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The papers [1], [3], [4], [2], [6], and [7] provide the terminology and notation for
this paper.

1. Introduction

One can prove the following propositions:

(1) For every reflexive antisymmetric relational structure L with l.u.b.’s and
for every element a of L holds a ⊔ a = a.

(2) For every reflexive antisymmetric relational structure L with g.l.b.’s and
for every element a of L holds a ⊓ a = a.

(3) Let L be a transitive antisymmetric relational structure with l.u.b.’s and
a, b, c be elements of L. If a ⊔ b ¬ c, then a ¬ c.

(4) Let L be a transitive antisymmetric relational structure with g.l.b.’s and
a, b, c be elements of L. If c ¬ a ⊓ b, then c ¬ a.

(5) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and g.l.b.’s and a, b, c be elements of L. Then a ⊓ b ¬ a ⊔ c.
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(6) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and a, b, c be elements of L. If a ¬ b, then a ⊓ c ¬ b ⊓ c.

(7) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and a, b, c be elements of L. If a ¬ b, then a ⊔ c ¬ b ⊔ c.

(8) For every sup-semilattice L and for all elements a, b of L such that a ¬ b

holds a ⊔ b = b.

(9) For every sup-semilattice L and for all elements a, b, c of L such that
a ¬ c and b ¬ c holds a ⊔ b ¬ c.

(10) For every semilattice L and for all elements a, b of L such that b ¬ a

holds a ⊓ b = b.

2. Difference in Relation Structure

We now state the proposition

(11) For every Boolean lattice L and for all elements x, y of L holds y is a
complement of x iff y = ¬x.

Let L be a non empty relational structure and let a, b be elements of L. The
functor a \ b yielding an element of L is defined as follows:

(Def. 1) a \ b = a ⊓ ¬b.

Let L be a non empty relational structure and let a, b be elements of L. The
functor a−. b yields an element of L and is defined as follows:

(Def. 2) a−. b = (a \ b) ⊔ (b \ a).

Let L be an antisymmetric relational structure with g.l.b.’s and l.u.b.’s and
let a, b be elements of L. Let us notice that the functor a−. b is commutative.
Let L be a non empty relational structure and let a, b be elements of L. We

say that a meets b if and only if:

(Def. 3) a ⊓ b 6= ⊥L.

We introduce a misses b as an antonym of a meets b.
Let L be an antisymmetric relational structure with g.l.b.’s and let a, b

be elements of L. Let us note that the predicate a meets b is symmetric. We
introduce a misses b as an antonym of a meets b.
Next we state a number of propositions:

(12) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, c be elements of L. If a ¬ c, then a \ b ¬ c.

(13) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, c be elements of L. If a ¬ b, then a \ c ¬ b \ c.

(14) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b be elements of L. Then a \ b ¬ a.

(15) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b be elements of L. Then a \ b ¬ a−. b.
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(16) For every lattice L and for all elements a, b, c of L such that a \ b ¬ c

and b \ a ¬ c holds a−. b ¬ c.

(17) For every lattice L and for every element a of L holds a meets a iff
a 6= ⊥L.

(18) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, c be elements of L. Then a ⊓ (b \ c) = a ⊓ b \ c.

(19) Let L be an antisymmetric transitive relational structure with g.l.b.’s.
Suppose L is distributive. Let a, b, c be elements of L. If a⊓ b⊔ a⊓ c = a,

then a ¬ b ⊔ c.

(20) For every lattice L such that L is distributive and for all elements a, b,
c of L holds a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c).

(21) For every lattice L such that L is distributive and for all elements a, b,
c of L holds (a ⊔ b) \ c = (a \ c) ⊔ (b \ c).

3. Lower-bound in Relation Structure

Next we state a number of propositions:

(22) Let L be a lower-bounded non empty antisymmetric relational structure
and a be an element of L. If a ¬ ⊥L, then a = ⊥L.

(23) Let L be a lower-bounded semilattice and a, b, c be elements of L. If
a ¬ b and a ¬ c and b ⊓ c = ⊥L, then a = ⊥L.

(24) Let L be a lower-bounded antisymmetric relational structure with l.u.b.’s
and a, b be elements of L. If a ⊔ b = ⊥L, then a = ⊥L and b = ⊥L.

(25) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a ¬ b and b ⊓ c = ⊥L, then
a ⊓ c = ⊥L.

(26) For every lower-bounded semilattice L and for every element a of L holds
⊥L \ a = ⊥L.

(27) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a meets b and b ¬ c, then a

meets c.

(28) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s
and a be an element of L. Then a ⊓ ⊥L = ⊥L.

(29) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and l.u.b.’s and a, b, c be elements of L. If a meets b⊓ c, then
a meets b.

(30) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and l.u.b.’s and a, b, c be elements of L. If a meets b \ c, then
a meets b.

(31) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a be an element of L. Then a misses ⊥L.
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(32) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a misses c and b ¬ c, then a

misses b.

(33) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a misses b or a misses c, then
a misses b ⊓ c.

(34) Let L be a lower-bounded lattice and a, b, c be elements of L. If a ¬ b

and a ¬ c and b misses c, then a = ⊥L.

(35) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a misses b, then a ⊓ c misses
b ⊓ c.

4. Boolean Lattices

We adopt the following rules: L will denote a Boolean non empty relational
structure and a, b, c, d will denote elements of L.
Next we state a number of propositions:

(36) a ⊓ b ⊔ b ⊓ c ⊔ c ⊓ a = (a ⊔ b) ⊓ (b ⊔ c) ⊓ (c ⊔ a).

(37) a ⊓ ¬a = ⊥L and a ⊔ ¬a = ⊤L.

(38) If a \ b ¬ c, then a ¬ b ⊔ c.

(39) ¬(a ⊔ b) = ¬a ⊓ ¬b and ¬(a ⊓ b) = ¬a ⊔ ¬b.

(40) If a ¬ b, then ¬b ¬ ¬a.

(41) If a ¬ b, then c \ b ¬ c \ a.

(42) If a ¬ b and c ¬ d, then a \ d ¬ b \ c.

(43) If a ¬ b ⊔ c, then a \ b ¬ c and a \ c ¬ b.

(44) ¬a ¬ ¬(a ⊓ b) and ¬b ¬ ¬(a ⊓ b).

(45) ¬(a ⊔ b) ¬ ¬a and ¬(a ⊔ b) ¬ ¬b.

(46) If a ¬ b \ a, then a = ⊥L.

(47) If a ¬ b, then b = a ⊔ (b \ a).

(48) a \ b = ⊥L iff a ¬ b.

(49) If a ¬ b ⊔ c and a ⊓ c = ⊥L, then a ¬ b.

(50) a ⊔ b = (a \ b) ⊔ b.

(51) a \ (a ⊔ b) = ⊥L.

(52) a \ a ⊓ b = a \ b.

(53) (a \ b) ⊓ b = ⊥L.

(54) a ⊔ (b \ a) = a ⊔ b.

(55) a ⊓ b ⊔ (a \ b) = a.

(56) a \ (b \ c) = (a \ b) ⊔ a ⊓ c.

(57) a \ (a \ b) = a ⊓ b.
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(58) (a ⊔ b) \ b = a \ b.

(59) a ⊓ b = ⊥L iff a \ b = a.

(60) a \ (b ⊔ c) = (a \ b) ⊓ (a \ c).

(61) a \ b ⊓ c = (a \ b) ⊔ (a \ c).

(62) a ⊓ (b \ c) = a ⊓ b \ a ⊓ c.

(63) (a ⊔ b) \ a ⊓ b = (a \ b) ⊔ (b \ a).

(64) a \ b \ c = a \ (b ⊔ c).

(65) ¬(⊥L) = ⊤L.

(66) ¬(⊤L) = ⊥L.

(67) a \ a = ⊥L.

(68) a \ ⊥L = a.

(69) ¬(a \ b) = ¬a ⊔ b.

(70) a ⊓ b misses a \ b.

(71) a \ b misses b.

(72) If a misses b, then (a ⊔ b) \ b = a.
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