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1. Preliminaries

The scheme SubsetEq deals with a non empty set A, subsets B, C of A, and
a unary predicate P, and states that:

B = C
provided the following conditions are met:
• For every element y of A holds y ∈ B iff P[y],
• For every element y of A holds y ∈ C iff P[y].
We now state the proposition

(1) For all sets X, x holds X 7−→ x is constant.

Let X, x be sets. Note that X 7−→ x is constant.
Let f be a function. Let us assume that f is non empty and constant. The

value of f is defined by:

(Def. 1) There exists a set x such that x ∈ dom f and the value of f = f(x).

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.

213
c© 1997 University of Białystok

ISSN 1426–2630



214 andrzej trybulec

Let us note that there exists a function which is non empty and constant.

Let f be a non empty constant function. Then the value of f can be charac-
terized by the condition:

(Def. 2) There exists a set x such that x ∈ dom f and the value of f = f(x).

The following propositions are true:

(2) For every non empty set X and for every set x holds the value of X 7−→
x = x.

(3) For every function f holds rng f ⊆ dom f .

Let us note that every set which is universal is also transitive and a Tarski
class and every set which is transitive and a Tarski class is also universal.

In the sequel x, X will be sets and T will be a universal class.

Let us consider X. The universe of X is defined as follows:

(Def. 3) The universe of X = T(X∗∈).

We now state the proposition

(4) T(X) is a Tarski class.

Let us consider X. Note that T(X) is a Tarski class.

Let us consider X. Observe that the universe of X is transitive and a Tarski
class.

Let us consider X. One can check that the universe of X is universal and
non empty.

One can prove the following proposition

(5) For every function f such that dom f ∈ T and rng f ⊆ T holds
∏

f ∈ T.

2. Topological spaces

Next we state the proposition

(6) Let T be a non empty topological space, A be a subset of T , and p be
a point of T . Then p ∈ A if and only if for every neighbourhood G of p
holds G meets A.

Let T be a non empty topological space. We introduce T is Hausdorff as a
synonym of T is T2.

One can verify that there exists a non empty topological space which is
Hausdorff.

One can prove the following two propositions:

(7) Let X be a non empty topological space and A be a subset of the carrier
of X. Then ΩX is a neighbourhood of A.

(8) Let X be a non empty topological space, A be a subset of the carrier of
X, and Y be a neighbourhood of A. Then A ⊆ Y.
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3. 1-sorted structures

The following proposition is true

(9) Let Y be a non empty set, J be a 1-sorted yielding many sorted set
indexed by Y , and i be an element of Y . Then (supportJ)(i) = the carrier
of J(i).

Let us note that there exists a function which is non empty, constant, and
1-sorted yielding.
Let J be a 1-sorted yielding function. Let us observe that J is nonempty if

and only if:

(Def. 4) For every set i such that i ∈ rng J holds i is a non empty 1-sorted
structure.

We introduce J is yielding non-empty carriers as a synonym of J is nonempty.
Let X be a set and let L be a 1-sorted structure. Observe that X 7−→ L is

1-sorted yielding.
Let I be a set. Observe that there exists a 1-sorted yielding many sorted set

indexed by I which is yielding non-empty carriers.
Let I be a non empty set and let J be a relational structure yielding many

sorted set indexed by I. One can verify that the carrier of
∏

J is functional.
Let I be a set and let J be a yielding non-empty carriers 1-sorted yielding

many sorted set indexed by I. Observe that supportJ is non-empty.
Next we state the proposition

(10) Let T be a non empty 1-sorted structure, S be a subset of the carrier
of T , and p be an element of the carrier of T . Then p /∈ S if and only if
p ∈ −S.

4. Relational structures

Let T be a non empty relational structure and let A be a lower subset of T .
Observe that −A is upper.
Let T be a non empty relational structure and let A be an upper subset of

T . Observe that −A is lower.
Let N be a non empty relational structure. Let us observe that N is directed

if and only if:

(Def. 5) For all elements x, y of N there exists an element z of N such that x ¬ z
and y ¬ z.

Let X be a set. Note that 2X
⊆ is directed.

Let us mention that there exists a relational structure which is non empty,
directed, transitive, and strict.
Let M be a non empty set, let N be a non empty relational structure, let

f be a function from M into the carrier of N , and let m be an element of M .
Then f(m) is an element of N .
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Let I be a set. Note that there exists a relational structure yielding many
sorted set indexed by I which is yielding non-empty carriers.

Let I be a non empty set and let J be a yielding non-empty carriers relational
structure yielding many sorted set indexed by I. Observe that

∏
J is non empty.

Next we state the proposition

(11) For all relational structures R1, R2 holds Ω[: R1, R2 :] = [:Ω(R1), Ω(R2) :].

Let Y1, Y2 be directed relational structures. Observe that [: Y1, Y2 :] is direc-
ted.

Next we state the proposition

(12) For every relational structure R holds the carrier of R = the carrier of
R`.

Let S be a 1-sorted structure and let N be a net structure over S. We say
that N is constant if and only if:

(Def. 6) The mapping of N is constant.

Let R be a relational structure, let T be a non empty 1-sorted structure, and
let p be an element of the carrier of T . The functor R 7−→ p yielding a strict net
structure over T is defined by the conditions (Def. 7).

(Def. 7)(i) The relational structure of (R 7−→ p) = the relational structure of R,
and

(ii) the mapping of (R 7−→ p) = (the carrier of (R 7−→ p)) 7−→ p.

Let R be a relational structure, let T be a non empty 1-sorted structure,
and let p be an element of the carrier of T . Note that R 7−→ p is constant.

Let R be a non empty relational structure, let T be a non empty 1-sorted
structure, and let p be an element of the carrier of T . One can verify that R 7−→ p
is non empty.

Let R be a non empty directed relational structure, let T be a non empty
1-sorted structure, and let p be an element of the carrier of T . Note that R 7−→ p
is directed.

Let R be a non empty transitive relational structure, let T be a non empty
1-sorted structure, and let p be an element of the carrier of T . One can check
that R 7−→ p is transitive.

We now state two propositions:

(13) Let R be a relational structure, T be a non empty 1-sorted structure, and
p be an element of the carrier of T . Then the carrier of (R 7−→ p) = the
carrier of R.

(14) Let R be a non empty relational structure, T be a non empty 1-sorted
structure, p be an element of the carrier of T , and q be an element of the
carrier of (R 7−→ p).Then (R 7−→ p)(q) = p.

Let T be a non empty 1-sorted structure and let N be a non empty net
structure over T . Observe that the mapping of N is non empty.
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5. Substructures of nets

One can prove the following propositions:

(15) Every relational structure R is a full relational substructure of R.

(16) Let R be a relational structure and S be a relational substructure of R.
Then every relational substructure of S is a relational substructure of R.

Let S be a 1-sorted structure and let N be a net structure over S. A net
structure over S is called a structure of a subnet of N if:

(Def. 8) It is a relational substructure of N and the mapping of it = (the mapping
of N)↾(the carrier of it).

Next we state two propositions:

(17) For every 1-sorted structure S holds every net structure N over S is a
structure of a subnet of N .

(18) Let Q be a 1-sorted structure, R be a net structure over Q, and S be
a structure of a subnet of R. Then every structure of a subnet of S is a
structure of a subnet of R.

Let S be a 1-sorted structure, let N be a net structure over S, and let M be
a structure of a subnet of N . We say that M is full if and only if:

(Def. 9) M is a full relational substructure of N .

Let S be a 1-sorted structure and let N be a net structure over S. Note that
there exists a structure of a subnet of N which is full and strict.
Let S be a 1-sorted structure and let N be a non empty net structure over

S. Note that there exists a structure of a subnet of N which is full, non empty,
and strict.
One can prove the following three propositions:

(19) Let S be a 1-sorted structure, N be a net structure over S, and M be a
structure of a subnet of N . Then the carrier of M ⊆ the carrier of N .

(20) Let S be a 1-sorted structure, N be a net structure over S, M be a
structure of a subnet of N , x, y be elements of N , and i, j be elements of
the carrier of M . If x = i and y = j and i ¬ j, then x ¬ y.

(21) Let S be a 1-sorted structure, N be a non empty net structure over S,
M be a non empty full structure of a subnet of N , x, y be elements of N ,
and i, j be elements of the carrier of M . If x = i and y = j and x ¬ y,
then i ¬ j.

6. More about nets

Let T be a non empty 1-sorted structure. One can verify that there exists a
net in T which is constant and strict.
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Let T be a non empty 1-sorted structure and let N be a constant net struc-
ture over T . One can verify that the mapping of N is constant.
Let T be a non empty 1-sorted structure and let N be a net structure over

T . Let us assume that N is constant and non empty. The value of N yields an
element of T and is defined as follows:

(Def. 10) The value of N = the value of the mapping of N .

Let T be a non empty 1-sorted structure and let N be a constant non empty
net structure over T . Then the value of N can be characterized by the condition:

(Def. 11) The value of N = the value of the mapping of N .

Next we state the proposition

(22) Let R be a non empty relational structure, T be a non empty 1-sorted
structure, and p be an element of the carrier of T . Then the value of
R 7−→ p = p.

Let T be a non empty 1-sorted structure and let N be a net in T . A net in
T is said to be a subnet of N if it satisfies the condition (Def. 12).

(Def. 12) There exists a map f from it into N such that
(i) the mapping of it = (the mapping of N) · f, and
(ii) for every element m of N there exists an element n of it such that for
every element p of it such that n ¬ p holds m ¬ f(p).

We now state several propositions:

(23) For every non empty 1-sorted structure T holds every net N in T is a
subnet of N .

(24) Let T be a non empty 1-sorted structure and N1, N2, N3 be nets in T .
Suppose N1 is a subnet of N2 and N2 is a subnet of N3. Then N1 is a
subnet of N3.

(25) Let T be a non empty 1-sorted structure, N be a constant net in T , and
i be an element of the carrier of N . Then N(i) = the value of N .

(26) Let L be a non empty 1-sorted structure, N be a net in L, and X, Y be
sets. If N is eventually in X and eventually in Y , then X meets Y .

(27) Let S be a non empty 1-sorted structure, N be a net in S,M be a subnet
of N , and given X. If M is often in X, then N is often in X.

(28) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is eventually in X, then N is often in X.

(29) For every non empty 1-sorted structure S holds every net in S is even-
tually in the carrier of S.

7. The restriction of a net

Let S be a 1-sorted structure, let N be a net structure over S, and let us
consider X. The functor N−1(X) yields a strict structure of a subnet of N and
is defined by:
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(Def. 13) N−1(X) is a full relational substructure of N and the carrier of
N−1(X) = (the mapping of N)−1(X).

Let S be a 1-sorted structure, let N be a transitive net structure over S,
and let us consider X. One can verify that N−1(X) is transitive and full.
We now state three propositions:

(30) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is often in X, then N−1(X) is non empty and directed.

(31) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is often in X, then N−1(X) is a subnet of N .

(32) Let S be a non empty 1-sorted structure, N be a net in S, given X, and
M be a subnet of N . If M = N−1(X), then M is eventually in X.

8. The universe of nets

Let X be a non empty 1-sorted structure. The functor NetUniv(X) is defined
by the condition (Def. 14).

(Def. 14) Let given x. Then x ∈ NetUniv(X) if and only if there exists a strict
net N in X such that N = x and the carrier of N ∈ the universe of the
carrier of X.

Let X be a non empty 1-sorted structure. One can check that NetUniv(X)
is non empty.

9. Parametrized families of nets, iteration

Let X be a set and let T be a 1-sorted structure. A many sorted set indexed
by X is said to be a net set of X, T if:

(Def. 15) For every set i such that i ∈ rng it holds i is a net in T .

The following proposition is true

(33) Let X be a set, T be a 1-sorted structure, and F be a many sorted set
indexed by X. Then F is a net set of X, T if and only if for every set i
such that i ∈ X holds F (i) is a net in T .

Let X be a non empty set, let T be a 1-sorted structure, let J be a net set
of X, T , and let i be an element of X. Then J(i) is a net in T .
Let X be a set and let T be a 1-sorted structure. One can check that every

net set of X, T is relational structure yielding.
Let T be a 1-sorted structure and let Y be a net in T . Observe that every

net set of the carrier of Y , T is yielding non-empty carriers.
Let T be a non empty 1-sorted structure, let Y be a net in T , and let J be a

net set of the carrier of Y , T . One can check that
∏

J is directed and transitive.
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Let X be a set and let T be a 1-sorted structure. Observe that every net set
of X, T is yielding non-empty carriers.
Let X be a set and let T be a 1-sorted structure. One can check that there

exists a net set of X, T which is yielding non-empty carriers.
Let T be a non empty 1-sorted structure, let Y be a net in T , and let J be

a net set of the carrier of Y , T . The functor Iterated(J) yielding a strict net in
T is defined by the conditions (Def. 16).

(Def. 16)(i) The relational structure of Iterated(J) = [: Y,
∏

J :], and
(ii) for every element i of the carrier of Y and for every function f such
that i ∈ the carrier of Y and f ∈ the carrier of

∏
J holds (the mapping

of Iterated(J))(i, f) = (the mapping of J(i))(f(i)).

We now state four propositions:

(34) Let T be a non empty 1-sorted structure, Y be a net in T , and J be
a net set of the carrier of Y , T . Suppose Y ∈ NetUniv(T ) and for every
element i of the carrier of Y holds J(i) ∈ NetUniv(T ). Then Iterated(J) ∈
NetUniv(T ).

(35) Let T be a non empty 1-sorted structure, N be a net in T , and J be
a net set of the carrier of N , T . Then the carrier of Iterated(J) = [: the
carrier of N ,

∏
supportJ :].

(36) Let T be a non empty 1-sorted structure, N be a net in T , J be a net set
of the carrier of N , T , i be an element of the carrier of N , f be an element
of the carrier of

∏
J, and x be an element of the carrier of Iterated(J). If

x = 〈〈i, f〉〉, then (Iterated(J))(x) = (the mapping of J(i))(f(i)).

(37) Let T be a non empty 1-sorted structure, Y be a net in T , and J be a
net set of the carrier of Y , T . Then rng (the mapping of Iterated(J)) ⊆⋃
{rng (the mapping of J(i)): i ranges over elements of Y }.

10. Poset of open neighbourhoods

Let T be a non empty topological space and let p be a point of T . The open
neighbourhoods of p constitute a relational structure and is defined as follows:

(Def. 17) The open neighbourhoods of p = (〈{V, V ranges over subsets of T : p ∈
V ∧ V is open},⊆〉)`.

Let T be a non empty topological space and let p be a point of T . One can
check that the open neighbourhoods of p is non empty.
One can prove the following propositions:

(38) Let T be a non empty topological space, p be a point of T , and x be an
element of the carrier of the open neighbourhoods of p. Then there exists
a subset W of T such that W = x and p ∈W and W is open.

(39) Let T be a non empty topological space, p be a point of T , and x be a
subset of the carrier of T . Then x ∈ the carrier of the open neighbourhoods
of p if and only if p ∈ x and x is open.



moore-smith convergence 221

(40) Let T be a non empty topological space, p be a point of T , and x, y be
elements of the carrier of the open neighbourhoods of p. Then x ¬ y if
and only if y ⊆ x.

Let T be a non empty topological space and let p be a point of T . Note that
the open neighbourhoods of p is transitive and directed.

11. Nets in topological spaces

Let T be a non empty topological space and let N be a net in T . The functor
LimN yields a subset of T and is defined as follows:

(Def. 18) For every point p of T holds p ∈ LimN iff for every neighbourhood V
of p holds N is eventually in V .

The following four propositions are true:

(41) For every non empty topological space T and for every net N in T and
for every subnet Y of N holds LimN ⊆ LimY.

(42) For every non empty topological space T and for every constant net N
in T holds the value of N ∈ LimN.

(43) Let T be a non empty topological space, N be a net in T , and p be a
point of T . Suppose p ∈ LimN. Let d be an element of N . Then there
exists a subset S of T such that S = {N(c), c ranges over elements of N :
d ¬ c} and p ∈ S.

(44) Let T be a non empty topological space. Then T is Hausdorff if and only
if for every net N in T and for all points p, q of T such that p ∈ LimN
and q ∈ LimN holds p = q.

Let T be a Hausdorff non empty topological space and let N be a net in T .
Observe that LimN is trivial.
Let T be a non empty topological space and let N be a net in T . We say

that N is convergent if and only if:

(Def. 19) LimN 6= ∅.

Let T be a non empty topological space. Observe that every net in T which
is constant is also convergent.
Let T be a non empty topological space. Note that there exists a net in T

which is convergent and strict.
Let T be a Hausdorff non empty topological space and let N be a convergent

net in T . The functor limN yielding an element of T is defined as follows:

(Def. 20) limN ∈ LimN.

One can prove the following propositions:

(45) For every Hausdorff non empty topological space T and for every con-
stant net N in T holds limN = the value of N .

(46) Let T be a non empty topological space, N be a net in T , and p be a
point of T . Suppose p /∈ LimN. Then it is not true that there exists a
subnet Y of N and there exists a subnet Z of Y such that p ∈ LimZ.
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(47) Let T be a non empty topological space and N be a net in T . Suppose
N ∈ NetUniv(T ). Let p be a point of T . Suppose p /∈ LimN. Then there
exists a subnet Y of N such that Y ∈ NetUniv(T ) and it is not true that
there exists a subnet Z of Y such that p ∈ LimZ.

(48) Let T be a non empty topological space, N be a net in T , and p be a
point of T . Suppose p ∈ LimN. Let J be a net set of the carrier of N , T .
Suppose that for every element i of the carrier of N holds N(i) ∈ Lim J(i).
Then p ∈ Lim Iterated(J).

12. Convergence classes

Let S be a non empty 1-sorted structure. Convergence class of S is defined
as follows:

(Def. 21) It ⊆ [:NetUniv(S), the carrier of S :].

Let S be a non empty 1-sorted structure. Note that every convergence class
of S is relation-like.

Let T be a non empty topological space. The functor Convergence(T ) yiel-
ding a convergence class of T is defined as follows:

(Def. 22) For every net N in T and for every point p of T holds 〈〈N, p〉〉 ∈
Convergence(T ) iff N ∈ NetUniv(T ) and p ∈ LimN.

Let T be a non empty 1-sorted structure and let C be a convergence class
of T . We say that C has (CONSTANTS) property if and only if:

(Def. 23) For every constant net N in T such that N ∈ NetUniv(T ) holds 〈〈N, the
value of N〉〉 ∈ C.

We say that C has (SUBNETS) property if and only if the condition (Def. 24)
is satisfied.

(Def. 24) Let N be a net in T and Y be a subnet of N . Suppose Y ∈ NetUniv(T ).
Let p be an element of the carrier of T . If 〈〈N, p〉〉 ∈ C, then 〈〈Y, p〉〉 ∈ C.

We say that C has (DIVERGENCE) property if and only if the condition
(Def. 25) is satisfied.

(Def. 25) Let X be a net in T and p be an element of the carrier of T . Suppose
X ∈ NetUniv(T ) and 〈〈X, p〉〉 /∈ C. Then there exists a subnet Y of X such
that Y ∈ NetUniv(T ) and it is not true that there exists a subnet Z of Y
such that 〈〈Z, p〉〉 ∈ C.

We say that C has (ITERATED LIMITS) property if and only if the condition
(Def. 26) is satisfied.

(Def. 26) Let X be a net in T and p be an element of the carrier of T . Suppose 〈〈X,
p〉〉 ∈ C. Let J be a net set of the carrier of X, T . Suppose that for every
element i of the carrier of X holds 〈〈J(i), X(i)〉〉 ∈ C. Then 〈〈 Iterated(J),
p〉〉 ∈ C.
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Let T be a non empty topological space. Note that Convergence(T ) has
(CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property,
and (ITERATED LIMITS) property.

Let S be a non empty 1-sorted structure and let C be a convergence class
of S. The functor ConvergenceSpace(C) yielding a strict topological structure
is defined by the conditions (Def. 27).

(Def. 27)(i) The carrier of ConvergenceSpace(C) = the carrier of S, and

(ii) the topology of ConvergenceSpace(C) = {V, V ranges over subsets of
the carrier of S:

∧
p : element of the carrier of S (p ∈ V ⇒

∧
N :net in S (〈〈N,

p〉〉 ∈ C ⇒ N is eventually in V ))}.

Let S be a non empty 1-sorted structure and let C be a convergence class
of S. Observe that ConvergenceSpace(C) is non empty.

Let S be a non empty 1-sorted structure and let C be a convergence class
of S. Note that ConvergenceSpace(C) is topological space-like.
One can prove the following proposition

(49) For every non empty 1-sorted structure S and for every convergence class
C of S holds C ⊆ Convergence(ConvergenceSpace(C)).

Let T be a non empty 1-sorted structure and let C be a convergence class
of T . We say that C is topological if and only if:

(Def. 28) C has (CONSTANTS) property, (SUBNETS) property, (DIVER-
GENCE) property, and (ITERATED LIMITS) property.

Let T be a non empty 1-sorted structure. One can check that there exists a
convergence class of T which is non empty and topological.

Let T be a non empty 1-sorted structure. One can verify that every conver-
gence class of T which is topological has (CONSTANTS) property, (SUBNETS)
property, (DIVERGENCE) property, and (ITERATED LIMITS) property and
every convergence class of T which has (CONSTANTS) property, (SUBNETS)
property, (DIVERGENCE) property, and (ITERATED LIMITS) property is
topological.

The following propositions are true:

(50) Let T be a non empty 1-sorted structure, C be a topological convergence
class of T , and S be a subset of ConvergenceSpace(C) qua non empty
topological space. Then S is open if and only if for every element p of
the carrier of T such that p ∈ S and for every net N in T such that 〈〈N,
p〉〉 ∈ C holds N is eventually in S.

(51) Let T be a non empty 1-sorted structure, C be a topological convergence
class of T , and S be a subset of ConvergenceSpace(C) qua non empty
topological space. Then S is closed if and only if for every element p of
the carrier of T and for every net N in T such that 〈〈N, p〉〉 ∈ C and N is
often in S holds p ∈ S.

(52) Let T be a non empty 1-sorted structure, C be a topological conver-
gence class of T , S be a subset of ConvergenceSpace(C), and p be a point
of ConvergenceSpace(C). Suppose p ∈ S. Then there exists a net N in
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ConvergenceSpace(C) such that 〈〈N, p〉〉 ∈ C and rng (the mapping of N)
⊆ S and p ∈ LimN.

(53) Let T be a non empty 1-sorted structure and C be a convergence class
of T . Then Convergence(ConvergenceSpace(C)) = C if and only if C is
topological.
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