D, and let S

be a non empty subset of T . We see that the element of S is a finite sequence

of elements of D.

Let i, j be even integers. One can verify that i− j is even.

We now state two propositions:

(1) For all integers i, j holds i is even iff j is even iff i− j is even.

(2) Let p be a finite sequence and m, n, a be natural numbers. Suppose

a ∈ dom〈p(m), . . . , p(n)〉. Then there exists a natural number k such that

k ∈ dom p and p(k) = 〈p(m), . . . , p(n)〉(a) and k + 1 = m + a and m ¬ k

and k ¬ n.

1This work was partially supported by NSERC Grant OGP9207 and Shinshu Endowment
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Let G be a graph. A vertex of G is an element of the vertices of G.

For simplicity, we follow the rules:G denotes a graph, v, v1, v2 denote vertices

of G, c, c1, c2 denote chains of G, p, p1, p2 denote paths of G, v3, v4, v5 denote

finite sequences of elements of the vertices of G, e, X denote sets, and n, m

denote natural numbers.

One can prove the following propositions:

(3) If v3 is vertex sequence of c, then v3 is non empty.

(4) If c is cyclic and v3 is vertex sequence of c, then v3(1) = v3(len v3).

(5) If n ∈ dom p and m ∈ dom p and n 6= m, then p(n) 6= p(m).

(6) ε is a path of G.

(7) If e ∈ the edges of G, then 〈e〉 is a path of G.

(8) 〈p(m), . . . , p(n)〉 is a path of G.

(9) Suppose rng p1 misses rng p2 and v4 is vertex sequence of p1 and v5 is

vertex sequence of p2 and v4(len v4) = v5(1). Then p1
a p2 is a path of G.

(10) p is one-to-one.

(11) If c1
a c2 is a path of G, then rng c1 misses rng c2.

(12) If c = ε, then c is cyclic.

Let G be a graph. Observe that there exists a path of G which is cyclic.

Next we state several propositions:

(13) For every cyclic path p of G holds 〈p(m + 1), . . . , p(len p)〉 a

〈p(1), . . . , p(m)〉 is a cyclic path of G.

(14) If m + 1 ∈ dom p, then len(〈p(m + 1), . . . , p(len p)〉a 〈p(1), . . . , p(m)〉) =

len p and rng(〈p(m + 1), . . . , p(len p)〉 a 〈p(1), . . . , p(m)〉) = rng p and

(〈p(m + 1), . . . , p(len p)〉 a 〈p(1), . . . , p(m)〉)(1) = p(m + 1).

(15) For every cyclic path p of G such that n ∈ dom p there exists a cyclic

path p′ of G such that p′(1) = p(n) and len p′ = len p and rng p′ = rng p.

(16) Let s, t be vertices of G. Suppose s = (the source of G)(e) and t = (the

target of G)(e). Then 〈t, s〉 is vertex sequence of 〈e〉.

(17) Suppose e ∈ the edges ofG and v3 is vertex sequence of c and v3(len v3) =

(the source of G)(e). Then

(i) c a 〈e〉 is a chain of G, and

(ii) there exists a finite sequence v′
1
of elements of the vertices of G such

that v′
1

= v3 aa 〈(the source of G)(e), (the target of G)(e)〉 and v′
1
is vertex

sequence of ca 〈e〉 and v′
1
(1) = v3(1) and v′

1
(len v′

1
) = (the target of G)(e).

(18) Suppose e ∈ the edges ofG and v3 is vertex sequence of c and v3(len v3) =

(the target of G)(e). Then

(i) c a 〈e〉 is a chain of G, and

(ii) there exists a finite sequence v′
1
of elements of the vertices of G such

that v′
1

= v3 aa 〈(the target of G)(e), (the source of G)(e)〉 and v′
1
is vertex
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sequence of ca〈e〉 and v′
1
(1) = v3(1) and v′

1
(len v′

1
) = (the source of G)(e).

(19) Suppose v3 is vertex sequence of c. Let n be a natural number. Suppose

n ∈ dom c. Then

(i) v3(n) = (the target of G)(c(n)) and v3(n+1) = (the source of G)(c(n)),

or

(ii) v3(n) = (the source of G)(c(n)) and v3(n+1) = (the target of G)(c(n)).

(20) If v3 is vertex sequence of c and e ∈ rng c, then (the target of G)(e) ∈

rng v3 and (the source of G)(e) ∈ rng v3.

Let G be a graph and let X be a set. Then G-VSet(X) is a subset of the

vertices of G.

One can prove the following propositions:

(21) G-VSet(∅) = ∅.

(22) If e ∈ the edges of G and e ∈ X, then G-VSet(X) is non empty.

(23) G is connected if and only if for all v1, v2 such that v1 6= v2 there exist c,

v3 such that c is non empty and v3 is vertex sequence of c and v3(1) = v1

and v3(len v3) = v2.

(24) Let G be a connected graph, X be a set, and v be a vertex of G. Suppose

X meets the edges of G and v /∈ G-VSet(X). Then there exists a vertex

v′ of G and there exists an element e of the edges of G such that v′ ∈

G-VSet(X) but e /∈ X but v′ = (the target of G)(e) or v′ = (the source of

G)(e).

2. Degree of a vertex

Let G be a graph, let v be a vertex of G, and let X be a set. The functor

EdgesIn(v,X) yields a subset of the edges of G and is defined as follows:

(Def. 1) For every set e holds e ∈ EdgesIn(v,X) iff e ∈ the edges of G and e ∈ X

and (the target of G)(e) = v.

The functor EdgesOut(v, X) yields a subset of the edges of G and is defined as

follows:

(Def. 2) For every set e holds e ∈ EdgesOut(v, X) iff e ∈ the edges of G and

e ∈ X and (the source of G)(e) = v.

Let G be a graph, let v be a vertex of G, and let X be a set. The functor

EdgesAt(v,X) yields a subset of the edges of G and is defined as follows:

(Def. 3) EdgesAt(v, X) = EdgesIn(v, X) ∪ EdgesOut(v, X).

Let G be a finite graph, let v be a vertex of G, and let X be a set. One can

check the following observations:

∗ EdgesIn(v, X) is finite,
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∗ EdgesOut(v,X) is finite, and

∗ EdgesAt(v, X) is finite.

Let G be a graph, let v be a vertex of G, and let X be an empty set. One

can verify the following observations:

∗ EdgesIn(v, X) is empty,

∗ EdgesOut(v,X) is empty, and

∗ EdgesAt(v, X) is empty.

Let G be a graph and let v be a vertex of G. The functor EdgesIn v yields a

subset of the edges of G and is defined as follows:

(Def. 4) EdgesIn v = EdgesIn(v, the edges of G).

The functor EdgesOut v yields a subset of the edges of G and is defined by:

(Def. 5) EdgesOut v = EdgesOut(v, the edges of G).

One can prove the following propositions:

(25) EdgesIn(v, X) ⊆ EdgesIn v.

(26) EdgesOut(v,X) ⊆ EdgesOut v.

Let G be a finite graph and let v be a vertex of G. Note that EdgesIn v is

finite and EdgesOut v is finite.

For simplicity, we follow the rules: G denotes a finite graph, v denotes a

vertex of G, c denotes a chain of G, v3 denotes a finite sequence of elements of

the vertices of G, and X1, X2 denote sets.

One can prove the following two propositions:

(27) cardEdgesIn v = EdgIn(v).

(28) cardEdgesOut v = EdgOut(v).

Let G be a finite graph, let v be a vertex of G, and let X be a set. The

functor Degree(v, X) yields a natural number and is defined as follows:

(Def. 6) Degree(v,X) = cardEdgesIn(v,X) + cardEdgesOut(v, X).

The following propositions are true:

(29) The degree of v = Degree(v, the edges of G).

(30) If Degree(v, X) 6= 0, then EdgesAt(v, X) is non empty.

(31) Suppose e ∈ the edges of G but e /∈ X but v = (the target of G)(e) or

v = (the source of G)(e). Then the degree of v 6= Degree(v, X).

(32) If X2 ⊆ X1, then cardEdgesIn(v, X1 \ X2) = cardEdgesIn(v,X1) −

cardEdgesIn(v, X2).

(33) If X2 ⊆ X1, then cardEdgesOut(v,X1 \X2) = cardEdgesOut(v, X1) −

cardEdgesOut(v,X2).

(34) If X2 ⊆ X1, then Degree(v, X1 \X2) = Degree(v, X1)−Degree(v, X2).

(35) EdgesIn(v, X) = EdgesIn(v, X ∩ the edges of G) and EdgesOut(v, X) =

EdgesOut(v, X ∩ the edges of G).
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(36) Degree(v,X) = Degree(v, X ∩ the edges of G).

(37) If c is non empty and v3 is vertex sequence of c, then v ∈ rng v3 iff

Degree(v, rng c) 6= 0.

(38) For every non empty finite connected graph G and for every vertex v of

G holds the degree of v 6= 0.

3. Adding an edge to a graph

LetG be a graph and let v1, v2 be vertices ofG. The functor AddNewEdge(v1, v2)

yielding a strict graph is defined by the conditions (Def. 7).

(Def. 7)(i) The vertices of AddNewEdge(v1, v2) = the vertices of G,

(ii) the edges of AddNewEdge(v1, v2) = (the edges of G) ∪ {the edges of

G},

(iii) the source of AddNewEdge(v1, v2) = (the source of G)+·((the edges of

G)7−→. (v1)), and

(iv) the target of AddNewEdge(v1, v2) = (the target of G)+·((the edges of

G)7−→. (v2)).

Let G be a finite graph and let v1, v2 be vertices of G. Observe that

AddNewEdge(v1, v2) is finite.

For simplicity, we adopt the following rules: G is a graph, v, v1, v2 are

vertices of G, c is a chain of G, p is a path of G, v3 is a finite sequence of

elements of the vertices of G, v′ is a vertex of AddNewEdge(v1, v2), p
′ is a path

of AddNewEdge(v1, v2), and v′
1
is a finite sequence of elements of the vertices

of AddNewEdge(v1, v2).

We now state a number of propositions:

(39)(i) The edges of G ∈ the edges of AddNewEdge(v1, v2),

(ii) the edges of G = (the edges of AddNewEdge(v1, v2)) \ {the edges of

G},

(iii) (the source of AddNewEdge(v1, v2))(the edges of G) = v1, and

(iv) (the target of AddNewEdge(v1, v2))(the edges of G) = v2.

(40) Suppose e ∈ the edges ofG. Then (the source of AddNewEdge(v1, v2))(e) =

(the source of G)(e) and (the target of AddNewEdge(v1, v2))(e) = (the

target of G)(e).

(41) If v′
1

= v3 and v3 is vertex sequence of c, then v′
1
is vertex sequence of c.

(42) c is a chain of AddNewEdge(v1, v2).

(43) p is a path of AddNewEdge(v1, v2).

(44) If v′ = v1 and v1 6= v2, then EdgesIn(v
′, X) = EdgesIn(v1, X).

(45) If v′ = v2 and v1 6= v2, then EdgesOut(v
′, X) = EdgesOut(v2, X).
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(46) If v′ = v1 and v1 6= v2 and the edges of G ∈ X, then EdgesOut(v′, X) =

EdgesOut(v1, X)∪ {the edges of G} and EdgesOut(v1, X)∩ {the edges of

G} = ∅.

(47) If v′ = v2 and v1 6= v2 and the edges of G ∈ X, then EdgesIn(v′, X) =

EdgesIn(v2, X) ∪ {the edges of G} and EdgesIn(v2, X) ∩ {the edges of

G} = ∅.

(48) If v′ = v and v 6= v1 and v 6= v2, then EdgesIn(v
′, X) = EdgesIn(v,X).

(49) If v′ = v and v 6= v1 and v 6= v2, then EdgesOut(v
′, X) =

EdgesOut(v, X).

(50) If the edges of G /∈ rng p′, then p′ is a path of G.

(51) If the edges of G /∈ rng p′ and v3 = v′
1
and v′

1
is vertex sequence of p′,

then v3 is vertex sequence of p
′.

Let G be a connected graph and let v1, v2 be vertices of G. One can check

that AddNewEdge(v1, v2) is connected.

For simplicity, we adopt the following rules: G is a finite graph, v, v1, v2 are

vertices of G, v3 is a finite sequence of elements of the vertices of G, and v′ is a

vertex of AddNewEdge(v1, v2).

We now state two propositions:

(52) If v′ = v and v1 6= v2 and v = v1 or v = v2 and the edges of G ∈ X, then

Degree(v′, X) = Degree(v, X) + 1.

(53) If v′ = v and v 6= v1 and v 6= v2, then Degree(v
′, X) = Degree(v, X).

4. Some properties of and operations on cycles

The following two propositions are true:

(54) For every cyclic path c of G holds Degree(v, rng c) is even.

(55) Let c be a path of G. Suppose c is non cyclic and v3 is vertex sequence of

c. Then Degree(v, rng c) is even if and only if v 6= v3(1) and v 6= v3(len v3).

In the sequel G is a graph, v is a vertex of G, and v3 is a finite sequence of

elements of the vertices of G.

Let G be a graph. The functor G-CycleSet yields a non empty set of finite

sequences of the edges of G and is defined as follows:

(Def. 8) For every set x holds x ∈ G-CycleSet iff x is a cyclic path of G.

One can prove the following propositions:

(56) ε is an element of G-CycleSet.

(57) Let c be an element of G-CycleSet. Suppose v ∈ G-VSet(rng c). Then

{c′, c′ ranges over elements of G-CycleSet: rng c′ = rng c ∧
∨

v3
(v3 is

vertex sequence of c′ ∧ v3(1) = v)} is a non empty subset of G-CycleSet.



euler circuits and paths 423

Let us consider G, v and let c be an element of G-CycleSet. Let us assume

that v ∈ G-VSet(rng c). The functor cv

ª yields an element of G-CycleSet and is

defined as follows:

(Def. 9) cv

ª = choose({c′, c′ ranges over elements of G-CycleSet: rng c′ = rng c ∧
∨

v3
(v3 is vertex sequence of c

′ ∧ v3(1) = v)}).

Let G be a graph and let c1, c2 be elements of G-CycleSet. Let us assume

that G-VSet(rng c1) meets G-VSet(rng c2) and rng c1 misses rng c2. The functor

CatCycles(c1, c2) yields an element of G-CycleSet and is defined as follows:

(Def. 10) There exists a vertex v of G such that v = choose((G-VSet(rng c1)) ∩

(G-VSet(rng c2))) and CatCycles(c1, c2) = (c1
v

ª) a c2
v

ª.

The following proposition is true

(58) Let G be a graph and c1, c2 be elements of G-CycleSet. Suppose

G-VSet(rng c1) meets G-VSet(rng c2) but rng c1 misses rng c2 but c1 6= ε

or c2 6= ε. Then CatCycles(c1, c2) is non empty.

In the sequel G denotes a finite graph, v denotes a vertex of G, and v3

denotes a finite sequence of elements of the vertices of G.

Let us consider G, v and letX be a set. Let us assume that Degree(v,X) 6= 0.

The functor X-PathSet(v) yielding a non empty set of finite sequences of the

edges of G is defined as follows:

(Def. 11) X-PathSet(v) = {c, c ranges over elements of X∗: c is a path of G ∧ c is

non empty ∧
∨

v3
(v3 is vertex sequence of c ∧ v3(1) = v)}.

One can prove the following proposition

(59) For every element p of X-PathSet(v) and for every finite set Y such that

Y = the edges of G and Degree(v, X) 6= 0 holds len p ¬ cardY.

Let us consider G, v and let X be a set. Let us assume that for every

vertex v1 of G holds Degree(v1, X) is even and Degree(v, X) 6= 0. The functor

X-CycleSetv yielding a non empty subset of G-CycleSet is defined as follows:

(Def. 12) X-CycleSetv = {c, c ranges over elements ofG-CycleSet: rng c ⊆ X ∧ c is

non empty ∧
∨

v3
(v3 is vertex sequence of c ∧ v3(1) = v)}.

Next we state two propositions:

(60) If Degree(v, X) 6= 0 and for every v holds Degree(v,X) is even, then for

every element c of X-CycleSetv holds c is non empty and rng c ⊆ X and

v ∈ G-VSet(rng c).

(61) Let G be a finite connected graph and c be an element of G-CycleSet.

Suppose rng c 6= the edges of G and c is non empty. Then {v′, v′ ranges over

vertices of G: v′ ∈ G-VSet(rng c) ∧ the degree of v′ 6= Degree(v′, rng c)}

is a non empty subset of the vertices of G.

Let G be a finite connected graph and let c be an element of G-CycleSet.

Let us assume that rng c 6= the edges of G and c is non empty. The functor
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ExtendCycle c yields an element of G-CycleSet and is defined by the condition

(Def. 13).

(Def. 13) There exists an element c′ of G-CycleSet and there exists a vertex v of G

such that v = choose({v′, v′ ranges over vertices ofG: v′ ∈ G-VSet(rng c) ∧

the degree of v′ 6= Degree(v′, rng c)}) and c′ = choose(((the edges of G) \

rng c)-CycleSetv) and ExtendCycle c = CatCycles(c, c′).

One can prove the following proposition

(62) Let G be a finite connected graph and c be an element of G-CycleSet.

Suppose rng c 6= the edges of G and c is non empty and for every vertex v

of G holds the degree of v is even. Then ExtendCycle c is non empty and

card rng c < card rng ExtendCycle c.

5. Euler circuits and paths

Let G be a graph and let p be a path of G. We say that p is Eulerian if and

only if:

(Def. 14) rng p = the edges of G.

We now state three propositions:

(63) Let G be a connected graph, p be a path of G, and v3 be a finite sequence

of elements of the vertices of G. Suppose p is Eulerian and v3 is vertex

sequence of p. Then rng v3 = the vertices of G.

(64) Let G be a finite connected graph. Then there exists a cyclic path of G

which is Eulerian if and only if for every vertex v of G holds the degree of

v is even.

(65) Let G be a finite connected graph. Then there exists a path of G which

is non cyclic and Eulerian if and only if there exist vertices v1, v2 of G

such that v1 6= v2 and for every vertex v of G holds the degree of v is even

iff v 6= v1 and v 6= v2.
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