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[19], [29], [8], and [22].

1. PRELIMINARIES

The scheme SubsetEq deals with a non empty set A, subsets B, C of A, and
a unary predicate P, and states that:
B=C
provided the following conditions are met:
e For every element y of A holds y € B iff P[y],
e For every element y of A holds y € C iff P[y].
We now state the proposition
(1) For all sets X, = holds X —— x is constant.
Let X, = be sets. Note that X —— x is constant.
Let f be a function. Let us assume that f is non empty and constant. The
value of f is defined by:

(Def. 1) There exists a set = such that z € dom f and the value of f = f(z).
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214 ANDRZEJ TRYBULEC

Let us note that there exists a function which is non empty and constant.
Let f be a non empty constant function. Then the value of f can be charac-
terized by the condition:

(Def. 2) There exists a set = such that € dom f and the value of f = f(z).
The following propositions are true:
(2) For every non empty set X and for every set z holds the value of X ——
T =1
(3) For every function f holds rng f C dom f.

Let us note that every set which is universal is also transitive and a Tarski
class and every set which is transitive and a Tarski class is also universal.
In the sequel x, X will be sets and T" will be a universal class.
Let us consider X. The universe of X is defined as follows:
(Def. 3) The universe of X = T(X*¢).
We now state the proposition
(4) T(X) is a Tarski class.
Let us consider X. Note that T(X) is a Tarski class.
Let us consider X. Observe that the universe of X is transitive and a Tarski
class.
Let us consider X. One can check that the universe of X is universal and
non empty.
One can prove the following proposition
(5) For every function f such that dom f € T and rng f C T holds [[ f € T.

2. TOPOLOGICAL SPACES

Next we state the proposition
(6) Let T be a non empty topological space, A be a subset of T, and p be

a point of T. Then p € A if and only if for every neighbourhood G of p
holds G meets A.

Let T be a non empty topological space. We introduce 1" is Hausdorff as a
synonym of T" is T5.

One can verify that there exists a non empty topological space which is
Hausdorff.

One can prove the following two propositions:

(7) Let X be a non empty topological space and A be a subset of the carrier
of X. Then Qx is a neighbourhood of A.

(8) Let X be a non empty topological space, A be a subset of the carrier of
X, and Y be a neighbourhood of A. Then A CY.
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3. 1-SORTED STRUCTURES

The following proposition is true

(9) Let Y be a non empty set, J be a l-sorted yielding many sorted set
indexed by Y, and i be an element of Y. Then (support J)(i) = the carrier
of J(i).
Let us note that there exists a function which is non empty, constant, and
1-sorted yielding.
Let J be a 1-sorted yielding function. Let us observe that J is nonempty if
and only if:
(Def. 4) For every set ¢ such that ¢ € rngJ holds ¢ is a non empty 1-sorted
structure.

We introduce J is yielding non-empty carriers as a synonym of J is nonempty.

Let X be a set and let L be a 1-sorted structure. Observe that X —— L is
1-sorted yielding.

Let I be a set. Observe that there exists a 1-sorted yielding many sorted set
indexed by I which is yielding non-empty carriers.

Let I be a non empty set and let J be a relational structure yielding many
sorted set indexed by I. One can verify that the carrier of []J is functional.

Let I be a set and let J be a yielding non-empty carriers 1-sorted yielding
many sorted set indexed by I. Observe that support J is non-empty.

Next we state the proposition

(10) Let T be a non empty 1-sorted structure, S be a subset of the carrier
of T, and p be an element of the carrier of T'. Then p ¢ S if and only if
pE—S.

4. RELATIONAL STRUCTURES

Let T be a non empty relational structure and let A be a lower subset of T
Observe that — A is upper.

Let T be a non empty relational structure and let A be an upper subset of
T. Observe that —A is lower.

Let N be a non empty relational structure. Let us observe that N is directed
if and only if:

(Def. 5) For all elements x, y of N there exists an element z of N such that z < z
and y < z.

Let X be a set. Note that 2% is directed.

Let us mention that there exists a relational structure which is non empty,
directed, transitive, and strict.

Let M be a non empty set, let N be a non empty relational structure, let
f be a function from M into the carrier of NV, and let m be an element of M.
Then f(m) is an element of N.
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Let I be a set. Note that there exists a relational structure yielding many
sorted set indexed by I which is yielding non-empty carriers.

Let I be a non empty set and let J be a yielding non-empty carriers relational
structure yielding many sorted set indexed by I. Observe that [] J is non empty.

Next we state the proposition

(11) For all relational structures Ry, Rz holds Qi g, gr,3 = [ Qr,)s Qry) -

Let Y1, Y5 be directed relational structures. Observe that [ Y7, Y5 ] is direc-
ted.
Next we state the proposition

(12) For every relational structure R holds the carrier of R = the carrier of
R~.
Let S be a 1-sorted structure and let N be a net structure over S. We say
that N is constant if and only if:

(Def. 6) The mapping of N is constant.

Let R be a relational structure, let T be a non empty 1-sorted structure, and
let p be an element of the carrier of T'. The functor R — p yielding a strict net
structure over 7' is defined by the conditions (Def. 7).

(Def. 7)(i)  The relational structure of (R — p) = the relational structure of R,
and

(ii)  the mapping of (R —— p) = (the carrier of (R +—— p)) — p.

Let R be a relational structure, let T" be a non empty 1-sorted structure,
and let p be an element of the carrier of T'. Note that R —— p is constant.

Let R be a non empty relational structure, let 7' be a non empty 1-sorted
structure, and let p be an element of the carrier of T'. One can verify that R —— p
is non empty.

Let R be a non empty directed relational structure, let T" be a non empty
1-sorted structure, and let p be an element of the carrier of T'. Note that R —— p
is directed.

Let R be a non empty transitive relational structure, let T" be a non empty
1-sorted structure, and let p be an element of the carrier of T. One can check
that R —— p is transitive.

We now state two propositions:

(13) Let R be arelational structure, 7' be a non empty 1-sorted structure, and
p be an element of the carrier of 7. Then the carrier of (R — p) = the
carrier of R.

(14) Let R be a non empty relational structure, 7" be a non empty 1-sorted
structure, p be an element of the carrier of 7', and ¢ be an element of the
carrier of (R — p).Then (R p)(q) = p.

Let T' be a non empty 1l-sorted structure and let N be a non empty net
structure over T'. Observe that the mapping of N is non empty.
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5. SUBSTRUCTURES OF NETS

One can prove the following propositions:
(15) Every relational structure R is a full relational substructure of R.
(16) Let R be a relational structure and S be a relational substructure of R.
Then every relational substructure of S is a relational substructure of R.
Let S be a 1-sorted structure and let N be a net structure over S. A net
structure over S is called a structure of a subnet of N if:

(Def. 8) Tt is a relational substructure of N and the mapping of it = (the mapping
of N)[(the carrier of it).

Next we state two propositions:

(17) For every 1-sorted structure S holds every net structure N over S is a
structure of a subnet of N.

(18) Let @ be a 1-sorted structure, R be a net structure over @, and S be
a structure of a subnet of R. Then every structure of a subnet of S is a
structure of a subnet of R.

Let S be a 1-sorted structure, let N be a net structure over S, and let M be
a structure of a subnet of N. We say that M is full if and only if:
(Def. 9) M is a full relational substructure of N.
Let S be a 1-sorted structure and let N be a net structure over S. Note that
there exists a structure of a subnet of N which is full and strict.
Let S be a 1-sorted structure and let N be a non empty net structure over
S. Note that there exists a structure of a subnet of N which is full, non empty,
and strict.
One can prove the following three propositions:
(19) Let S be a 1-sorted structure, N be a net structure over S, and M be a
structure of a subnet of N. Then the carrier of M C the carrier of V.
(20) Let S be a l-sorted structure, N be a net structure over S, M be a
structure of a subnet of N, z, y be elements of N, and ¢, j be elements of
the carrier of M. If z =4 and y = j and ¢ < j, then z < y.
(21) Let S be a 1-sorted structure, N be a non empty net structure over S,
M be a non empty full structure of a subnet of N, z, y be elements of N,
and i, j be elements of the carrier of M. If x =i and y = j and = < v,
then 7 < j.

6. MORE ABOUT NETS

Let T be a non empty 1-sorted structure. One can verify that there exists a
net in 7" which is constant and strict.
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Let T be a non empty 1-sorted structure and let N be a constant net struc-
ture over T'. One can verify that the mapping of N is constant.
Let T be a non empty 1-sorted structure and let N be a net structure over
T. Let us assume that N is constant and non empty. The value of N yields an
element of 7" and is defined as follows:
(Def. 10) The value of N = the value of the mapping of N.

Let T be a non empty 1-sorted structure and let NV be a constant non empty
net structure over 7. Then the value of NV can be characterized by the condition:
(Def. 11) The value of N = the value of the mapping of N.
Next we state the proposition

(22) Let R be a non empty relational structure, 7' be a non empty 1-sorted
structure, and p be an element of the carrier of T. Then the value of
R+—p=np.

Let T be a non empty 1-sorted structure and let N be a net in T'. A net in
T is said to be a subnet of N if it satisfies the condition (Def. 12).
(Def. 12) There exists a map f from it into N such that
(i)  the mapping of it = (the mapping of N) - f, and
(ii)  for every element m of N there exists an element n of it such that for
every element p of it such that n < p holds m < f(p).
We now state several propositions:

(23) For every non empty 1l-sorted structure 7" holds every net N in T is a
subnet of N.

(24) Let T be a non empty 1l-sorted structure and Ny, Na, N3 be nets in 7.
Suppose Ni is a subnet of Ny and Ny is a subnet of N3. Then N is a
subnet of N3.

(25) Let T be a non empty 1-sorted structure, N be a constant net in 7', and
i be an element of the carrier of N. Then N (i) = the value of N.

(26) Let L be a non empty 1-sorted structure, N be a net in L, and X, Y be
sets. If IV is eventually in X and eventually in Y, then X meets Y.

(27) Let S be a non empty 1-sorted structure, N be a net in S, M be a subnet
of N, and given X. If M is often in X, then N is often in X.

(28) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is eventually in X, then N is often in X.

(29) For every non empty 1-sorted structure S holds every net in S is even-
tually in the carrier of S.

7. THE RESTRICTION OF A NET

Let S be a 1-sorted structure, let N be a net structure over S, and let us
consider X. The functor N~!(X) yields a strict structure of a subnet of N and
is defined by:
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(Def. 13) N71(X) is a full relational substructure of N and the carrier of
N~YX) = (the mapping of N)~1(X).
Let S be a 1-sorted structure, let N be a transitive net structure over S,
and let us consider X. One can verify that N~1(X) is transitive and full.
We now state three propositions:
(30) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is often in X, then N~1(X) is non empty and directed.

(31) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is often in X, then N~1(X) is a subnet of N.

(32) Let S be a non empty 1-sorted structure, N be a net in S, given X, and
M be a subnet of N. If M = N~!(X), then M is eventually in X.

8. THE UNIVERSE OF NETS

Let X be a non empty 1-sorted structure. The functor NetUniv(X) is defined
by the condition (Def. 14).
(Def. 14) Let given x. Then x € NetUniv(X) if and only if there exists a strict
net N in X such that N = x and the carrier of N € the universe of the
carrier of X.
Let X be a non empty 1-sorted structure. One can check that NetUniv(X)
is non empty.

9. PARAMETRIZED FAMILIES OF NETS, ITERATION

Let X be a set and let T" be a 1-sorted structure. A many sorted set indexed
by X is said to be a net set of X, T if:

(Def. 15) For every set i such that ¢ € rngit holds ¢ is a net in 7.
The following proposition is true

(33) Let X be a set, T be a 1-sorted structure, and F' be a many sorted set
indexed by X. Then F is a net set of X, T if and only if for every set 7
such that ¢ € X holds F'(i) is a net in 7.

Let X be a non empty set, let T' be a 1-sorted structure, let J be a net set
of X, T, and let ¢ be an element of X. Then J(i) is a net in 7.

Let X be a set and let T" be a 1-sorted structure. One can check that every
net set of X, T is relational structure yielding.

Let T be a 1-sorted structure and let Y be a net in T'. Observe that every
net set of the carrier of Y, T is yielding non-empty carriers.

Let T be a non empty 1-sorted structure, let Y be a net in 7', and let J be a
net set of the carrier of Y, T'. One can check that [] J is directed and transitive.
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Let X be a set and let T" be a 1-sorted structure. Observe that every net set
of X, T is yielding non-empty carriers.
Let X be a set and let T be a 1-sorted structure. One can check that there
exists a net set of X, T which is yielding non-empty carriers.
Let T be a non empty 1-sorted structure, let Y be a net in T, and let J be
a net set of the carrier of Y, T'. The functor Iterated(J) yielding a strict net in
T is defined by the conditions (Def. 16).
(Def. 16)(i)  The relational structure of Iterated(J) =Y, [[ /], and
(ii)  for every element ¢ of the carrier of Y and for every function f such
that ¢ € the carrier of Y and f € the carrier of [[ J holds (the mapping
of Tterated(J))(i, f) = (the mapping of J(7))(f(%)).
We now state four propositions:

(34) Let T be a non empty l-sorted structure, Y be a net in 7', and J be
a net set of the carrier of Y, T'. Suppose Y € NetUniv(7") and for every
element 7 of the carrier of Y holds J(i) € NetUniv (7). Then Iterated(J) €
NetUniv(T).

(35) Let T be a non empty 1-sorted structure, N be a net in 7, and J be
a net set of the carrier of N, T'. Then the carrier of Iterated(J) = [ the
carrier of N, []supportJ ].

(36) Let T be a non empty 1-sorted structure, N be a net in 7', J be a net set
of the carrier of N, T, i be an element of the carrier of IV, f be an element
of the carrier of [ .J, and = be an element of the carrier of Iterated(J). If
x = (i, [), then (Iterated(.J))(x) = (the mapping of J(2))(f(7)).

(37) Let T be a non empty 1-sorted structure, Y be a net in 7', and J be a
net set of the carrier of Y, T. Then rng (the mapping of Iterated(.J)) C
(J{rng (the mapping of J(i)): ¢ ranges over elements of Y}.

10. POSET OF OPEN NEIGHBOURHOODS

Let T be a non empty topological space and let p be a point of T'. The open
neighbourhoods of p constitute a relational structure and is defined as follows:
(Def. 17) The open neighbourhoods of p = ({({V,V ranges over subsets of T: p €
V A Visopen}, C))~.
Let T be a non empty topological space and let p be a point of T'. One can
check that the open neighbourhoods of p is non empty.
One can prove the following propositions:

(38) Let T be a non empty topological space, p be a point of T', and x be an
element of the carrier of the open neighbourhoods of p. Then there exists
a subset W of T such that W =z and p € W and W is open.

(39) Let T be a non empty topological space, p be a point of T, and z be a
subset of the carrier of T'. Then x € the carrier of the open neighbourhoods
of p if and only if p € x and x is open.
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(40) Let T be a non empty topological space, p be a point of T, and z, y be
elements of the carrier of the open neighbourhoods of p. Then = < y if
and only if y C x.
Let T be a non empty topological space and let p be a point of T'. Note that
the open neighbourhoods of p is transitive and directed.

11. NETS IN TOPOLOGICAL SPACES

Let T be a non empty topological space and let N be a net in T". The functor
Lim N yields a subset of T" and is defined as follows:
(Def. 18) For every point p of T holds p € Lim N iff for every neighbourhood V'
of p holds N is eventually in V.

The following four propositions are true:

(41) For every non empty topological space T and for every net N in T" and
for every subnet Y of N holds Lim N C LimY.

(42) For every non empty topological space T and for every constant net N
in T holds the value of N € Lim N.

(43) Let T be a non empty topological space, N be a net in 7', and p be a
point of T'. Suppose p € Lim N. Let d be an element of N. Then there
exists a subset S of T such that S = {N(c), c ranges over elements of N:
d<c}andpeS.

(44) Let T be a non empty topological space. Then T' is Hausdorff if and only
if for every net N in T and for all points p, ¢ of T such that p € Lim N
and ¢ € Lim N holds p = q.

Let T be a Hausdorff non empty topological space and let N be a net in T'.
Observe that Lim N is trivial.

Let T be a non empty topological space and let N be a net in T. We say
that N is convergent if and only if:

(Def. 19) Lim N # 0.
Let T be a non empty topological space. Observe that every net in 7" which
is constant is also convergent.
Let T be a non empty topological space. Note that there exists a net in T’
which is convergent and strict.
Let T be a Hausdorff non empty topological space and let N be a convergent
net in T'. The functor lim N yielding an element of 7" is defined as follows:
(Def. 20) lim N € Lim N.
One can prove the following propositions:

(45) For every Hausdorff non empty topological space T" and for every con-
stant net N in 7" holds lim N = the value of V.
(46) Let T be a non empty topological space, N be a net in 7', and p be a

point of T. Suppose p ¢ Lim N. Then it is not true that there exists a
subnet Y of IV and there exists a subnet Z of Y such that p € Lim Z.
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(47) Let T be a non empty topological space and N be a net in 7". Suppose
N € NetUniv(T). Let p be a point of T'. Suppose p ¢ Lim N. Then there
exists a subnet Y of N such that Y € NetUniv(T) and it is not true that
there exists a subnet Z of Y such that p € Lim Z.

(48) Let T be a non empty topological space, N be a net in T', and p be a
point of T'. Suppose p € Lim N. Let J be a net set of the carrier of N, T'.
Suppose that for every element i of the carrier of N holds N (i) € Lim J (7).
Then p € Lim Iterated(.J).

12. CONVERGENCE CLASSES

Let S be a non empty 1-sorted structure. Convergence class of S is defined
as follows:

(Def. 21) It C [ NetUniv(S), the carrier of S .

Let S be a non empty 1-sorted structure. Note that every convergence class
of S is relation-like.

Let T be a non empty topological space. The functor Convergence(T') yiel-
ding a convergence class of T is defined as follows:

(Def. 22) For every net N in T and for every point p of T holds (N, p) €
Convergence(T') iff N € NetUniv(7T') and p € Lim V.
Let T be a non empty 1-sorted structure and let C be a convergence class

of T. We say that C' has (CONSTANTS) property if and only if:

(Def. 23) For every constant net N in T such that N € NetUniv(7T) holds (N, the
value of N) € C.
We say that C' has (SUBNETS) property if and only if the condition (Def. 24)
is satisfied.

(Def. 24) Let N be anet in T and Y be a subnet of N. Suppose Y € NetUniv(T).
Let p be an element of the carrier of T. If (N, p) € C, then (Y, p) € C.

We say that C' has (DIVERGENCE) property if and only if the condition
(Def. 25) is satisfied.

(Def. 25) Let X be a net in 7" and p be an element of the carrier of T'. Suppose
X € NetUniv(T) and (X, p) ¢ C. Then there exists a subnet Y of X such
that Y € NetUniv(7') and it is not true that there exists a subnet Z of YV’
such that (Z, p) € C.

We say that C' has (ITERATED LIMITS) property if and only if the condition
(Def. 26) is satisfied.

(Def. 26) Let X be anet in T and p be an element of the carrier of T'. Suppose (X,
p) € C. Let J be a net set of the carrier of X, T'. Suppose that for every
element ¢ of the carrier of X holds (J (i), X (7)) € C. Then (Iterated(J),
p) e C.
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Let T be a non empty topological space. Note that Convergence(T") has
(CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property,
and (ITERATED LIMITS) property.

Let S be a non empty 1-sorted structure and let C' be a convergence class
of S. The functor ConvergenceSpace(C') yielding a strict topological structure
is defined by the conditions (Def. 27).

(Def. 27)(1)  The carrier of ConvergenceSpace(C') = the carrier of S, and
(ii)  the topology of ConvergenceSpace(C) = {V,V ranges over subsets of
the carrier of S: /\p:element of the carrier of S (p ev = /\N:net in S (<N7
p) € C = N is eventually in V))}.
Let S be a non empty 1-sorted structure and let C' be a convergence class
of S. Observe that ConvergenceSpace(C') is non empty.
Let S be a non empty 1-sorted structure and let C' be a convergence class
of S. Note that ConvergenceSpace(C') is topological space-like.
One can prove the following proposition

(49) For every non empty 1-sorted structure S and for every convergence class
C of S holds C' C Convergence(ConvergenceSpace(C')).

Let T be a non empty 1-sorted structure and let C be a convergence class
of T'. We say that C' is topological if and only if:

(Def. 28) C has (CONSTANTS) property, (SUBNETS) property, (DIVER-
GENCE) property, and (ITERATED LIMITS) property.

Let T be a non empty 1-sorted structure. One can check that there exists a
convergence class of 7" which is non empty and topological.

Let T be a non empty 1-sorted structure. One can verify that every conver-
gence class of T which is topological has (CONSTANTS) property, (SUBNETS)
property, (DIVERGENCE) property, and (ITERATED LIMITS) property and
every convergence class of 7" which has (CONSTANTS) property, (SUBNETS)
property, (DIVERGENCE) property, and (ITERATED LIMITS) property is
topological.

The following propositions are true:

(50) Let T be a non empty 1-sorted structure, C' be a topological convergence
class of T, and S be a subset of ConvergenceSpace(C') qua non empty
topological space. Then S is open if and only if for every element p of
the carrier of T such that p € S and for every net N in T such that (N,
p) € C holds N is eventually in S.

(51) Let T be a non empty 1-sorted structure, C' be a topological convergence
class of T, and S be a subset of ConvergenceSpace(C') qua non empty
topological space. Then S is closed if and only if for every element p of
the carrier of T and for every net N in T such that (N, p) € C and N is
often in S holds p € S.

(52) Let T be a non empty 1-sorted structure, C' be a topological conver-
gence class of T', S be a subset of ConvergenceSpace(C'), and p be a point
of ConvergenceSpace(C'). Suppose p € S. Then there exists a net N in
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ConvergenceSpace(C) such that (N, p) € C' and rng (the mapping of N)
C S and p € Lim N.

(53) Let T be a non empty 1-sorted structure and C' be a convergence class
of T. Then Convergence(ConvergenceSpace(C)) = C if and only if C is
topological.
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