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Summary. In this paper Exercise 3.43 from Chapter 1 of [14] is solved.
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The terminology and notation used in this paper have been introduced in the
following articles: [23], [27], [2], [28], [10], [11], [8], [13], [25], [9], [1], [4], [21],
[26], [29], [12], [17], [22], [3], [5], [16], [6], [30], [18], [19], [7], [15], [20], and [24].

1. Preliminaries

Let T be a topological structure and let A be a subset of the carrier of T .
Then IntA is a subset of T .
Let T be a topological structure and let P be a subset of the carrier of T .

Let us observe that P is closed if and only if:

(Def. 1) −P is open.

Let T be a non empty topological space and let F be a family of subsets of
T . We say that F is dense if and only if:

(Def. 2) For every subset X of T such that X ∈ F holds X is dense.

The following proposition is true

(1) Let L be a non empty 1-sorted structure, A be a subset of L, and x be
an element of L. Then x ∈ −A if and only if x /∈ A.

Let us observe that there exists a 1-sorted structure which is empty.
Let S be an empty 1-sorted structure. Note that the carrier of S is empty.

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
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Let S be an empty 1-sorted structure. Note that every subset of S is empty.
One can check that every set which is finite is also countable.
Let us note that there exists a set which is empty.
Let S be a 1-sorted structure. One can verify that there exists a subset of S

which is empty.
One can verify that there exists a set which is non empty and finite.
Let L be a non empty relational structure. Observe that there exists a subset

of L which is non empty and finite.
Let us note that N is infinite.
Let us note that there exists a set which is infinite and countable.
Let S be a 1-sorted structure. One can verify that there exists a family of

subsets of S which is empty.
One can prove the following propositions:

(2) For all sets X, Y such that X ¬ Y and Y is countable holds X is
countable.

(3) For every infinite countable set A holds N ≈ A.

(4) For every non empty countable set A there exists a function f from N

into A such that rng f = A.

(5) For every 1-sorted structure S and for all subsets X, Y of S holds −(X∪
Y ) = (−X) ∩ −Y.

(6) For every 1-sorted structure S and for all subsets X, Y of S holds −X ∩
Y = −X ∪−Y.

(7) Let L be a non empty transitive relational structure and A, B be subsets
of L. If A is finer than B, then ↓A ⊆ ↓B.

(8) Let L be a non empty transitive relational structure and A, B be subsets
of L. If A is coarser than B, then ↑A ⊆ ↑B.

(9) Let L be a non empty poset and D be a non empty finite filtered subset
of L. If inf D exists in L, then infD ∈ D.

(10) Let L be a lower-bounded antisymmetric non empty relational structure
and X be a non empty lower subset of L. Then ⊥L ∈ X.

(11) Let L be a lower-bounded antisymmetric non empty relational structure
and X be a non empty subset of L. Then ⊥L ∈ ↓X.

(12) Let L be an upper-bounded antisymmetric non empty relational struc-
ture and X be a non empty upper subset of L. Then ⊤L ∈ X.

(13) Let L be an upper-bounded antisymmetric non empty relational struc-
ture and X be a non empty subset of L. Then ⊤L ∈ ↑X.

(14) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s
and X be a subset of L. Then X ⊓ {⊥L} ⊆ {⊥L}.

(15) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s
and X be a non empty subset of L. Then X ⊓ {⊥L} = {⊥L}.

(16) Let L be an upper-bounded antisymmetric relational structure with
l.u.b.’s and X be a subset of L. Then X ⊔ {⊤L} ⊆ {⊤L}.
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(17) Let L be an upper-bounded antisymmetric relational structure with
l.u.b.’s and X be a non empty subset of L. Then X ⊔ {⊤L} = {⊤L}.

(18) For every upper-bounded semilattice L and for every subsetX of L holds
{⊤L} ⊓X = X.

(19) For every lower-bounded poset L with l.u.b.’s and for every subset X of
L holds {⊥L} ⊔X = X.

(20) Let L be a non empty reflexive relational structure and A, B be subsets
of L. If A ⊆ B, then A is finer than B and coarser than B.

(21) Let L be an antisymmetric transitive relational structure with g.l.b.’s,
V be a subset of L, and x, y be elements of L. If x ¬ y, then {y} ⊓ V is
coarser than {x} ⊓ V.

(22) Let L be an antisymmetric transitive relational structure with l.u.b.’s,
V be a subset of L, and x, y be elements of L. If x ¬ y, then {x} ⊔ V is
finer than {y} ⊔ V.

(23) Let L be a non empty relational structure and V , S, T be subsets of L.
If S is coarser than T and V is upper and T ⊆ V, then S ⊆ V.

(24) Let L be a non empty relational structure and V , S, T be subsets of L.
If S is finer than T and V is lower and T ⊆ V, then S ⊆ V.

(25) For every semilattice L and for every upper filtered subset F of L holds
F ⊓ F = F.

(26) For every sup-semilattice L and for every lower directed subset I of L
holds I ⊔ I = I.

(27) For every upper-bounded semilattice L and for every subset V of L holds
{x, x ranges over elements of L: V ⊓ {x} ⊆ V } is non empty.

(28) Let L be an antisymmetric transitive relational structure with g.l.b.’s and
V be a subset of L. Then {x, x ranges over elements of L: V ⊓ {x} ⊆ V }
is a filtered subset of L.

(29) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and V be an upper subset of L. Then {x, x ranges over elements of L:
V ⊓ {x} ⊆ V } is an upper subset of L.

(30) For every poset L with g.l.b.’s and for every subset X of L such that X
is open and lower holds X is filtered.

Let L be a poset with g.l.b.’s. Observe that every subset of L which is open
and lower is also filtered.

Let L be a continuous antisymmetric non empty reflexive relational struc-
ture. One can verify that every subset of L which is lower is also open.

Let L be a continuous semilattice and let x be an element of L. Note that
−↓x is open.
We now state two propositions:

(31) Let L be a semilattice and C be a non empty subset of L. Suppose that
for all elements x, y of L such that x ∈ C and y ∈ C holds x ¬ y or y ¬ x.
Let Y be a non empty finite subset of C. Then ⌈−⌉LY ∈ Y.
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(32) Let L be a sup-semilattice and C be a non empty subset of L. Suppose
that for all elements x, y of L such that x ∈ C and y ∈ C holds x ¬ y or
y ¬ x. Let Y be a non empty finite subset of C. Then

⊔
L

Y ∈ Y.

Let L be a semilattice and let F be a filter of L. A subset of L is called a
generator set of F if:

(Def. 3) F = ↑fininfs(it).

Let L be a semilattice and let F be a filter of L. One can verify that there
exists a generator set of F which is non empty.
The following propositions are true:

(33) Let L be a semilattice, A be a subset of L, and B be a non empty subset
of L. If A is coarser than B, then fininfs(A) is coarser than fininfs(B).

(34) Let L be a semilattice, F be a filter of L, G be a generator set of F ,
and A be a non empty subset of L. Suppose G is coarser than A and A is
coarser than F . Then A is a generator set of F .

(35) Let L be a semilattice, A be a subset of L, and f , g be functions from
N into the carrier of L. Suppose rng f = A and for every element n of N

holds g(n) = ⌈−⌉L{f(m),m ranges over natural numbers: m ¬ n}. Then A
is coarser than rng g.

(36) Let L be a semilattice, F be a filter of L, G be a generator set of F , and
f , g be functions from N into the carrier of L. Suppose rng f = G and
for every element n of N holds g(n) = ⌈−⌉L{f(m),m ranges over natural
numbers: m ¬ n}. Then rng g is a generator set of F .

2. On the Baire Category Theorem

The following propositions are true:

(37) Let L be a lower-bounded continuous lattice, V be an open upper subset
of L, F be a filter of L, and v be an element of L. Suppose V ⊓F ⊆ V and
v ∈ V and there exists a non empty generator set of F which is countable.
Then there exists an open filter O of L such that O ⊆ V and v ∈ O and
F ⊆ O.

(38) Let L be a lower-bounded continuous lattice, V be an open upper subset
of L, N be a non empty countable subset of L, and v be an element of L.
Suppose V ⊓ N ⊆ V and v ∈ V. Then there exists an open filter O of L
such that {v} ⊓N ⊆ O and O ⊆ V and v ∈ O.

(39) Let L be a lower-bounded continuous lattice, V be an open upper subset
of L, N be a non empty countable subset of L, and x, y be elements of L.
Suppose V ⊓N ⊆ V and y ∈ V and x /∈ V. Then there exists an irreducible
element p of L such that x ¬ p and p /∈ ↑({y} ⊓N).

(40) Let L be a lower-bounded continuous lattice, x be an element of L, and
N be a non empty countable subset of L. Suppose that for all elements n,
y of L such that y 6¬ x and n ∈ N holds y ⊓ n 6¬ x. Let y be an element
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of L. Suppose y 6¬ x. Then there exists an irreducible element p of L such
that x ¬ p and p /∈ ↑({y} ⊓N).

Let L be a non empty relational structure and let u be an element of L. We
say that u is dense if and only if:

(Def. 4) For every element v of L such that v 6= ⊥L holds u ⊓ v 6= ⊥L.

Let L be an upper-bounded semilattice. Note that ⊤L is dense.
Let L be an upper-bounded semilattice. Note that there exists an element

of L which is dense.
The following proposition is true

(41) For every non trivial bounded semilattice L and for every element x of
L such that x is dense holds x 6= ⊥L.

Let L be a non empty relational structure and let D be a subset of L. We
say that D is dense if and only if:

(Def. 5) For every element d of L such that d ∈ D holds d is dense.

We now state the proposition

(42) For every upper-bounded semilattice L holds {⊤L} is dense.

Let L be an upper-bounded semilattice. Note that there exists a subset of
L which is non empty, finite, countable, and dense.
Next we state several propositions:

(43) Let L be a lower-bounded continuous lattice,D be a non empty countable
dense subset of L, and u be an element of L. Suppose u 6= ⊥L. Then there
exists an irreducible element p of L such that p 6= ⊤L and p /∈ ↑({u}⊓D).

(44) Let T be a non empty topological space, A be an element of 〈the topology
of T , ⊆〉, and B be a subset of T . If A = B and −B is irreducible, then A
is irreducible.

(45) Let T be a non empty topological space, A be an element of 〈the
topology of T , ⊆〉, and B be a subset of T . Suppose A = B and
A 6= ⊤〈the topology of T , ⊆〉. Then A is irreducible if and only if −B is irre-
ducible.

(46) Let T be a non empty topological space, A be an element of 〈the topology
of T , ⊆〉, and B be a subset of T . If A = B, then A is dense iff B is
everywhere dense.

(47) Let T be a non empty topological space. Suppose T is locally-compact.
Let D be a countable family of subsets of T . Suppose D is non empty,
dense, and open. Let O be a non empty subset of T . Suppose O is open.
Then there exists an irreducible subset A of T such that for every subset
V of T if V ∈ D, then A ∩O ∩ V 6= ∅.

Let T be a non empty topological space. Let us observe that T is Baire if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Let F be a family of subsets of T . Suppose F is countable and for
every subset S of T such that S ∈ F holds S is open and dense. Then
Intersect(F ) is dense.
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Next we state the proposition

(48) For every non empty topological space T such that T is sober and locally-
compact holds T is Baire.
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