Category of Functors Between Alternative Categories

Robert Nieszczerzewski
Warsaw University
Białystok

MML Identifier: FUNCTOR2.

The notation and terminology used in this paper are introduced in the following articles: [9], [13], [5], [10], [7], [15], [1], [3], [4], [2], [6], [8], [11], [14], and [12].

1. Preliminaries

Let A be a transitive non empty category structure with units and let B be a non empty category structure with units. Observe that every functor from A to B is feasible and id-preserving.

Let A be a transitive non empty category structure with units and let B be a non empty category structure with units. One can check the following observations:

* every functor from A to B which is covariant is also precovariant and comp-preserving,
* every functor from A to B which is precovariant and comp-preserving is also covariant,
* every functor from A to B which is contravariant is also precontravariant and comp-reversing, and
* every functor from A to B which is precontravariant and comp-reversing is also contravariant.
The following proposition is true
$(2)^{1}$ Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, and a be an object of A. Then $F\left(\mathrm{id}_{a}\right)=$ $\operatorname{id}_{F(a)}$.

2. Transformations

Let A, B be transitive non empty category structures with units and let F_{1}, F_{2} be covariant functors from A to B. We say that F_{1} is transformable to F_{2} if and only if:
(Def. 1) For every object a of A holds $\left\langle F_{1}(a), F_{2}(a)\right\rangle \neq \emptyset$.
Let us note that the predicate F_{1} is transformable to F_{2} is reflexive.
One can prove the following proposition
(4) ${ }^{2}$ Let A, B be transitive non empty category structures with units and F, F_{1}, F_{2} be covariant functors from A to B. Suppose F is transformable to F_{1} and F_{1} is transformable to F_{2}. Then F is transformable to F_{2}.
Let A, B be transitive non empty category structures with units and let F_{1}, F_{2} be covariant functors from A to B. Let us assume that F_{1} is transformable to F_{2}. A many sorted set indexed by the carrier of A is said to be a transformation from F_{1} to F_{2} if:
(Def. 2) For every object a of A holds it (a) is a morphism from $F_{1}(a)$ to $F_{2}(a)$.
Let A, B be transitive non empty category structures with units and let F be a covariant functor from A to B. The functor id ${ }_{F}$ yielding a transformation from F to F is defined by:
(Def. 3) For every object a of A holds $\operatorname{id}_{F}(a)=\operatorname{id}_{F(a)}$.
Let A, B be transitive non empty category structures with units and let F_{1}, F_{2} be covariant functors from A to B. Let us assume that F_{1} is transformable to F_{2}. Let t be a transformation from F_{1} to F_{2} and let a be an object of A. The functor $t[a]$ yielding a morphism from $F_{1}(a)$ to $F_{2}(a)$ is defined as follows:
(Def. 4) $t[a]=t(a)$.
Let A, B be transitive non empty category structures with units and let F, F_{1}, F_{2} be covariant functors from A to B. Let us assume that F is transformable to F_{1} and F_{1} is transformable to F_{2}. Let t_{1} be a transformation from F to F_{1} and let t_{2} be a transformation from F_{1} to F_{2}. The functor $t_{2}{ }^{\circ} t_{1}$ yielding a transformation from F to F_{2} is defined by:
(Def. 5) For every object a of A holds $\left(t_{2}{ }^{\circ} t_{1}\right)[a]=t_{2}[a] \cdot t_{1}[a]$.
We now state four propositions:

[^0](5) Let A, B be transitive non empty category structures with units and F_{1}, F_{2} be covariant functors from A to B. Suppose F_{1} is transformable to F_{2}. Let t_{1}, t_{2} be transformations from F_{1} to F_{2}. If for every object a of A holds $t_{1}[a]=t_{2}[a]$, then $t_{1}=t_{2}$.
(6) Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, and a be an object of A. Then $\operatorname{id}_{F}[a]=$ $\mathrm{id}_{F(a)}$.
(7) Let A, B be transitive non empty category structures with units and F_{1}, F_{2} be covariant functors from A to B. Suppose F_{1} is transformable to F_{2}. Let t be a transformation from F_{1} to F_{2}. $\operatorname{Then~}_{\operatorname{id}_{\left(F_{2}\right)}{ }^{\circ} t=t \text { and }}$ $t \circ \mathrm{id}_{\left(F_{1}\right)}=t$.
(8) Let A, B be categories and F, F_{1}, F_{2}, F_{3} be covariant functors from A to B. Suppose F is transformable to F_{1} and F_{1} is transformable to F_{2} and F_{2} is transformable to F_{3}. Let t_{1} be a transformation from F to F_{1}, t_{2} be a transformation from F_{1} to F_{2}, and t_{3} be a transformation from F_{2} to F_{3}. Then $\left(t_{3}{ }^{\circ} t_{2}\right) \circ t_{1}=t_{3} \circ\left(t_{2} \circ t_{1}\right)$.

3. Natural Transformations

Let A, B be transitive non empty category structures with units and let F_{1}, F_{2} be covariant functors from A to B. We say that F_{1} is naturally transformable to F_{2} if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) $\quad F_{1}$ is transformable to F_{2}, and
(ii) there exists a transformation t from F_{1} to F_{2} such that for all objects a, b of A such that $\langle a, b\rangle \neq \emptyset$ and for every morphism f from a to b holds $t[b] \cdot F_{1}(f)=F_{2}(f) \cdot t[a]$.
We now state two propositions:
(9) For all transitive non empty category structures A, B with units holds every covariant functor F from A to B is naturally transformable to F.
(10) Let A, B be categories and F, F_{1}, F_{2} be covariant functors from A to B. Suppose F is naturally transformable to F_{1} and F_{1} is naturally transformable to F_{2}. Then F is naturally transformable to F_{2}.
Let A, B be transitive non empty category structures with units and let F_{1}, F_{2} be covariant functors from A to B. Let us assume that F_{1} is naturally transformable to F_{2}. A transformation from F_{1} to F_{2} is called a natural transformation from F_{1} to F_{2} if:
(Def. 7) For all objects a, b of A such that $\langle a, b\rangle \neq \emptyset$ and for every morphism f from a to b holds it $[b] \cdot F_{1}(f)=F_{2}(f) \cdot \mathrm{it}[a]$.

Let A, B be transitive non empty category structures with units and let F be a covariant functor from A to B. Then id_{F} is a natural transformation from F to F.

Let A, B be categories and let F, F_{1}, F_{2} be covariant functors from A to B. Let us assume that F is naturally transformable to F_{1} and F_{1} is naturally transformable to F_{2}. Let t_{1} be a natural transformation from F to F_{1} and let t_{2} be a natural transformation from F_{1} to F_{2}. The functor $t_{2}{ }^{\circ} t_{1}$ yielding a natural transformation from F to F_{2} is defined by:
(Def. 8) $\quad t_{2}{ }^{\circ} t_{1}=t_{2}{ }^{\circ} t_{1}$.
We now state three propositions:
(11) Let A, B be transitive non empty category structures with units and F_{1}, F_{2} be covariant functors from A to B. Suppose F_{1} is naturally transformable to F_{2}. Let t be a natural transformation from F_{1} to F_{2}. Then $\operatorname{id}_{\left(F_{2}\right)}{ }^{\circ} t=t$ and $t{ }^{\circ} \operatorname{id}_{\left(F_{1}\right)}=t$.
(12) Let A, B be transitive non empty category structures with units and F, F_{1}, F_{2} be covariant functors from A to B. Suppose F is naturally transformable to F_{1} and F_{1} is naturally transformable to F_{2}. Let t_{1} be a natural transformation from F to F_{1}, t_{2} be a natural transformation from F_{1} to F_{2}, and a be an object of A. Then $\left(t_{2}{ }^{\circ} t_{1}\right)[a]=t_{2}[a] \cdot t_{1}[a]$.
(13) Let A, B be categories, F, F_{1}, F_{2}, F_{3} be covariant functors from A to B, t be a natural transformation from F to F_{1}, and t_{1} be a natural transformation from F_{1} to F_{2}. Suppose F is naturally transformable to F_{1} and F_{1} is naturally transformable to F_{2} and F_{2} is naturally transformable to F_{3}. Let t_{3} be a natural transformation from F_{2} to F_{3}. Then $\left(t_{3}{ }^{\circ} t_{1}\right)^{\circ} t=$ $t_{3} \circ\left(t_{1} \circ t\right)$.

4. Category of Functors

Let I be a set and let A, B be many sorted sets indexed by I. The functor B^{A} yields a set and is defined as follows:
(Def. 9)(i) For every set x holds $x \in B^{A}$ iff x is a many sorted function from A into B if for every set i such that $i \in I$ holds if $B(i)=\emptyset$, then $A(i)=\emptyset$,
(ii) $B^{A}=\emptyset$, otherwise.

Let A, B be transitive non empty category structures with units. The functor Funct (A, B) yields a set and is defined as follows:
(Def. 10) For every set x holds $x \in \operatorname{Funct}(A, B)$ iff x is a covariant strict functor from A to B.
Let A, B be categories. The functor B^{A} yields a strict non empty transitive category structure and is defined by the conditions (Def. 11).
(Def. 11)(i) The carrier of $B^{A}=\operatorname{Funct}(A, B)$,
(ii) for all strict covariant functors F, G from A to B and for every set x holds $x \in\left(\right.$ the arrows of $\left.B^{A}\right)(F, G)$ iff F is naturally transformable to G and x is a natural transformation from F to G, and
(iii) for all strict covariant functors F, G, H from A to B such that F is naturally transformable to G and G is naturally transformable to H and for every natural transformation t_{1} from F to G and for every natural transformation t_{2} from G to H there exists a function f such that $f=$ (the composition of $\left.B^{A}\right)(F, G, H)$ and $f\left(t_{2}, t_{1}\right)=t_{2}{ }^{\circ} t_{1}$.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. Formalized Mathematics, 2(2):221-224, 1991.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[11] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[12] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.
[13] Andrzej Trybulec. Functors for alternative categories. Formalized Mathematics, 5(4):595608, 1996.
[14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ The proposition (1) has been removed.
 ${ }^{2}$ The proposition (3) has been removed.

