On the Baire Category Theorem ${ }^{1}$

Artur Korniłowicz
Warsaw University
Białystok

Summary. In this paper Exercise 3.43 from Chapter 1 of [14] is solved.

MML Identifier: WAYBEL12.

The terminology and notation used in this paper have been introduced in the following articles: [23], [27], [2], [28], [10], [11], [8], [13], [25], [9], [1], [4], [21], [26], [29], [12], [17], [22], [3], [5], [16], [6], [30], [18], [19], [7], [15], [20], and [24].

1. Preliminaries

Let T be a topological structure and let A be a subset of the carrier of T. Then $\operatorname{Int} A$ is a subset of T.

Let T be a topological structure and let P be a subset of the carrier of T. Let us observe that P is closed if and only if:
(Def. 1) $-P$ is open.
Let T be a non empty topological space and let F be a family of subsets of T. We say that F is dense if and only if:
(Def. 2) For every subset X of T such that $X \in F$ holds X is dense.
The following proposition is true
(1) Let L be a non empty 1 -sorted structure, A be a subset of L, and x be an element of L. Then $x \in-A$ if and only if $x \notin A$.
Let us observe that there exists a 1 -sorted structure which is empty.
Let S be an empty 1 -sorted structure. Note that the carrier of S is empty.

[^0]Let S be an empty 1-sorted structure. Note that every subset of S is empty. One can check that every set which is finite is also countable.
Let us note that there exists a set which is empty.
Let S be a 1 -sorted structure. One can verify that there exists a subset of S which is empty.

One can verify that there exists a set which is non empty and finite.
Let L be a non empty relational structure. Observe that there exists a subset of L which is non empty and finite.

Let us note that \mathbb{N} is infinite.
Let us note that there exists a set which is infinite and countable.
Let S be a 1 -sorted structure. One can verify that there exists a family of subsets of S which is empty.

One can prove the following propositions:
(2) For all sets X, Y such that $\overline{\bar{X}} \leqslant \overline{\bar{Y}}$ and Y is countable holds X is countable.
(3) For every infinite countable set A holds $\mathbb{N} \approx A$.
(4) For every non empty countable set A there exists a function f from \mathbb{N} into A such that $\operatorname{rng} f=A$.
(5) For every 1-sorted structure S and for all subsets X, Y of S holds - $(X \cup$ $Y)=(-X) \cap-Y$.
(6) For every 1-sorted structure S and for all subsets X, Y of S holds $-X \cap$ $Y=-X \cup-Y$.
(7) Let L be a non empty transitive relational structure and A, B be subsets of L. If A is finer than B, then $\downarrow A \subseteq \downarrow B$.
(8) Let L be a non empty transitive relational structure and A, B be subsets of L. If A is coarser than B, then $\uparrow A \subseteq \uparrow B$.
(9) Let L be a non empty poset and D be a non empty finite filtered subset of L. If $\inf D$ exists in L, then $\inf D \in D$.
(10) Let L be a lower-bounded antisymmetric non empty relational structure and X be a non empty lower subset of L. Then $\perp_{L} \in X$.
(11) Let L be a lower-bounded antisymmetric non empty relational structure and X be a non empty subset of L. Then $\perp_{L} \in \downarrow X$.
(12) Let L be an upper-bounded antisymmetric non empty relational structure and X be a non empty upper subset of L. Then $\top_{L} \in X$.
(13) Let L be an upper-bounded antisymmetric non empty relational structure and X be a non empty subset of L. Then $T_{L} \in \uparrow X$.
(14) Let L be a lower-bounded antisymmetric relational structure with g.l.b.'s and X be a subset of L. Then $X \sqcap\left\{\perp_{L}\right\} \subseteq\left\{\perp_{L}\right\}$.
(15) Let L be a lower-bounded antisymmetric relational structure with g.l.b.'s and X be a non empty subset of L. Then $X \sqcap\left\{\perp_{L}\right\}=\left\{\perp_{L}\right\}$.
(16) Let L be an upper-bounded antisymmetric relational structure with l.u.b.'s and X be a subset of L. Then $X \sqcup\left\{\top_{L}\right\} \subseteq\left\{\top_{L}\right\}$.
(17) Let L be an upper-bounded antisymmetric relational structure with l.u.b.'s and X be a non empty subset of L. Then $X \sqcup\left\{\top_{L}\right\}=\left\{\top_{L}\right\}$.
(18) For every upper-bounded semilattice L and for every subset X of L holds $\left\{\top_{L}\right\} \sqcap X=X$.
(19) For every lower-bounded poset L with l.u.b.'s and for every subset X of L holds $\left\{\perp_{L}\right\} \sqcup X=X$.
(20) Let L be a non empty reflexive relational structure and A, B be subsets of L. If $A \subseteq B$, then A is finer than B and coarser than B.
(21) Let L be an antisymmetric transitive relational structure with g.l.b.'s, V be a subset of L, and x, y be elements of L. If $x \leqslant y$, then $\{y\} \sqcap V$ is coarser than $\{x\} \sqcap V$.
(22) Let L be an antisymmetric transitive relational structure with l.u.b.'s, V be a subset of L, and x, y be elements of L. If $x \leqslant y$, then $\{x\} \sqcup V$ is finer than $\{y\} \sqcup V$.
(23) Let L be a non empty relational structure and V, S, T be subsets of L. If S is coarser than T and V is upper and $T \subseteq V$, then $S \subseteq V$.
(24) Let L be a non empty relational structure and V, S, T be subsets of L. If S is finer than T and V is lower and $T \subseteq V$, then $S \subseteq V$.
(25) For every semilattice L and for every upper filtered subset F of L holds $F \sqcap F=F$.
(26) For every sup-semilattice L and for every lower directed subset I of L holds $I \sqcup I=I$.
(27) For every upper-bounded semilattice L and for every subset V of L holds $\{x, x$ ranges over elements of $L: V \sqcap\{x\} \subseteq V\}$ is non empty.
(28) Let L be an antisymmetric transitive relational structure with g.l.b.'s and V be a subset of L. Then $\{x, x$ ranges over elements of $L: V \sqcap\{x\} \subseteq V\}$ is a filtered subset of L.
(29) Let L be an antisymmetric transitive relational structure with g.l.b.'s and V be an upper subset of L. Then $\{x, x$ ranges over elements of L : $V \sqcap\{x\} \subseteq V\}$ is an upper subset of L.
(30) For every poset L with g.l.b.'s and for every subset X of L such that X is open and lower holds X is filtered.
Let L be a poset with g.l.b.'s. Observe that every subset of L which is open and lower is also filtered.

Let L be a continuous antisymmetric non empty reflexive relational structure. One can verify that every subset of L which is lower is also open.

Let L be a continuous semilattice and let x be an element of L. Note that $-\downarrow x$ is open.

We now state two propositions:
(31) Let L be a semilattice and C be a non empty subset of L. Suppose that for all elements x, y of L such that $x \in C$ and $y \in C$ holds $x \leqslant y$ or $y \leqslant x$. Let Y be a non empty finite subset of C. Then $\prod_{L} Y \in Y$.
(32) Let L be a sup-semilattice and C be a non empty subset of L. Suppose that for all elements x, y of L such that $x \in C$ and $y \in C$ holds $x \leqslant y$ or $y \leqslant x$. Let Y be a non empty finite subset of C. Then $\bigsqcup_{L} Y \in Y$.
Let L be a semilattice and let F be a filter of L. A subset of L is called a generator set of F if:
(Def. 3) $\quad F=\uparrow$ fininfs(it).
Let L be a semilattice and let F be a filter of L. One can verify that there exists a generator set of F which is non empty.

The following propositions are true:
(33) Let L be a semilattice, A be a subset of L, and B be a non empty subset of L. If A is coarser than B, then $\operatorname{fininfs}(A)$ is coarser than fininfs (B).
(34) Let L be a semilattice, F be a filter of L, G be a generator set of F, and A be a non empty subset of L. Suppose G is coarser than A and A is coarser than F. Then A is a generator set of F.
(35) Let L be a semilattice, A be a subset of L, and f, g be functions from \mathbb{N} into the carrier of L. Suppose $\operatorname{rng} f=A$ and for every element n of \mathbb{N} holds $g(n)=\rceil_{L}\{f(m), m$ ranges over natural numbers: $m \leqslant n\}$. Then A is coarser than rng g.
(36) Let L be a semilattice, F be a filter of L, G be a generator set of F, and f, g be functions from \mathbb{N} into the carrier of L. Suppose $\operatorname{rng} f=G$ and for every element n of \mathbb{N} holds $g(n)=\prod_{L}\{f(m), m$ ranges over natural numbers: $m \leqslant n\}$. Then $\mathrm{rng} g$ is a generator set of F.

2. On the Baire Category Theorem

The following propositions are true:
(37) Let L be a lower-bounded continuous lattice, V be an open upper subset of L, F be a filter of L, and v be an element of L. Suppose $V \sqcap F \subseteq V$ and $v \in V$ and there exists a non empty generator set of F which is countable. Then there exists an open filter O of L such that $O \subseteq V$ and $v \in O$ and $F \subseteq O$.
(38) Let L be a lower-bounded continuous lattice, V be an open upper subset of L, N be a non empty countable subset of L, and v be an element of L. Suppose $V \sqcap N \subseteq V$ and $v \in V$. Then there exists an open filter O of L such that $\{v\} \sqcap N \subseteq O$ and $O \subseteq V$ and $v \in O$.
(39) Let L be a lower-bounded continuous lattice, V be an open upper subset of L, N be a non empty countable subset of L, and x, y be elements of L. Suppose $V \sqcap N \subseteq V$ and $y \in V$ and $x \notin V$. Then there exists an irreducible element p of L such that $x \leqslant p$ and $p \notin \uparrow(\{y\} \sqcap N)$.
(40) Let L be a lower-bounded continuous lattice, x be an element of L, and N be a non empty countable subset of L. Suppose that for all elements n, y of L such that $y \nless x$ and $n \in N$ holds $y \sqcap n \nless x$. Let y be an element
of L. Suppose $y \nless x$. Then there exists an irreducible element p of L such that $x \leqslant p$ and $p \notin \uparrow(\{y\} \sqcap N)$.
Let L be a non empty relational structure and let u be an element of L. We say that u is dense if and only if:
(Def. 4) For every element v of L such that $v \neq \perp_{L}$ holds $u \sqcap v \neq \perp_{L}$.
Let L be an upper-bounded semilattice. Note that \top_{L} is dense.
Let L be an upper-bounded semilattice. Note that there exists an element of L which is dense.

The following proposition is true
(41) For every non trivial bounded semilattice L and for every element x of L such that x is dense holds $x \neq \perp_{L}$.
Let L be a non empty relational structure and let D be a subset of L. We say that D is dense if and only if:
(Def. 5) For every element d of L such that $d \in D$ holds d is dense.
We now state the proposition
(42) For every upper-bounded semilattice L holds $\left\{\top_{L}\right\}$ is dense.

Let L be an upper-bounded semilattice. Note that there exists a subset of L which is non empty, finite, countable, and dense.

Next we state several propositions:
(43) Let L be a lower-bounded continuous lattice, D be a non empty countable dense subset of L, and u be an element of L. Suppose $u \neq \perp_{L}$. Then there exists an irreducible element p of L such that $p \neq \top_{L}$ and $p \notin \uparrow(\{u\} \sqcap D)$.
(44) Let T be a non empty topological space, A be an element of 〈the topology of $T, \subseteq\rangle$, and B be a subset of T. If $A=B$ and $-B$ is irreducible, then A is irreducible.
(45) Let T be a non empty topological space, A be an element of 〈the topology of $T, \subseteq\rangle$, and B be a subset of T. Suppose $A=B$ and
 ducible.
(46) Let T be a non empty topological space, A be an element of \langle the topology of $T, \subseteq\rangle$, and B be a subset of T. If $A=B$, then A is dense iff B is everywhere dense.
(47) Let T be a non empty topological space. Suppose T is locally-compact. Let D be a countable family of subsets of T. Suppose D is non empty, dense, and open. Let O be a non empty subset of T. Suppose O is open. Then there exists an irreducible subset A of T such that for every subset V of T if $V \in D$, then $A \cap O \cap V \neq \emptyset$.
Let T be a non empty topological space. Let us observe that T is Baire if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let F be a family of subsets of T. Suppose F is countable and for every subset S of T such that $S \in F$ holds S is open and dense. Then Intersect (F) is dense.

Next we state the proposition
(48) For every non empty topological space T such that T is sober and locallycompact holds T is Baire.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[4] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[5] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
[6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
[7] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169-176, 1997.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[9] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[15] Adam Grabowski. Auxiliary and approximating relations. Formalized Mathematics, 6(2):179-188, 1997.
[16] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997.
[17] Zbigniew Karno. Remarks on special subsets of topological spaces. Formalized Mathematics, 3(2):297-303, 1992.
[18] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics, 6(1):145-152, 1997.
[19] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Formalized Mathematics, 6(1):153-158, 1997.
[20] Beata Madras. Irreducible and prime elements. Formalized Mathematics, 6(2):233-239, 1997.
[21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[22] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294, 1997.
[25] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[26] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[29] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.
[30] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123-130, 1997.

Received February 5, 1997

[^0]: ${ }^{1}$ This work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.

