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Summary. In the article we continue the formalization in Mizar of [15,
98–105]. We work with structures of the form

L = 〈C, ¬, τ 〉,

where C is the carrier of the structure, ¬ - an ordering relation on C and τ a
family of subsets of C. When 〈C, ¬〉 is a complete lattice we say that L is Scott,
if τ is the Scott topology of 〈C, ¬〉. We define the Scott convergence (lim inf co-
nvergence). Following [15] we prove that in the case of a continuous lattice 〈C, ¬〉

the Scott convergence is topological, i.e. enjoys the properties: (CONSTANTS),
(SUBNETS), (DIVERGENCE), (ITERATED LIMITS). We formalize the the-
orem, that if the Scott convergence has the (ITERATED LIMITS) property, the
〈C, ¬〉 is continuous.

MML Identifier: WAYBEL11.

The terminology and notation used in this paper are introduced in the following
articles: [29], [35], [37], [25], [12], [14], [36], [10], [11], [9], [3], [8], [33], [23], [27],
[38], [28], [26], [41], [17], [30], [2], [24], [1], [22], [34], [4], [5], [6], [16], [40], [13],
[18], [19], [20], [7], [39], [32], [21], and [31].

1. Preliminaries

The scheme Irrel deals with non empty sets A, B, a unary functor F yielding
a set, a binary functor F yielding a set, and a unary predicate P, and states
that:

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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{F(u), u ranges over elements of A : P[u]} = {F(i, v), i ranges
over elements of B, v ranges over elements of A : P[v]}

provided the following condition is met:
• For every element i of B and for every element u of A holds
F(u) = F(i, u).

One can prove the following three propositions:

(1) Let L be a complete non empty lattice and X, Y be subsets of the carrier
of L. If Y is coarser than X, then ⌈−⌉LX ¬ ⌈−⌉LY.

(2) Let L be a complete non empty lattice and X, Y be subsets of the carrier
of L. If X is finer than Y then

⊔
L

X ¬
⊔

L
Y.

(3) Let T be a relational structure, A be an upper subset of T , and B be a
directed subset of T . Then A ∩B is directed.

Let T be a reflexive non empty relational structure. Observe that there exists
a subset of T which is non empty, directed, and finite.
Next we state the proposition

(4) For every non empty poset T with l.u.b.’s and for every non empty
directed finite subset D of T holds supD ∈ D.

Let us observe that there exists a relational structure which is trivial, refle-
xive, transitive, non empty, antisymmetric, finite, and strict and has l.u.b.’s.
Let us observe that there exists a 1-sorted structure which is finite, non

empty, and strict.
Let T be a finite 1-sorted structure. Note that every subset of T is finite.
Let R be a relational structure. Note that ∅R is lower and upper.
Let R be a trivial non empty relational structure. Note that every subset of

R is upper.
One can prove the following propositions:

(5) Let T be a non empty relational structure, x be an element of T , and A
be an upper subset of T . If x /∈ A, then A misses ↓x.

(6) Let T be a non empty relational structure, x be an element of T , and A
be a lower subset of T . If x ∈ A, then ↓x ⊆ A.

2. Scott Topology

Let T be a non empty reflexive relational structure and let S be a subset of
T . We say that S is inaccessible by directed joins if and only if:

(Def. 1) For every non empty directed subset D of T such that supD ∈ S holds
D meets S.

We introduce S is inaccessible as a synonym of S is inaccessible by directed
joins. We say that S is closed under directed sups if and only if:

(Def. 2) For every non empty directed subset D of T such that D ⊆ S holds
supD ∈ S.
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We introduce S is directly closed as a synonym of S is closed under directed sups.
We say that S is property(S) if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let D be a non empty directed subset of T . Suppose supD ∈ S. Then
there exists an element y of T such that y ∈ D and for every element x of
T such that x ∈ D and x  y holds x ∈ S.

We introduce S has the property (S) as a synonym of S is property(S).

Let T be a non empty reflexive relational structure. One can check that ∅T
is property(S) and directly closed.

Let T be a non empty reflexive relational structure. Observe that there exists
a subset of T which is property(S) and directly closed.

Let T be a non empty reflexive relational structure and let S be a property(S)
subset of T . One can verify that −S is directly closed.

Let T be a reflexive non empty FR-structure. We say that T is Scott if and
only if:

(Def. 4) For every subset S of T holds S is open iff S is inaccessible and upper.

Let T be a reflexive transitive antisymmetric non empty finite relational
structure with l.u.b.’s. Note that every subset of T is inaccessible.

Let T be a reflexive transitive antisymmetric non empty finite FR-structure
with l.u.b.’s. Let us observe that T is Scott if and only if:

(Def. 5) For every subset S of T holds S is open iff S is upper.

Let us mention that there exists a non empty strict TopLattice which is
trivial, complete, and Scott.

Let T be a non empty reflexive relational structure. Observe that ΩT is
directly closed and inaccessible.

Let T be a non empty reflexive relational structure. Note that there exists
a subset of T which is directly closed, lower, inaccessible, and upper.

Let T be a complete non empty TopLattice and let S be an inaccessible
subset of T . Note that −S is directly closed.

Let T be a non empty reflexive relational structure and let S be a directly
closed subset of T . One can check that −S is inaccessible.

One can prove the following propositions:

(7) Let T be a complete Scott non empty TopLattice and S be a subset of
T . Then S is closed if and only if S is directly closed and lower.

(8) For every complete non empty TopLattice T and for every element x of
T holds ↓x is directly closed.

(9) For every complete Scott non empty TopLattice T and for every element

x of T holds {x} = ↓x.

(10) Every complete Scott non empty TopLattice is a T0-space.

(11) For every complete Scott non empty TopLattice T and for every element
x of T holds ↓x is closed.

(12) For every complete Scott non empty TopLattice T and for every element
x of T holds −↓x is open.
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(13) Let T be a complete Scott non empty TopLattice, x be an element of T ,
and A be an upper subset of T . If x /∈ A, then −↓x is a neighbourhood of
A.

(14) Let T be a complete Scott non empty TopLattice and S be an upper
subset of T . Then there exists a family F of subsets of T such that S =

⋂
F

and for every subset X of T such that X ∈ F holds X is a neighbourhood
of S.

(15) Let T be a Scott non empty TopLattice and S be a subset of T . Then S
is open if and only if S is upper and property(S).

Let T be a complete non empty TopLattice. Observe that every subset of T
which is lower is also property(S).
One can prove the following proposition

(16) Let T be a non empty transitive reflexive FR-structure. Suppose the
topology of T = {S, S ranges over subsets of T : S has the property (S)}.
Then T is topological space-like.

3. Scott Convergence

In the sequel R will be a non empty relational structure, N will be a net in
R, and i, j will be elements of the carrier of N .
Let us consider R, N . The functor lim inf N yielding an element of R is

defined by:

(Def. 6) lim inf N =
⊔

R
{⌈−⌉R{N(i) : i  j} : j ranges over elements of the carrier

of N}.

Let R be a reflexive non empty relational structure, let N be a net in R,
and let p be an element of the carrier of R. We say that p is S-limit of N if and
only if:

(Def. 7) p ¬ lim inf N.

Let R be a reflexive non empty relational structure. The Scott convergence
of R yields a convergence class of R and is defined by the condition (Def. 8).

(Def. 8) Let N be a strict net in R. Suppose N ∈ NetUniv(R). Let p be an
element of the carrier of R. Then 〈〈N, p〉〉 ∈ the Scott convergence of R if
and only if p is S-limit of N .

The following two propositions are true:

(17) Let R be a non empty complete lattice, N be a net in R, and p, q be
elements of the carrier of R. If p is S-limit of N and N is eventually in ↓q,
then p ¬ q.

(18) Let R be a non empty complete lattice, N be a net in R, and p, q be
elements of the carrier of R. If N is eventually in ↑q, then lim inf N  q.

Let R be a reflexive non empty relational structure and let N be a non empty
net structure over R. Let us observe that N is monotone if and only if:
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(Def. 9) For all elements i, j of the carrier ofN such that i ¬ j holdsN(i) ¬ N(j).

Let R be a non empty relational structure, let S be a non empty set, and let
f be a function from S into the carrier of R. The functor NetStr(S, f) yielding
a strict non empty net structure over R is defined by the conditions (Def. 10).

(Def. 10)(i) The carrier of NetStr(S, f) = S,
(ii) the mapping of NetStr(S, f) = f, and
(iii) for all elements i, j of NetStr(S, f) holds i ¬ j iff (NetStr(S, f))(i) ¬

(NetStr(S, f))(j).

The following two propositions are true:

(19) Let L be a non empty 1-sorted structure and N be a non empty net
structure over L. Then rng (the mapping of N) = {N(i) : i ranges over
elements of the carrier of N}.

(20) Let R be a non empty relational structure, S be a non empty set, and
f be a function from S into the carrier of R. If rng f is directed, then
NetStr(S, f) is directed.

Let R be a non empty relational structure, let S be a non empty set, and let
f be a function from S into the carrier of R. Note that NetStr(S, f) is monotone.
Let R be a transitive non empty relational structure, let S be a non empty

set, and let f be a function from S into the carrier of R. Note that NetStr(S, f)
is transitive.
Let R be a reflexive non empty relational structure, let S be a non empty set,

and let f be a function from S into the carrier of R. Observe that NetStr(S, f)
is reflexive.
We now state the proposition

(21) Let R be a non empty transitive relational structure, S be a non empty
set, and f be a function from S into the carrier of R. If S ⊆ the carrier of
R and NetStr(S, f) is directed, then NetStr(S, f) ∈ NetUniv(R).

Let R be a non empty lattice. One can check that there exists a net in R
which is monotone, reflexive, and strict.
The following propositions are true:

(22) For every non empty complete lattice R and for every monotone reflexive
net N in R holds lim inf N = supN.

(23) For every complete non empty lattice R and for every constant net N in
R holds the value of N = lim inf N.

(24) For every complete non empty lattice R and for every constant net N in
R holds the value of N is S-limit of N .

Let S be a non empty 1-sorted structure and let e be an element of the carrier
of S. The functor NetStr(e) yielding a strict net structure over S is defined as
follows:

(Def. 11) The carrier of NetStr(e) = {e} and the internal relation of NetStr(e) =
{〈〈e, e〉〉} and the mapping of NetStr(e) = id{e}.

Let S be a non empty 1-sorted structure and let e be an element of the
carrier of S. Observe that NetStr(e) is non empty.
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One can prove the following propositions:

(25) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and x be an element of NetStr(e). Then x = e.

(26) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and x be an element of NetStr(e). Then (NetStr(e))(x) = e.

Let S be a non empty 1-sorted structure and let e be an element of the carrier
of S. Observe that NetStr(e) is reflexive transitive directed and antisymmetric.
We now state several propositions:

(27) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and X be a set. Then NetStr(e) is eventually in X if and only if
e ∈ X.

(28) Let S be a reflexive antisymmetric non empty relational structure and e
be an element of the carrier of S. Then e = lim inf NetStr(e).

(29) For every non empty reflexive relational structure S and for every ele-
ment e of the carrier of S holds NetStr(e) ∈ NetUniv(S).

(30) Let R be a non empty complete lattice, Z be a net in R, and D be a
subset of R. SupposeD = {⌈−⌉R{Z(k), k ranges over elements of the carrier
of Z: k  j} : j ranges over elements of the carrier of Z}. Then D is non
empty and directed.

(31) Let L be a non empty complete lattice and S be a subset of L. Then
S ∈ the topology of ConvergenceSpace(the Scott convergence of L) if and
only if S is inaccessible and upper.

(32) Let T be a non empty complete Scott TopLattice. Then the topological
structure of T = ConvergenceSpace(the Scott convergence of T ).

(33) Let T be a non empty complete TopLattice. Suppose the topological
structure of T = ConvergenceSpace(the Scott convergence of T ). Let S be
a subset of T . Then S is open if and only if S is inaccessible and upper.

(34) Let T be a non empty complete TopLattice. Suppose the topological
structure of T = ConvergenceSpace(the Scott convergence of T ). Then T
is Scott.

Let R be a complete non empty lattice. Note that the Scott convergence of
R has (CONSTANTS) property.
Let R be a complete non empty lattice. Observe that the Scott convergence

of R has (SUBNETS) property.

The following proposition is true

(35) Let S be a non empty 1-sorted structure, N be a net in S, X be a set,
and M be a subnet of N . If M = N−1(X), then for every element i of the
carrier of M holds M(i) ∈ X.

Let L be a non empty complete lattice. The functor sigmaL yielding a family
of subsets of L is defined as follows:

(Def. 12) sigmaL = the topology of ConvergenceSpace(the Scott convergence of
L).
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One can prove the following propositions:

(36) For every continuous complete Scott TopLattice L and for every element
x of L holds ↑↑x is open.

(37) For every non empty complete TopLattice T such that the topology of
T = sigmaT holds T is Scott.

Let R be a continuous non empty complete lattice. Observe that the Scott
convergence of R is topological.
We now state a number of propositions:

(38) Let T be a continuous non empty complete Scott TopLattice, x be an
element of the carrier of T , and N be a net in T . If N ∈ NetUniv(T ), then
x is S-limit of N iff x ∈ LimN.

(39) Let L be a complete non empty poset. Suppose the Scott convergence of
L has (ITERATED LIMITS) property. Then L is continuous.

(40) Let T be a complete Scott non empty TopLattice. Then T is continuous
if and only if Convergence(T ) = the Scott convergence of T .

(41)2 For every complete Scott non empty TopLattice T and for every upper
subset S of T such that S is open holds S is open.

(42) Let L be a non empty relational structure, S be an upper subset of L,
and x be an element of L. If x ∈ S, then ↑x ⊆ S.

(43) Let L be a non empty complete continuous Scott TopLattice, p be an
element of L, and S be a subset of L. If S is open and p ∈ S, then there
exists an element q of L such that q ≪ p and q ∈ S.

(44) Let L be a non empty complete continuous Scott TopLattice and p be
an element of L. Then {↑↑q, q ranges over elements of L: q ≪ p} is a basis
of p.

(45) For every complete continuous Scott non empty TopLattice T holds {↑↑x :
x ranges over elements of T} is a basis of T .

(46)3 Let T be a complete continuous Scott non empty TopLattice and S be
an upper subset of T . Then S is open if and only if S is open.

(47) For every complete continuous Scott non empty TopLattice T and for
every element p of T holds Int↑p = ↑↑p.

(48) Let T be a complete continuous Scott non empty TopLattice and S be
a subset of T . Then IntS =

⋃
{↑↑x, x ranges over elements of T : ↑↑x ⊆ S}.
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