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Summary. In the article notation and facts necessary to start with for-
malization of continuous lattices according to [5] are introduced.

MML Identifier: YELLOW_5.

The papers [1], [3], [4], [2], [6], and [7] provide the terminology and notation for
this paper.

1. INTRODUCTION

One can prove the following propositions:
(1) For every reflexive antisymmetric relational structure L with Lu.b.’s and
for every element a of L holds a U a = a.
(2) For every reflexive antisymmetric relational structure L with g.1.b.’s and
for every element a of L holds alla = a.
(3) Let L be a transitive antisymmetric relational structure with L.u.b.’s and
a, b, c be elements of L. If aL1b < ¢, then a < c.

(4) Let L be a transitive antisymmetric relational structure with g.1.b.’s and
a, b, c be elements of L. If ¢ < aMb, then ¢ < a.

(5) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and g.l.b.’s and a, b, ¢ be elements of L. Then alb < allc.
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(6) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and a, b, ¢ be elements of L. If a < b, then allc < bMe.

(7) Let L be an antisymmetric transitive relational structure with lL.u.b.’s
and a, b, ¢ be elements of L. If a < b, thenallc < blUec.

(8) For every sup-semilattice L and for all elements a, b of L such that a <b
holds a LIb = b.

(9) For every sup-semilattice L and for all elements a, b, ¢ of L such that
a<candb<choldsalb<c.

(10) For every semilattice L and for all elements a, b of L such that b < a
holds ab =b.

2. DIFFERENCE IN RELATION STRUCTURE

We now state the proposition

(11) For every Boolean lattice L and for all elements =, y of L holds y is a
complement of x iff y = —z.

Let L be a non empty relational structure and let a, b be elements of L. The
functor a \ b yielding an element of L is defined as follows:

(Def. 1) a\b=am-b.

Let L be a non empty relational structure and let a, b be elements of L. The
functor a—=b yields an element of L and is defined as follows:

(Def. 2) a=b=(a\b)L (b\ a).

Let L be an antisymmetric relational structure with g.l.b.’s and lL.u.b.’s and
let a, b be elements of L. Let us notice that the functor a—b is commutative.

Let L be a non empty relational structure and let a, b be elements of L. We
say that a meets b if and only if:

(Def. 3) amb# Lp.
We introduce a misses b as an antonym of a meets b.

Let L be an antisymmetric relational structure with g.l.b.’s and let a, b
be elements of L. Let us note that the predicate a meets b is symmetric. We
introduce a misses b as an antonym of a meets b.

Next we state a number of propositions:

(12) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and L.u.b.’s and a, b, ¢ be elements of L. If a < ¢, then a \ b < c.

(13) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and L.u.b.’s and a, b, ¢ be elements of L. If a < b, then a\ ¢ < b\ c.

(14) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and L.u.b.’s and a, b be elements of L. Then a \ b < a.

(15) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and Lu.b.’s and a, b be elements of L. Then a \ b < a=b.
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(16) For every lattice L and for all elements a, b, ¢ of L such that a\ b < ¢
and b\ a < ¢ holds a~b < c.

(17) For every lattice L and for every element a of L holds a meets a iff
a# 1r.

(18) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, ¢ be elements of L. Then aM(b\¢) =alb\ c.

(19) Let L be an antisymmetric transitive relational structure with g.l.b.’s.
Suppose L is distributive. Let a, b, ¢ be elements of L. If aNbUalec = a,
then a < bUec.

(20) For every lattice L such that L is distributive and for all elements a, b,
cof LholdsallbMe= (alUb)M(alc).

(21) For every lattice L such that L is distributive and for all elements a, b,
cof L holds (aUUb)\c= (a\c)U(b\ c).

3. LOWER-BOUND IN RELATION STRUCTURE

Next we state a number of propositions:

(22) Let L be a lower-bounded non empty antisymmetric relational structure
and a be an element of L. If a < L, then a = 1.

(23) Let L be a lower-bounded semilattice and a, b, ¢ be elements of L. If
a<banda<cand bMc= 1y, thena= 17 .

(24) Let L be alower-bounded antisymmetric relational structure with Lu.b.’s
and a, b be elements of L. If allb= 1, thena= 1y and b= 1.

(25) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, ¢ be elements of L. If a < b and bMc¢ = 1L, then
allc = LL.

(26) For every lower-bounded semilattice L and for every element a of L holds
LL \ a = LL.

(27) Let L be a lower-bounded antisymmetric transitive relational structure
with g.1.b.’s and a, b, ¢ be elements of L. If a meets b and b < ¢, then a
meets c.

(28) Let L be a lower-bounded antisymmetric relational structure with g.1.b.’s
and a be an element of L. Then aM Ly = 1.

(29) Let L be a lower-bounded antisymmetric transitive relational structure
with g.1.b.’s and l.u.b.’s and a, b, ¢ be elements of L. If ¢ meets bl ¢, then
a meets b.

(30) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and L.u.b.’s and a, b, ¢ be elements of L. If a meets b\ ¢, then
a meets b.

(31) Let L be a lower-bounded antisymmetric transitive relational structure
with g.1.b.’s and a be an element of L. Then a misses .
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(32) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, ¢ be elements of L. If a misses ¢ and b < ¢, then a
misses b.

(33) Let L be a lower-bounded antisymmetric transitive relational structure
with g.1.b.’s and a, b, ¢ be elements of L. If a misses b or a misses ¢, then
a misses bTec.

(34) Let L be a lower-bounded lattice and a, b, ¢ be elements of L. If a < b
and a < ¢ and b misses ¢, then a = L.

(35) Let L be a lower-bounded antisymmetric transitive relational structure

with g.I.b.’s and a, b, ¢ be elements of L. If a misses b, then a I ¢ misses
bMe.

4. BOOLEAN LATTICES

We adopt the following rules: L will denote a Boolean non empty relational
structure and a, b, ¢, d will denote elements of L.
Next we state a number of propositions:

36) ambUbMcUcMNa=(alb)M(bUc)M(cUa).
37) alM—-a=_1lpand al-a=Ty.
38) Ifa\b<c thena<bUec.
39) —(aUb) =-amM-band =(aMb) = —aLl—b.
40) If a < b, then —b < —a.
41) Ifa < b, then c\b<c\ a.
42) Ifa<band c<d, thena\d<b\ec.
43) Ifa<bUc,thena\b<canda)c<b.
44) —a < =(aMb) and —=b < =(aMb).
45) =(aUb) < —a and —(a Ub) < —b.
46) Ifa<b\a,thena= 1p.
< b, thenb=alU(b\ a).
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a\b:LL iff a <0b.
Ifa<bUcand ale= 1y, then a <b.
alb=(a\b)Ub.

a\(aUb)=1r.

a\alb=a\b.

(a\b)nb=1r.

all(b\a)=alUb.

afblU(a\b) =a.
a\(b\c)=(a\b)UalMec.

a\ (a\b)=amb.
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8) (alUb)\b=ua\b.

9) anb=_1piffa\b=a.

0) a\(bUc)=(a\b)M(a\ec).

1) a\bMNec=(a\b)U(a)\ ).

2) anl(b\c)=aMb\ale.

3) (aUb)\alb=(a\b)L(b\ a).
4) a\b\c=a\ (bUc).

5) —(Llp)=Tr.

6) —(Tp)=Lr.

7) a\a=lp.

8) a\LL:a.

9) —(a\b)=-alb.

0) afb misses a\ b.

) a\ b misses b.

) If a misses b, then (a Ub)\ b= a.
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