Convergence and the Limit of Complex Sequences. Serieses

Yasunari Shidama Shinshu University Nagano Artur Korniłowicz Warsaw University Białystok

 $\mathrm{MML}\ \mathrm{Identifier}:\ \mathtt{COMSEQ_3}.$

The papers [5], [4], [8], [6], [2], [7], [10], [12], [3], [1], [9], [13], and [11] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: r_1 , r_2 , r_3 are sequences of real numbers, s_1 , s_2 , s_3 are complex sequences, k, n, m are natural numbers, and p, r are elements of \mathbb{R} .

The following propositions are true:

- (1) $(n+1) + 0i \neq 0_{\mathbb{C}}$ and $0 + (n+1)i \neq 0_{\mathbb{C}}$.
- (2) If for every *n* holds $r_1(n) = 0$, then for every *m* holds $(\sum_{\alpha=0}^{\kappa} |r_1|(\alpha))_{\kappa \in \mathbb{N}}(m) = 0.$
- (3) If for every n holds $r_1(n) = 0$, then r_1 is absolutely summable.

Let us note that there exists a sequence of real numbers which is absolutely summable.

One can check that every sequence of real numbers which is summable is also convergent.

One can verify that every sequence of real numbers which is absolutely summable is also summable.

One can check that there exists a sequence of real numbers which is absolutely summable.

Next we state several propositions:

C 1997 Warsaw University - Białystok ISSN 1426-2630

- (4) Suppose r_1 is convergent. Let given p. Suppose 0 < p. Then there exists n such that for all natural numbers m, l such that $n \leq m$ and $n \leq l$ holds $|r_1(m) r_1(l)| < p$.
- (5) If for every *n* holds $r_1(n) \leq p$, then for all natural numbers *n*, *l* holds $(\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n+l) - (\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n) \leq p \cdot l.$
- (6) If for every *n* holds $r_1(n) \leq p$, then for every *n* holds $(\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n) \leq p \cdot (n+1).$
- (7) If for every *n* such that $n \leq m$ holds $r_2(n) \leq p \cdot r_3(n)$, then $(\sum_{\alpha=0}^{\kappa} (r_2)(\alpha))_{\kappa \in \mathbb{N}}(m) \leq p \cdot (\sum_{\alpha=0}^{\kappa} (r_3)(\alpha))_{\kappa \in \mathbb{N}}(m).$
- (8) Suppose that for every *n* such that $n \leq m$ holds $r_2(n) \leq p \cdot r_3(n)$. Let given *n*. Suppose $n \leq m$. Let *l* be a natural number. If $n + l \leq m$, then $(\sum_{\alpha=0}^{\kappa} (r_2)(\alpha))_{\kappa \in \mathbb{N}} (n+l) - (\sum_{\alpha=0}^{\kappa} (r_2)(\alpha))_{\kappa \in \mathbb{N}} (n) \leq p \cdot ((\sum_{\alpha=0}^{\kappa} (r_3)(\alpha))_{\kappa \in \mathbb{N}} (n+l) - (\sum_{\alpha=0}^{\kappa} (r_3)(\alpha))_{\kappa \in \mathbb{N}} (n)).$
- (9) If for every *n* holds $0 \leq r_1(n)$, then for all *n*, *m* such that $n \leq m$ holds $|(\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(m) - (\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n)| =$ $(\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(m) - (\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n)$ and for every *n* holds $|(\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n)| = (\sum_{\alpha=0}^{\kappa} (r_1)(\alpha))_{\kappa \in \mathbb{N}}(n).$
- (10) If s_2 is convergent and s_3 is convergent and $\lim(s_2 s_3) = 0_{\mathbb{C}}$, then $\lim s_2 = \lim s_3$.

2. The Operations on Complex Sequences

In the sequel z denotes an element of \mathbb{C} and N_1 denotes an increasing sequence of naturals.

Let z be an element of \mathbb{C} . The functor $(z^{\kappa})_{\kappa \in \mathbb{N}}$ yielding a complex sequence is defined as follows:

(Def. 1) $(z^{\kappa})_{\kappa \in \mathbb{N}}(0) = 1_{\mathbb{C}}$ and for every n holds $(z^{\kappa})_{\kappa \in \mathbb{N}}(n+1) = (z^{\kappa})_{\kappa \in \mathbb{N}}(n) \cdot z$.

Let z be an element of $\mathbb C$ and let n be a natural number. The functor $z_{\mathbb N}^n$ yielding an element of $\mathbb C$ is defined by:

(Def. 2) $z_{\mathbb{N}}^n = (z^{\kappa})_{\kappa \in \mathbb{N}}(n).$

The following proposition is true

(11) $z_{\mathbb{N}}^0 = 1_{\mathbb{C}}.$

Let c be a complex sequence. The functor $\Re(c)$ yields a sequence of real numbers and is defined as follows:

(Def. 3) For every n holds $\Re(c)(n) = \Re(c(n))$.

Let c be a complex sequence. The functor $\Im(c)$ yielding a sequence of real numbers is defined as follows:

(Def. 4) For every *n* holds $\Im(c)(n) = \Im(c(n))$.

404

We now state a number of propositions:

- (12) $|z| \leq |\Re(z)| + |\Im(z)|.$
- (13) $|\Re(z)| \leq |z|$ and $|\Im(z)| \leq |z|$.
- (14) $\Re(s_2) = \Re(s_3)$ and $\Im(s_2) = \Im(s_3)$ iff $s_2 = s_3$.
- (15) $\Re(s_2) + \Re(s_3) = \Re(s_2 + s_3)$ and $\Im(s_2) + \Im(s_3) = \Im(s_2 + s_3)$.
- (16) $-\Re(s_1) = \Re(-s_1)$ and $-\Im(s_1) = \Im(-s_1)$.
- (17) $r \cdot \Re(z) = \Re((r+0i) \cdot z)$ and $r \cdot \Im(z) = \Im((r+0i) \cdot z)$.
- (18) $\Re(s_2) \Re(s_3) = \Re(s_2 s_3)$ and $\Im(s_2) \Im(s_3) = \Im(s_2 s_3)$.
- (19) $r \Re(s_1) = \Re((r+0i) s_1)$ and $r \Im(s_1) = \Im((r+0i) s_1)$.
- (20) $\Re(z s_1) = \Re(z) \Re(s_1) \Im(z) \Im(s_1)$ and $\Im(z s_1) = \Re(z) \Im(s_1) + \Im(z) \Re(s_1)$.
- (21) $\Re(s_2 s_3) = \Re(s_2) \Re(s_3) \Im(s_2) \Im(s_3)$ and $\Im(s_2 s_3) = \Re(s_2) \Im(s_3) + \Im(s_2) \Re(s_3)$.

Let s_1 be a complex sequence and let N_1 be an increasing sequence of naturals. The functor $s_1 N_1$ yielding a complex sequence is defined by:

(Def. 5) For every *n* holds $(s_1 N_1)(n) = s_1(N_1(n))$.

Next we state the proposition

(22) $\Re(s_1 N_1) = \Re(s_1) \cdot N_1$ and $\Im(s_1 N_1) = \Im(s_1) \cdot N_1$.

Let s_1 be a complex sequence and let k be a natural number. The functor $s_1 \uparrow k$ yields a complex sequence and is defined by:

(Def. 6) For every n holds $(s_1 \uparrow k)(n) = s_1(n+k)$.

The following proposition is true

(23) $\Re(s_1) \uparrow k = \Re(s_1 \uparrow k)$ and $\Im(s_1) \uparrow k = \Im(s_1 \uparrow k)$.

Let s_1 be a complex sequence. The functor $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}$ yields a complex sequence and is defined as follows:

(Def. 7) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(0) = s_1(0)$ and for every n holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n) + s_1(n+1).$

Let s_1 be a complex sequence. The functor $\sum s_1$ yields an element of \mathbb{C} and is defined as follows:

(Def. 8) $\sum s_1 = \lim((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}).$

Next we state a number of propositions:

- (24) If for every *n* holds $s_1(n) = 0_{\mathbb{C}}$, then for every *m* holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m) = 0_{\mathbb{C}}.$
- (25) If for every *n* holds $s_1(n) = 0_{\mathbb{C}}$, then for every *m* holds $(\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa \in \mathbb{N}}(m) = 0.$
- (26) $(\sum_{\alpha=0}^{\kappa} \Re(s_1)(\alpha))_{\kappa \in \mathbb{N}} = \Re((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}) \text{ and } (\sum_{\alpha=0}^{\kappa} \Im(s_1)(\alpha))_{\kappa \in \mathbb{N}} = \Im((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}).$

$$(27) \quad (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa\in\mathbb{N}} + (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_2+s_3)(\alpha))_{\kappa\in\mathbb{N}}.$$

$$(28) \quad (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa\in\mathbb{N}} - (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_2 - s_3)(\alpha))_{\kappa\in\mathbb{N}} + (\sum_{\alpha=0}^$$

- (29) $(\sum_{\alpha=0}^{\kappa} (z s_1)(\alpha))_{\kappa \in \mathbb{N}} = z (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}.$
- (30) $|(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(k)| \leq (\sum_{\alpha=0}^{\kappa}|s_1|(\alpha))_{\kappa\in\mathbb{N}}(k).$
- $(31) \quad |(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n)| \leq |(\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa \in \mathbb{N}}(m)| (\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa \in \mathbb{N}}(n)|.$
- (32) $(\sum_{\alpha=0}^{\kappa} \Re(s_1)(\alpha))_{\kappa \in \mathbb{N}} \uparrow k = \Re((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}} \uparrow k) \text{ and } (\sum_{\alpha=0}^{\kappa} \Im(s_1)(\alpha))_{\kappa \in \mathbb{N}} \uparrow k = \Im((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}} \uparrow k).$
- (33) If for every *n* holds $s_2(n) = s_1(0)$, then $(\sum_{\alpha=0}^{\kappa} (s_1 \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}} \uparrow 1 s_2.$
- (34) $(\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa \in \mathbb{N}}$ is non-decreasing.

Let s_1 be a complex sequence. Note that $(\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa\in\mathbb{N}}$ is non-decreasing. Next we state three propositions:

- (35) If for every n such that $n \leq m$ holds $s_2(n) = s_3(n)$, then $(\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}}(m) = (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa \in \mathbb{N}}(m).$
- (36) If $1_{\mathbb{C}} \neq z$, then for every *n* holds $(\sum_{\alpha=0}^{\kappa} ((z^{\kappa})_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}}(n) = \frac{1_{\mathbb{C}} z_{\mathbb{N}}^{n+1}}{1_{\mathbb{C}} z}$.
- (37) If $z \neq 1_{\mathbb{C}}$ and for every n holds $s_1(n+1) = z \cdot s_1(n)$, then for every n holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) = s_1(0) \cdot \frac{1_{\mathbb{C}} z_n^{n+1}}{1_{\mathbb{C}} z}$.

3. Convergence of Complex Sequences

Next we state four propositions:

- (38) Let a, b be sequences of real numbers and c be a complex sequence. Suppose that for every n holds $\Re(c(n)) = a(n)$ and $\Im(c(n)) = b(n)$. Then a is convergent and b is convergent if and only if c is convergent.
- (39) Let a, b be convergent sequences of real numbers and c be a complex sequence. Suppose that for every n holds $\Re(c(n)) = a(n)$ and $\Im(c(n)) = b(n)$. Then c is convergent and $\lim c = \lim a + \lim bi$.
- (40) Let a, b be sequences of real numbers and c be a convergent complex sequence. Suppose that for every n holds $\Re(c(n)) = a(n)$ and $\Im(c(n)) = b(n)$. Then a is convergent and b is convergent and $\lim a = \Re(\lim c)$ and $\lim b = \Im(\lim c)$.
- (41) For every convergent complex sequence c holds $\Re(c)$ is convergent and $\Im(c)$ is convergent and $\lim \Re(c) = \Re(\lim c)$ and $\lim \Im(c) = \Im(\lim c)$.

Let c be a convergent complex sequence. Observe that $\Re(c)$ is convergent and $\Im(c)$ is convergent.

The following propositions are true:

(42) Let c be a complex sequence. Suppose $\Re(c)$ is convergent and $\Im(c)$ is convergent. Then c is convergent and $\Re(\lim c) = \lim \Re(c)$ and $\Im(\lim c) = \lim \Im(c)$.

406

- (43) If 0 < |z| and |z| < 1 and $s_1(0) = z$ and for every n holds $s_1(n+1) = s_1(n) \cdot z$, then s_1 is convergent and $\lim s_1 = 0_{\mathbb{C}}$.
- (44) If |z| < 1 and for every *n* holds $s_1(n) = z_{\mathbb{N}}^{n+1}$, then s_1 is convergent and $\lim s_1 = 0_{\mathbb{C}}$.
- (45) If r > 0 and there exists m such that for every n such that $n \ge m$ holds $|s_1(n)| \ge r$, then $|s_1|$ is not convergent or $\lim |s_1| \ne 0$.
- (46) s_1 is convergent iff for every p such that 0 < p there exists n such that for every m such that $n \leq m$ holds $|s_1(m) s_1(n)| < p$.
- (47) Suppose s_1 is convergent. Let given p. Suppose 0 < p. Then there exists n such that for all natural numbers m, l such that $n \leq m$ and $n \leq l$ holds $|s_1(m) s_1(l)| < p$.
- (48) If for every *n* holds $|s_1(n)| \leq r_1(n)$ and r_1 is convergent and $\lim r_1 = 0$, then s_1 is convergent and $\lim s_1 = 0_{\mathbb{C}}$.
 - 4. Summable and Absolutely Summable Complex Sequences

Let s_1 , s_2 be complex sequences. We say that s_1 is a subsequence of s_2 if and only if:

(Def. 9) There exists N_1 such that $s_1 = s_2 N_1$.

Next we state three propositions:

- (49) If s_1 is a subsequence of s_2 , then $\Re(s_1)$ is a subsequence of $\Re(s_2)$ and $\Im(s_1)$ is a subsequence of $\Im(s_2)$.
- (50) If s_1 is a subsequence of s_2 and s_2 is a subsequence of s_3 , then s_1 is a subsequence of s_3 .
- (51) If s_1 is bounded, then there exists s_2 which is a subsequence of s_1 and convergent.

Let s_1 be a complex sequence. We say that s_1 is summable if and only if:

(Def. 10) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.

Let us observe that there exists a complex sequence which is summable.

Let s_1 be a summable complex sequence. Observe that $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}$ is convergent.

Let us consider s_1 . We say that s_1 is absolutely summable if and only if:

(Def. 11) $|s_1|$ is summable.

One can prove the following proposition

(52) If for every n holds $s_1(n) = 0_{\mathbb{C}}$, then s_1 is absolutely summable.

Let us observe that there exists a complex sequence which is absolutely summable.

Let s_1 be an absolutely summable complex sequence. Observe that $|s_1|$ is summable.

The following proposition is true

(53) If s_1 is summable, then s_1 is convergent and $\lim s_1 = 0_{\mathbb{C}}$.

One can verify that every complex sequence which is summable is also convergent.

We now state the proposition

(54) If s_1 is summable, then $\Re(s_1)$ is summable and $\Im(s_1)$ is summable and $\sum s_1 = \sum \Re(s_1) + \sum \Im(s_1)i$.

Let s_1 be a summable complex sequence. One can verify that $\Re(s_1)$ is summable and $\Im(s_1)$ is summable.

We now state two propositions:

- (55) If s_2 is summable and s_3 is summable, then $s_2 + s_3$ is summable and $\sum (s_2 + s_3) = \sum s_2 + \sum s_3$.
- (56) If s_2 is summable and s_3 is summable, then $s_2 s_3$ is summable and $\sum (s_2 s_3) = \sum s_2 \sum s_3$.

Let s_2 , s_3 be summable complex sequences. One can check that $s_2 + s_3$ is summable and $s_2 - s_3$ is summable.

The following proposition is true

(57) If s_1 is summable, then $z s_1$ is summable and $\sum (z s_1) = z \cdot \sum s_1$.

Let z be an element of \mathbb{C} and let s_1 be a summable complex sequence. One can check that $z s_1$ is summable.

The following two propositions are true:

- (58) If $\Re(s_1)$ is summable and $\Im(s_1)$ is summable, then s_1 is summable and $\sum s_1 = \sum \Re(s_1) + \sum \Im(s_1)i$.
- (59) If s_1 is summable, then for every n holds $s_1 \uparrow n$ is summable.

Let s_1 be a summable complex sequence and let n be a natural number. Note that $s_1 \uparrow n$ is summable.

One can prove the following propositions:

- (60) If there exists n such that $s_1 \uparrow n$ is summable, then s_1 is summable.
- (61) If s_1 is summable, then for every n holds $\sum s_1 = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) + \sum (s_1 \uparrow (n+1)).$
- (62) $(\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa \in \mathbb{N}}$ is upper bounded iff s_1 is absolutely summable.

Let s_1 be an absolutely summable complex sequence. One can check that $(\sum_{\alpha=0}^{\kappa} |s_1|(\alpha))_{\kappa\in\mathbb{N}}$ is upper bounded.

One can prove the following two propositions:

(63) s_1 is summable iff for every p such that 0 < p there exists n such that for every m such that $n \leq m$ holds $|(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m) - (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n)| < p$.

408

(64) If s_1 is absolutely summable, then s_1 is summable.

One can check that every complex sequence which is absolutely summable is also summable.

Let us note that there exists a complex sequence which is absolutely summable.

The following propositions are true:

- (65) If |z| < 1, then $(z^{\kappa})_{\kappa \in \mathbb{N}}$ is summable and $\sum ((z^{\kappa})_{\kappa \in \mathbb{N}}) = \frac{1_{\mathbb{C}}}{1_{\mathbb{C}}-z}$.
- (66) If |z| < 1 and for every *n* holds $s_1(n+1) = z \cdot s_1(n)$, then s_1 is summable and $\sum s_1 = \frac{s_1(0)}{1_{\mathbb{C}}-z}$.
- (67) If r_2 is summable and there exists m such that for every n such that $m \leq n$ holds $|s_3(n)| \leq r_2(n)$, then s_3 is absolutely summable.
- (68) Suppose for every *n* holds $0 \leq |s_2|(n)$ and $|s_2|(n) \leq |s_3|(n)$ and s_3 is absolutely summable. Then s_2 is absolutely summable and $\sum |s_2| \leq \sum |s_3|$.
- (69) If for every n holds $|s_1|(n) > 0$ and there exists m such that for every n such that $n \ge m$ holds $\frac{|s_1|(n+1)}{|s_1|(n)} \ge 1$, then s_1 is not absolutely summable.
- (70) If for every *n* holds $r_2(n) = \sqrt[n]{|s_1|(n)|}$ and r_2 is convergent and $\lim r_2 < 1$, then s_1 is absolutely summable.
- (71) If for every *n* holds $r_2(n) = \sqrt[n]{|s_1|(n)|}$ and there exists *m* such that for every *n* such that $m \leq n$ holds $r_2(n) \geq 1$, then $|s_1|$ is not summable.
- (72) If for every *n* holds $r_2(n) = \sqrt[n]{|s_1|(n)|}$ and r_2 is convergent and $\lim r_2 > 1$, then s_1 is not absolutely summable.
- (73) Suppose $|s_1|$ is non-increasing and for every *n* holds $r_2(n) = 2^n \cdot |s_1|$ (the *n*-th power of 2). Then s_1 is absolutely summable if and only if r_2 is summable.
- (74) If p > 1 and for every n such that $n \ge 1$ holds $|s_1|(n) = \frac{1}{n^p}$, then s_1 is absolutely summable.
- (75) If $p \leq 1$ and for every n such that $n \geq 1$ holds $|s_1|(n) = \frac{1}{n^p}$, then s_1 is not absolutely summable.
- (76) If for every n holds $s_1(n) \neq 0_{\mathbb{C}}$ and $r_2(n) = \frac{|s_1|(n+1)|}{|s_1|(n)|}$ and r_2 is convergent and $\lim r_2 < 1$, then s_1 is absolutely summable.
- (77) If for every n holds $s_1(n) \neq 0_{\mathbb{C}}$ and there exists m such that for every n such that $n \ge m$ holds $\frac{|s_1|(n+1)}{|s_1|(n)} \ge 1$, then s_1 is not absolutely summable.

References

- Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.

- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
 [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
- [3] Kizysztör Iffymewiecki. Basic properties of real numbers. Formatizea Mathematics, 1(1):35–40, 1990.
- [6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [9] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [11] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [12] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449– 452, 1991.
- [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received June 25, 1997