Category of Functors Between Alternative Categories

Robert Nieszczerzewski Warsaw University Białystok

MML Identifier: FUNCTOR2.

The notation and terminology used in this paper are introduced in the following articles: [9], [13], [5], [10], [7], [15], [1], [3], [4], [2], [6], [8], [11], [14], and [12].

1. Preliminaries

Let A be a transitive non empty category structure with units and let B be a non empty category structure with units. Observe that every functor from Ato B is feasible and id-preserving.

Let A be a transitive non empty category structure with units and let B be a non empty category structure with units. One can check the following observations:

- $\ast~$ every functor from A to B which is covariant is also precovariant and comp-preserving,
- * every functor from A to B which is precovariant and comp-preserving is also covariant,
- * every functor from A to B which is contravariant is also precontravariant and comp-reversing, and
- * every functor from A to B which is precontravariant and comp-reversing is also contravariant.

The following proposition is true

C 1997 Warsaw University - Białystok ISSN 1426-2630

ROBERT NIESZCZERZEWSKI

(2)¹ Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, and a be an object of A. Then $F(id_a) = id_{F(a)}$.

2. Transformations

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. We say that F_1 is transformable to F_2 if and only if:

(Def. 1) For every object a of A holds $\langle F_1(a), F_2(a) \rangle \neq \emptyset$.

Let us note that the predicate F_1 is transformable to F_2 is reflexive.

One can prove the following proposition

 $(4)^2$ Let A, B be transitive non empty category structures with units and F, F_1, F_2 be covariant functors from A to B. Suppose F is transformable to F_1 and F_1 is transformable to F_2 . Then F is transformable to F_2 .

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. Let us assume that F_1 is transformable to F_2 . A many sorted set indexed by the carrier of A is said to be a transformation from F_1 to F_2 if:

(Def. 2) For every object a of A holds it(a) is a morphism from $F_1(a)$ to $F_2(a)$.

Let A, B be transitive non empty category structures with units and let F be a covariant functor from A to B. The functor id_F yielding a transformation from F to F is defined by:

(Def. 3) For every object a of A holds $id_F(a) = id_{F(a)}$.

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. Let us assume that F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 and let a be an object of A. The functor t[a] yielding a morphism from $F_1(a)$ to $F_2(a)$ is defined as follows:

(Def. 4) t[a] = t(a).

Let A, B be transitive non empty category structures with units and let F, F_1 , F_2 be covariant functors from A to B. Let us assume that F is transformable to F_1 and F_1 is transformable to F_2 . Let t_1 be a transformation from F to F_1 and let t_2 be a transformation from F_1 to F_2 . The functor $t_2 \circ t_1$ yielding a transformation from F to F_2 is defined by:

(Def. 5) For every object a of A holds $(t_2 \circ t_1)[a] = t_2[a] \cdot t_1[a]$.

We now state four propositions:

372

¹The proposition (1) has been removed.

²The proposition (3) has been removed.

- (5) Let A, B be transitive non empty category structures with units and F₁, F₂ be covariant functors from A to B. Suppose F₁ is transformable to F₂. Let t₁, t₂ be transformations from F₁ to F₂. If for every object a of A holds t₁[a] = t₂[a], then t₁ = t₂.
- (6) Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, and a be an object of A. Then $id_F[a] = id_{F(a)}$.
- (7) Let A, B be transitive non empty category structures with units and F_1 , F_2 be covariant functors from A to B. Suppose F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 . Then $id_{(F_2)} \circ t = t$ and $t \circ id_{(F_1)} = t$.
- (8) Let A, B be categories and F, F₁, F₂, F₃ be covariant functors from A to B. Suppose F is transformable to F₁ and F₁ is transformable to F₂ and F₂ is transformable to F₃. Let t₁ be a transformation from F to F₁, t₂ be a transformation from F₁ to F₂, and t₃ be a transformation from F₂ to F₃. Then (t₃ ° t₂) ° t₁ = t₃ ° (t₂ ° t₁).

3. NATURAL TRANSFORMATIONS

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. We say that F_1 is naturally transformable to F_2 if and only if the conditions (Def. 6) are satisfied.

- (Def. 6)(i) F_1 is transformable to F_2 , and
 - (ii) there exists a transformation t from F_1 to F_2 such that for all objects a, b of A such that $\langle a, b \rangle \neq \emptyset$ and for every morphism f from a to b holds $t[b] \cdot F_1(f) = F_2(f) \cdot t[a].$

We now state two propositions:

- (9) For all transitive non empty category structures A, B with units holds every covariant functor F from A to B is naturally transformable to F.
- (10) Let A, B be categories and F, F_1 , F_2 be covariant functors from A to B. Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Then F is naturally transformable to F_2 .

Let A, B be transitive non empty category structures with units and let F_1 , F_2 be covariant functors from A to B. Let us assume that F_1 is naturally transformable to F_2 . A transformation from F_1 to F_2 is called a natural transformation from F_1 to F_2 if:

(Def. 7) For all objects a, b of A such that $\langle a, b \rangle \neq \emptyset$ and for every morphism f from a to b holds it $[b] \cdot F_1(f) = F_2(f) \cdot it[a]$.

Let A, B be transitive non empty category structures with units and let F be a covariant functor from A to B. Then id_F is a natural transformation from F to F.

Let A, B be categories and let F, F_1, F_2 be covariant functors from A to B. Let us assume that F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from F to F_1 and let t_2 be a natural transformation from F_1 to F_2 . The functor $t_2 \circ t_1$ yielding a natural transformation from F to F_2 is defined by:

(Def. 8) $t_2 \circ t_1 = t_2 \circ t_1$.

We now state three propositions:

- (11) Let A, B be transitive non empty category structures with units and F_1 , F_2 be covariant functors from A to B. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then $id_{(F_2)} \circ t = t$ and $t \circ id_{(F_1)} = t$.
- (12) Let A, B be transitive non empty category structures with units and F, F_1 , F_2 be covariant functors from A to B. Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from F to F_1 , t_2 be a natural transformation from F_1 to F_2 , and a be an object of A. Then $(t_2 \circ t_1)[a] = t_2[a] \cdot t_1[a]$.
- (13) Let A, B be categories, F, F_1 , F_2 , F_3 be covariant functors from A to B, t be a natural transformation from F to F_1 , and t_1 be a natural transformation from F_1 to F_2 . Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 . Let t_3 be a natural transformation from F_2 to F_3 . Then $(t_3 \circ t_1) \circ t = t_3 \circ (t_1 \circ t)$.

4. CATEGORY OF FUNCTORS

Let I be a set and let A, B be many sorted sets indexed by I. The functor B^A yields a set and is defined as follows:

- (Def. 9)(i) For every set x holds $x \in B^A$ iff x is a many sorted function from A into B if for every set i such that $i \in I$ holds if $B(i) = \emptyset$, then $A(i) = \emptyset$,
 - (ii) $B^A = \emptyset$, otherwise.

Let A, B be transitive non empty category structures with units. The functor Funct(A, B) yields a set and is defined as follows:

(Def. 10) For every set x holds $x \in Funct(A, B)$ iff x is a covariant strict functor from A to B.

Let A, B be categories. The functor B^A yields a strict non empty transitive category structure and is defined by the conditions (Def. 11).

- (Def. 11)(i) The carrier of $B^A = \text{Funct}(A, B)$,
 - (ii) for all strict covariant functors F, G from A to B and for every set x holds $x \in (\text{the arrows of } B^A)(F, G)$ iff F is naturally transformable to G and x is a natural transformation from F to G, and
 - (iii) for all strict covariant functors F, G, H from A to B such that F is naturally transformable to G and G is naturally transformable to H and for every natural transformation t_1 from F to G and for every natural transformation t_2 from G to H there exists a function f such that $f = (\text{the composition of } B^A)(F, G, H)$ and $f(t_2, t_1) = t_2 \circ t_1$.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
 [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [6] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Formalized Mathematics*, 2(2):221–224, 1991.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [8] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [11] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [12] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259–267, 1996.
- [13] Andrzej Trybulec. Functors for alternative categories. *Formalized Mathematics*, 5(4):595–608, 1996.
- [14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
- [15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 12, 1997