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Summary. This paper is preparation to prove Birkhoff’s Theorem. Some
properties of many sorted algebras are proved. The last section of this work
shows that every equation valid in a many sorted algebra is also valid in each
subalgebra, and each image of it. Moreover for a family of many sorted algebras
(Ai : i ∈ I) if every equation is valid in each Ai, i ∈ I then is also valid in product
∏

(Ai : i ∈ I).

MML Identifier: EQUATION.

The articles [23], [28], [10], [29], [6], [9], [7], [24], [11], [4], [8], [1], [2], [25], [26],

[18], [19], [27], [20], [5], [12], [16], [17], [13], [22], [21], [15], [14], and [3] provide

the notation and terminology for this paper.

1. On the Functions and Many Sorted Functions

In this paper I is a set.

Next we state several propositions:

(1) Let A be a set, B, C be non empty sets, f be a function from A into B,

and g be a function from B into C. If rng(g · f) = C, then rng g = C.

(2) Let A be a many sorted set indexed by I, B, C be non-empty many

sorted sets indexed by I, f be a many sorted function from A into B, and

g be a many sorted function from B into C. If g ◦f is onto, then g is onto.

(3) Let A, B be non empty sets, C, y be sets, and f be a function.

If f ∈ (CB)A and y ∈ B, then dom(commute(f))(y) = A and

rng(commute(f))(y) ⊆ C.
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(4) For every many sorted set A indexed by I there exists a non-empty many

sorted set B indexed by I such that A ⊆ B.

(5) Let A, B be many sorted sets indexed by I. Suppose A is transformable

to B. Let f be a many sorted function indexed by I. If domκ f(κ) = A

and rngκ f(κ) ⊆ B, then f is a many sorted function from A into B.

(6) Let A, B be many sorted sets indexed by I, F be a many sorted function

from A into B, C, E be many sorted subsets indexed by A, and D be a

many sorted subset indexed by C. If E = D, then F ↾ C ↾ D = F ↾ E.

(7) Let B be a non-empty many sorted set indexed by I, C be a many sorted

set indexed by I, A be a many sorted subset indexed by C, and F be a

many sorted function from A into B. Then there exists a many sorted

function G from C into B such that G ↾ A = F.

Let I be a set, let A be a many sorted set indexed by I, and let F be a many

sorted function indexed by I. The functor F−1(A) yielding a many sorted set

indexed by I is defined as follows:

(Def. 1) For every set i such that i ∈ I holds (F−1(A))(i) = F (i)−1(A(i)).

We now state a number of propositions:

(8) Let A, B, C be many sorted sets indexed by I and F be a many sorted

function from A into B. Then F ◦ C is a many sorted subset indexed by

B.

(9) Let A, B, C be many sorted sets indexed by I and F be a many sorted

function from A into B. Then F−1(C) is a many sorted subset indexed by

A.

(10) Let A, B be many sorted sets indexed by I and F be a many sorted

function from A into B. If F is onto, then F ◦ A = B.

(11) Let A, B be many sorted sets indexed by I and F be a many sorted

function from A into B. If A is transformable to B, then F−1(B) = A.

(12) Let A be a many sorted set indexed by I and F be a many sorted function

indexed by I. If A ⊆ rngκ F (κ), then F ◦ F−1(A) = A.

(13) For every many sorted function f indexed by I and for every many sorted

set X indexed by I holds f ◦ X ⊆ rngκ f(κ).

(14) For every many sorted function f indexed by I holds f ◦ (domκ f(κ)) =

rngκ f(κ).

(15) For every many sorted function f indexed by I holds f−1(rngκ f(κ)) =

domκ f(κ).

(16) For every many sorted set A indexed by I holds (idA) ◦ A = A.

(17) For every many sorted set A indexed by I holds (idA)−1(A) = A.
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2. On the Many Sorted Algebras

In the sequel S denotes a non empty non void many sorted signature and

U0, U1 denote non-empty algebras over S.

One can prove the following propositions:

(18) For every algebra A over S holds the algebra of A is a subalgebra of A.

(19) Every algebra A over S is a subalgebra of the algebra of A.

(20) Let U0 be an algebra over S, A be a subalgebra of U0, o be an operation

symbol of S, and x be a set. If x ∈ Args(o,A), then x ∈ Args(o, U0).

(21) Let U0 be an algebra over S, A be a subalgebra of U0, o be an operation

symbol of S, and x be a set. If x ∈ Args(o, A), then (Den(o,A))(x) =

(Den(o, U0))(x).

(22) Let F be an algebra family of I over S, B be a subalgebra of
∏

F, o be

an operation symbol of S, and x be a set. If x ∈ Args(o,B), then (Den(o,

B))(x) is a function and (Den(o,
∏

F ))(x) is a function.

Let S be a non void non empty many sorted signature, let A be an algebra

over S, and let B be a subalgebra of A. The functor SuperAlgebraSet(B) is

defined by the condition (Def. 2).

(Def. 2) Let x be a set. Then x ∈ SuperAlgebraSet(B) if and only if there exists

a strict subalgebra C of A such that x = C and B is a subalgebra of C.

Let S be a non void non empty many sorted signature, let A be an algebra

over S, and let B be a subalgebra of A. Note that SuperAlgebraSet(B) is non

empty.

Let S be a non empty non void many sorted signature. One can verify that

there exists an algebra over S which is strict, non-empty, and free.

Let S be a non empty non void many sorted signature, let A be a non-empty

algebra over S, and let X be a non-empty locally-finite subset of A. One can

verify that Gen(X) is finitely-generated.

Let S be a non empty non void many sorted signature and let A be a non-

empty algebra over S. Note that there exists a subalgebra of A which is strict,

non-empty, and finitely-generated.

Let S be a non empty non void many sorted signature and let A be a feasible

algebra over S. Note that there exists a subalgebra of A which is feasible.

Next we state several propositions:

(23) Let A be an algebra over S, C be a subalgebra of A, and D be a many

sorted subset indexed by the sorts of A. Suppose D = the sorts of C.

Let h be a many sorted function from A into U0 and g be a many sorted

function from C into U0. Suppose g = h ↾ D. Let o be an operation symbol

of S, x be an element of Args(o,A), and y be an element of Args(o, C). If

Args(o, C) 6= ∅ and x = y, then h#x = g#y.



366 artur korniłowicz

(24) Let A be a feasible algebra over S, C be a feasible subalgebra of A, and

D be a many sorted subset indexed by the sorts of A. Suppose D = the

sorts of C. Let h be a many sorted function from A into U0. Suppose h is

a homomorphism of A into U0. Let g be a many sorted function from C

into U0. If g = h ↾ D, then g is a homomorphism of C into U0.

(25) Let B be a strict non-empty algebra over S, G be a generator set of U0,

H be a non-empty generator set of B, and f be a many sorted function

from U0 into B. Suppose H ⊆ f ◦ G and f is a homomorphism of U0 into

B. Then f is an epimorphism of U0 onto B.

(26) Let W be a strict free non-empty algebra over S and F be a many

sorted function from U0 into U1. Suppose F is an epimorphism of U0 onto

U1. Let G be a many sorted function from W into U1. Suppose G is a

homomorphism of W into U1. Then there exists a many sorted function

H from W into U0 such that H is a homomorphism of W into U0 and

G = F ◦H.

(27) Let I be a non empty finite set, A be a non-empty algebra over S, and

F be an algebra family of I over S. Suppose that for every element i of I

there exists a strict non-empty finitely-generated subalgebra C of A such

that C = F (i). Then there exists a strict non-empty finitely-generated

subalgebra B of A such that for every element i of I holds F (i) is a

subalgebra of B.

(28) Let A, B be strict non-empty finitely-generated subalgebras of U0. Then

there exists a strict non-empty finitely-generated subalgebraM of U0 such

that A is a subalgebra of M and B is a subalgebra of M .

(29) Let S1 be a non empty non void many sorted signature, A1 be a non-

empty algebra over S1, and C be a set. Suppose C = {A, A ranges over ele-

ments of Subalgebras(A1):
∨

R : strict non-empty finitely-generated subalgebra of A1

R = A}. Let F be an algebra family of C over S1. Suppose that for every

set c such that c ∈ C holds c = F (c). Then there exists a strict non-empty

subalgebra P1 of
∏

F such that there exists a many sorted function from

P1 into A1 which is an epimorphism of P1 onto A1.

(30) Let U0 be a feasible free algebra over S, A be a free generator set of U0,

and Z be a subset of U0. If Z ⊆ A and Gen(Z) is feasible, then Gen(Z) is

free.

3. Equations in Many Sorted Algebras

Let S be a non empty non void many sorted signature. The functor TS(N)

yielding an algebra over S is defined by:



equations in many sorted algebras 367

(Def. 3) TS(N) = Free((the carrier of S) 7−→ N).

Let S be a non empty non void many sorted signature. Note that TS(N) is

strict non-empty and free.

Let S be a non empty non void many sorted signature. The equations of S

constitute a many sorted set indexed by the carrier of S and is defined by:

(Def. 4) The equations of S = [[the sorts of TS(N), the sorts of TS(N)]].

Let S be a non empty non void many sorted signature. Observe that the

equations of S is non-empty.

Let S be a non empty non void many sorted signature. A set of equations

of S is a many sorted subset indexed by the equations of S.

In the sequel s denotes a sort symbol of S, e denotes an element of (the

equations of S)(s), and E denotes a set of equations of S.

Let S be a non empty non void many sorted signature, let s be a sort

symbol of S, and let x, y be elements of (the sorts of TS(N))(s). Then 〈〈x, y〉〉 is

an element of (the equations of S)(s). We introduce x=y as a synonym of 〈〈x,

y〉〉.

Next we state two propositions:

(31) e1 ∈ (the sorts of TS(N))(s).

(32) e2 ∈ (the sorts of TS(N))(s).

Let S be a non empty non void many sorted signature, let A be an algebra

over S, let s be a sort symbol of S, and let e be an element of (the equations of

S)(s). The predicate A |= e is defined by:

(Def. 5) For every many sorted function h from TS(N) into A such that h is a

homomorphism of TS(N) into A holds h(s)(e1) = h(s)(e2).

Let S be a non empty non void many sorted signature, let A be an algebra

over S, and let E be a set of equations of S. The predicate A |= E is defined as

follows:

(Def. 6) For every sort symbol s of S and for every element e of (the equations

of S)(s) such that e ∈ E(s) holds A |= e.

We now state several propositions:

(33) For every strict non-empty subalgebra U2 of U0 such that U0 |= e holds

U2 |= e.

(34) For every strict non-empty subalgebra U2 of U0 such that U0 |= E holds

U2 |= E.

(35) If U0 and U1 are isomorphic and U0 |= e, then U1 |= e.

(36) If U0 and U1 are isomorphic and U0 |= E, then U1 |= E.

(37) For every congruence R of U0 such that U0 |= e holds U0/R |= e.

(38) For every congruence R of U0 such that U0 |= E holds U0/R |= E.
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(39) Let F be an algebra family of I over S. Suppose that for every set i such

that i ∈ I there exists an algebra A over S such that A = F (i) and A |= e.

Then
∏

F |= e.

(40) Let F be an algebra family of I over S. Suppose that for every set i

such that i ∈ I there exists an algebra A over S such that A = F (i) and

A |= E. Then
∏

F |= E.
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