Institution of Many Sorted Algebras. Part I: Signature Reduct of an Algebra

Grzegorz Bancerek
Warsaw University
Białystok

Summary. In the paper the notation necessary to construct the institution of many sorted algebras is introduced.

MML Identifier: INSTALG1.

The papers [23], [27], [16], [1], [28], [14], [9], [13], [2], [26], [17], [3], [4], [10], [6], [11], [20], [24], [25], [15], [12], [21], [19], [5], [22], [7], [18], and [8] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:
(1) Let I be a set, f be a function, and F, G be many sorted functions indexed by I. If $\mathrm{rng} f \subseteq I$, then $(G \circ F) \cdot f=(G \cdot f) \circ(F \cdot f)$.
(2) Let S be a non empty non void many sorted signature, o be an operation symbol of S, V be a non-empty many sorted set indexed by the carrier of S, and x be a set. Then x is an argument sequence of $\operatorname{Sym}(o, V)$ if and only if x is an element of $\operatorname{Args}(o, \operatorname{Free}(V))$.
Let S be a non empty non void many sorted signature, let V be a non-empty many sorted set indexed by the carrier of S, and let o be an operation symbol of S. Note that every element of $\operatorname{Args}(o, \operatorname{Free}(V))$ is decorated tree yielding.

Next we state two propositions:
(3) Let S be a non empty non void many sorted signature and A_{1}, A_{2} be algebras over S. Suppose the sorts of A_{1} are transformable to the sorts of A_{2}. Let o be an operation symbol of S. If $\operatorname{Args}\left(o, A_{1}\right) \neq \emptyset$, then $\operatorname{Args}\left(o, A_{2}\right) \neq \emptyset$.
(4) Let S be a non empty non void many sorted signature, o be an operation symbol of S, V be a non-empty many sorted set indexed by the carrier of S, and x be an element of $\operatorname{Args}(o, \operatorname{Free}(V))$. Then $(\operatorname{Den}(o, \operatorname{Free}(V)))(x)=\langle o$, the carrier of $S\rangle$-tree (x).
Let S be a non empty non void many sorted signature and let A be a nonempty algebra over S. One can check that the algebra of A is non-empty.

Next we state three propositions:
(5) Let S be a non empty non void many sorted signature and A, B be algebras over S. Suppose the algebra of $A=$ the algebra of B. Let o be an operation symbol of S. Then $\operatorname{Den}(o, A)=\operatorname{Den}(o, B)$.
(6) Let S be a non empty non void many sorted signature and A_{1}, A_{2}, B_{1}, B_{2} be algebras over S. Suppose the algebra of $A_{1}=$ the algebra of B_{1} and the algebra of $A_{2}=$ the algebra of B_{2}. Let f be a many sorted function from A_{1} into A_{2} and g be a many sorted function from B_{1} into B_{2}. Suppose $f=g$. Let o be an operation symbol of S. Suppose $\operatorname{Args}\left(o, A_{1}\right) \neq \emptyset$ and $\operatorname{Args}\left(o, A_{2}\right) \neq \emptyset$. Let x be an element of $\operatorname{Args}\left(o, A_{1}\right)$ and y be an element of $\operatorname{Args}\left(o, B_{1}\right)$. If $x=y$, then $f \# x=g \# y$.
(7) Let S be a non empty non void many sorted signature and A_{1}, A_{2}, B_{1}, B_{2} be algebras over S. Suppose that
(i) the algebra of $A_{1}=$ the algebra of B_{1},
(ii) the algebra of $A_{2}=$ the algebra of B_{2}, and
(iii) the sorts of A_{1} are transformable to the sorts of A_{2}.

Let h be a many sorted function from A_{1} into A_{2}. Suppose h is a homomorphism of A_{1} into A_{2}. Then there exists a many sorted function h^{\prime} from B_{1} into B_{2} such that $h^{\prime}=h$ and h^{\prime} is a homomorphism of B_{1} into B_{2}.
Let S be a many sorted signature. We say that S is feasible if and only if:
(Def. 1) If the carrier of $S=\emptyset$, then the operation symbols of $S=\emptyset$.
The following proposition is true
(8) Let S be a many sorted signature. Then S is feasible if and only if dom (the result sort of S) $=$ the operation symbols of S.
One can verify the following observations:

* every many sorted signature which is non empty is also feasible,
* every many sorted signature which is void is also feasible,
* every many sorted signature which is empty and feasible is also void, and
* every many sorted signature which is non void and feasible is also non empty.
Let us note that there exists a many sorted signature which is non void and non empty.

One can prove the following propositions:
(9) Let S be a feasible many sorted signature. Then $\mathrm{id}_{\text {the carrier of } S}$ and $\mathrm{id}_{\text {the operation symbols of } S}$ form morphism between S and S.
(10) Let S_{1}, S_{2} be many sorted signatures and f, g be functions. Suppose f and g form morphism between S_{1} and S_{2}. Then
(i) $\quad f$ is a function from the carrier of S_{1} into the carrier of S_{2}, and
(ii) g is a function from the operation symbols of S_{1} into the operation symbols of S_{2}.

2. Subsignatures

Let S be a feasible many sorted signature. A many sorted signature is said to be a subsignature of S if:
(Def. 2) $\mathrm{id}_{\text {the carrier of it }}$ and $\mathrm{id}_{\text {the }}$ operation symbols of it form morphism between it and S.
We now state the proposition
(11) Let S be a feasible many sorted signature and T be a subsignature of S. Then the carrier of $T \subseteq$ the carrier of S and the operation symbols of $T \subseteq$ the operation symbols of S.

Let S be a feasible many sorted signature. Note that every subsignature of S is feasible.

Next we state several propositions:
(12) Let S be a feasible many sorted signature and T be a subsignature of S. Then the result sort of $T \subseteq$ the result sort of S and the arity of $T \subseteq$ the arity of S.
(13) Let S be a feasible many sorted signature and T be a subsignature of S. Then
(i) the arity of $T=($ the arity of $S) \upharpoonright($ the operation symbols of $T)$, and
(ii) the result sort of $T=$ (the result sort of $S) \upharpoonright($ the operation symbols of T).
(14) Let S, T be feasible many sorted signatures. Suppose that
(i) the carrier of $T \subseteq$ the carrier of S,
(ii) the arity of $T \subseteq$ the arity of S, and
(iii) the result sort of $T \subseteq$ the result sort of S.

Then T is a subsignature of S.
(15) Let S, T be feasible many sorted signatures. Suppose that
(i) the carrier of $T \subseteq$ the carrier of S,
(ii) the arity of $T=($ the arity of $S) \upharpoonright($ the operation symbols of $T)$, and
(iii) the result sort of $T=($ the result sort of $S) \upharpoonright($ the operation symbols of T).
Then T is a subsignature of S.
(16) Every feasible many sorted signature S is a subsignature of S.
(17) For every feasible many sorted signature S_{1} and for every subsignature S_{2} of S_{1} holds every subsignature of S_{2} is a subsignature of S_{1}.
(18) Let S_{1} be a feasible many sorted signature and S_{2} be a subsignature of S_{1}. Suppose S_{1} is a subsignature of S_{2}. Then the many sorted signature of $S_{1}=$ the many sorted signature of S_{2}.
Let S be a non empty many sorted signature. Observe that there exists a subsignature of S which is non empty.

Let S be a non void feasible many sorted signature. One can verify that there exists a subsignature of S which is non void.

One can prove the following three propositions:
(19) Let S be a feasible many sorted signature, S^{\prime} be a subsignature of S, T be a many sorted signature, and f, g be functions. Suppose f and g form morphism between S and T. Then f †the carrier of S^{\prime} and g †the operation symbols of S^{\prime} form morphism between S^{\prime} and T.
(20) Let S be a many sorted signature, T be a feasible many sorted signature, T^{\prime} be a subsignature of T, and f, g be functions. Suppose f and g form morphism between S and T^{\prime}. Then f and g form morphism between S and T.
(21) Let S be a many sorted signature, T be a feasible many sorted signature, T^{\prime} be a subsignature of T, and f, g be functions. Suppose f and g form morphism between S and T and $\operatorname{rng} f \subseteq$ the carrier of T^{\prime} and $\operatorname{rng} g \subseteq$ the operation symbols of T^{\prime}. Then f and g form morphism between S and T^{\prime}.

3. Signature reducts

Let S_{1}, S_{2} be non empty many sorted signatures, let A be an algebra over S_{2}, and let f, g be functions. Let us assume that f and g form morphism between S_{1} and S_{2}. The functor $A \upharpoonright_{(f, g)} S_{1}$ yields a strict algebra over S_{1} and is defined by the conditions (Def. 3).
(Def. 3)(i) The sorts of $A \upharpoonright_{(f, g)} S_{1}=($ the sorts of $A) \cdot f$, and
(ii) the characteristics of $A \upharpoonright_{(f, g)} S_{1}=($ the characteristics of $A) \cdot g$.

Let S_{2}, S_{1} be non empty many sorted signatures and let A be an algebra over S_{2}. The functor $A \upharpoonright S_{1}$ yields a strict algebra over S_{1} and is defined as follows:
(Def. 4) $\quad A \upharpoonright S_{1}=A \upharpoonright_{\left(\mathrm{id}_{\text {the carrier of } S_{1},}, \mathrm{id}_{\text {the operation symbols of } S_{1}}\right)} S_{1}$.
We now state two propositions:
(22) Let S_{1}, S_{2} be non empty many sorted signatures and A, B be algebras over S_{2}. Suppose the algebra of $A=$ the algebra of B. Let f, g be functions. If f and g form morphism between S_{1} and S_{2}, then $A \upharpoonright_{(f, g)} S_{1}=B \upharpoonright_{(f, g)} S_{1}$.
(23) Let S_{1}, S_{2} be non empty many sorted signatures, A be a non-empty algebra over S_{2}, and f, g be functions. If f and g form morphism between S_{1} and S_{2}, then $A \Gamma_{(f, g)} S_{1}$ is non-empty.
Let S_{2} be a non empty many sorted signature, let S_{1} be a non empty subsignature of S_{2}, and let A be a non-empty algebra over S_{2}. Observe that $A \upharpoonright S_{1}$ is non-empty.

The following propositions are true:
(24) Let S_{1}, S_{2} be non void non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_{1} and S_{2}. Let A be an algebra over S_{2}, o_{1} be an operation symbol of S_{1}, and o_{2} be an operation symbol of S_{2}. If $o_{2}=g\left(o_{1}\right)$, then $\operatorname{Den}\left(o_{1}, A \upharpoonright_{(f, g)} S_{1}\right)=\operatorname{Den}\left(o_{2}\right.$, A).
(25) Let S_{1}, S_{2} be non void non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_{1} and S_{2}. Let A be an algebra over S_{2}, o_{1} be an operation symbol of S_{1}, and o_{2} be an operation symbol of S_{2}. If $o_{2}=g\left(o_{1}\right)$, then $\operatorname{Args}\left(o_{2}, A\right)=\operatorname{Args}\left(o_{1}, A \upharpoonright_{(f, g)} S_{1}\right)$ and $\operatorname{Result}\left(o_{1}, A \upharpoonright_{(f, g)} S_{1}\right)=\operatorname{Result}\left(o_{2}, A\right)$.
(26) Let S be a non empty many sorted signature and A be an algebra over S. Then $A \upharpoonright_{\left(\mathrm{id}_{\text {the }} \text { carrier of } S, \mathrm{i}_{\text {the }} \text { operation symbols of } S\right)} S=$ the algebra of A.
(27) For every non empty many sorted signature S and for every algebra A over S holds $A\lceil S=$ the algebra of A.
(28) Let S_{1}, S_{2}, S_{3} be non empty many sorted signatures and f_{1}, g_{1} be functions. Suppose f_{1} and g_{1} form morphism between S_{1} and S_{2}. Let f_{2}, g_{2} be functions. Suppose f_{2} and g_{2} form morphism between S_{2} and S_{3}. Let A be an algebra over S_{3}. Then $A \upharpoonright_{\left(f_{2} \cdot f_{1}, g_{2} \cdot g_{1}\right)} S_{1}=A \upharpoonright_{\left(f_{2}, g_{2}\right)} S_{2} \upharpoonright_{\left(f_{1}, g_{1}\right)} S_{1}$.
(29) Let S_{1} be a non empty feasible many sorted signature, S_{2} be a non empty subsignature of S_{1}, S_{3} be a non empty subsignature of S_{2}, and A be an algebra over S_{1}. Then $A\left\lceil S_{3}=A \upharpoonright S_{2} \upharpoonright S_{3}\right.$.
(30) Let S_{1}, S_{2} be non empty many sorted signatures, f be a function from the carrier of S_{1} into the carrier of S_{2}, and g be a function. Suppose f and g form morphism between S_{1} and S_{2}. Let A_{1}, A_{2} be algebras over S_{2} and h be a many sorted function from the sorts of A_{1} into the sorts of A_{2}. Then $h \cdot f$ is a many sorted function from the sorts of $A_{1} \upharpoonright_{(f, g)} S_{1}$ into the sorts of $A_{2} \upharpoonright_{(f, g)} S_{1}$.
(31) Let S_{1} be a non empty many sorted signature, S_{2} be a non empty subsignature of S_{1}, A_{1}, A_{2} be algebras over S_{1}, and h be a many sorted function from the sorts of A_{1} into the sorts of A_{2}. Then h 个the carrier of S_{2} is a many sorted function from the sorts of $A_{1} \upharpoonright S_{2}$ into the sorts of $A_{2} \upharpoonright S_{2}$.
(32) Let S_{1}, S_{2} be non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_{1} and S_{2}. Let A be an algebra over S_{2}. Then id ${ }_{\text {the sorts of } A \cdot f=} \mathrm{id}_{\text {the sorts of }} A{\left.\left.\right|_{(f, g)}\right)}$.
(33) Let S_{1} be a non empty many sorted signature, S_{2} be a non empty subsignature of S_{1}, and A be an algebra over S_{1} Then $\mathrm{id}_{\text {the sorts of } A^{\dagger} \text { the carrier }}$ of $S_{2}=\mathrm{id}_{\text {the }}$ sorts of $A \mid S_{2}$.
(34) Let S_{1}, S_{2} be non void non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_{1} and S_{2}. Let A, B be algebras over S_{2}, h_{2} be a many sorted function from A into B, and h_{1} be a many sorted function from $A \upharpoonright_{(f, g)} S_{1}$ into $B \upharpoonright_{(f, g)} S_{1}$. Suppose $h_{1}=h_{2} \cdot f$. Let o_{1} be an operation symbol of S_{1} and o_{2} be an operation symbol of S_{2}.

Suppose $o_{2}=g\left(o_{1}\right)$ and $\operatorname{Args}\left(o_{2}, A\right) \neq \emptyset$ and $\operatorname{Args}\left(o_{2}, B\right) \neq \emptyset$. Let x_{2} be an element of $\operatorname{Args}\left(o_{2}, A\right)$ and x_{1} be an element of $\operatorname{Args}\left(o_{1}, A \upharpoonright_{(f, g)} S_{1}\right)$. If $x_{2}=x_{1}$, then $h_{1} \# x_{1}=h_{2} \# x_{2}$.
(35) Let S, S^{\prime} be non empty non void many sorted signatures and A_{1}, A_{2} be algebras over S. Suppose the sorts of A_{1} are transformable to the sorts of A_{2}. Let h be a many sorted function from A_{1} into A_{2}. Suppose h is a homomorphism of A_{1} into A_{2}. Let f be a function from the carrier of S^{\prime} into the carrier of S and g be a function. Suppose f and g form morphism between S^{\prime} and S. Then there exists a many sorted function h^{\prime} from $A_{1} \upharpoonright_{(f, g)} S^{\prime}$ into $A_{2} \upharpoonright_{(f, g)} S^{\prime}$ such that $h^{\prime}=h \cdot f$ and h^{\prime} is a homomorphism of $A_{1} \upharpoonright_{(f, g)} S^{\prime}$ into $A_{2} \upharpoonright_{(f, g)} S^{\prime}$.
(36) Let S be a non void feasible many sorted signature, S^{\prime} be a non void subsignature of S, and A_{1}, A_{2} be algebras over S. Suppose the sorts of A_{1} are transformable to the sorts of A_{2}. Let h be a many sorted function from A_{1} into A_{2}. Suppose h is a homomorphism of A_{1} into A_{2}. Then there exists a many sorted function h^{\prime} from $A_{1} \upharpoonright S^{\prime}$ into $A_{2} \upharpoonright S^{\prime}$ such that $h^{\prime}=h \upharpoonright$ the carrier of S^{\prime} and h^{\prime} is a homomorphism of $A_{1} \upharpoonright S^{\prime}$ into $A_{2} \upharpoonright S^{\prime}$.
(37) Let S, S^{\prime} be non empty non void many sorted signatures, A be a nonempty algebra over S, f be a function from the carrier of S^{\prime} into the carrier of S, and g be a function. Suppose f and g form morphism between S^{\prime} and S. Let B be a non-empty algebra over S^{\prime}. Suppose $B=A \upharpoonright_{(f, g)} S^{\prime}$. Let s_{1}, s_{2} be sort symbols of S^{\prime} and t be a function. Suppose t is an elementary translation in B from s_{1} into s_{2}. Then t is an elementary translation in A from $f\left(s_{1}\right)$ into $f\left(s_{2}\right)$.
(38) Let S, S^{\prime} be non empty non void many sorted signatures, f be a function from the carrier of S^{\prime} into the carrier of S, and g be a function. Suppose f and g form morphism between S^{\prime} and S. Let s_{1}, s_{2} be sort symbols of S^{\prime}. If $\operatorname{TranslRel}\left(S^{\prime}\right)$ reduces s_{1} to s_{2}, then $\operatorname{TranslRel}(S)$ reduces $f\left(s_{1}\right)$ to $f\left(s_{2}\right)$.
(39) Let S, S^{\prime} be non void non empty many sorted signatures, A be a nonempty algebra over S, f be a function from the carrier of S^{\prime} into the carrier of S, and g be a function. Suppose f and g form morphism between S^{\prime} and S. Let B be a non-empty algebra over S^{\prime}. Suppose $B=A \upharpoonright_{(f, g)} S^{\prime}$. Let s_{1}, s_{2} be sort symbols of S^{\prime}. Suppose $\operatorname{TranslRel}\left(S^{\prime}\right)$ reduces s_{1} to s_{2}. Then every translation in B from s_{1} into s_{2} is a translation in A from $f\left(s_{1}\right)$ into $f\left(s_{2}\right)$.

4. Translating homomorphisms

The scheme GenFuncEx concerns a non empty non void many sorted signature \mathcal{A}, a non-empty algebra \mathcal{B} over \mathcal{A}, a non-empty many sorted set \mathcal{C} indexed by the carrier of \mathcal{A}, and a binary functor \mathcal{F} yielding a set, and states that:

There exists a many sorted function h from $\operatorname{Free}(\mathcal{C})$ into \mathcal{B} such that
(i) $\quad h$ is a homomorphism of $\operatorname{Free}(\mathcal{C})$ into \mathcal{B}, and
(ii) for every sort symbol s of \mathcal{A} and for every element x of $\mathcal{C}(s)$ holds $h(s)$ (the root tree of $\langle x, s\rangle)=\mathcal{F}(x, s)$
provided the parameters meet the following requirement:

- For every sort symbol s of \mathcal{A} and for every element x of $\mathcal{C}(s)$ holds $\mathcal{F}(x, s) \in($ the sorts of $\mathcal{B})(s)$.
One can prove the following proposition
(40) Let I be a set, A, B be many sorted sets indexed by I, C be a many sorted subset of A, F be a many sorted function from A into B, and i be a set. Suppose $i \in I$. Let f, g be functions. Suppose $f=F(i)$ and $g=(F \upharpoonright C)(i)$. Let x be a set. If $x \in C(i)$, then $g(x)=f(x)$.
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set indexed by the carrier of S. Note that FreeGenerator (X) is non-empty.

Let S_{1}, S_{2} be non empty non void many sorted signatures, let X be a nonempty many sorted set indexed by the carrier of S_{2}, let f be a function from the carrier of S_{1} into the carrier of S_{2}, and let g be a function. Let us assume that f and g form morphism between S_{1} and S_{2}. The functor hom $\left(f, g, X, S_{1}, S_{2}\right)$ yields a many sorted function from $\operatorname{Free}(X \cdot f)$ into $\operatorname{Free}(X) \upharpoonright_{(f, g)} S_{1}$ and is defined by the conditions (Def. 5).
(Def. 5)(i) $\operatorname{hom}\left(f, g, X, S_{1}, S_{2}\right)$ is a homomorphism of $\operatorname{Free}(X \cdot f)$ into Free $(X) \upharpoonright_{(f, g)} S_{1}$, and
(ii) for every sort symbol s of S_{1} and for every element x of $(X \cdot f)(s)$ holds $\left(\operatorname{hom}\left(f, g, X, S_{1}, S_{2}\right)\right)(s)$ (the root tree of $\left.\langle x, s\rangle\right)=$ the root tree of $\langle x, f(s)\rangle$.
We now state several propositions:
(41) Let S_{1}, S_{2} be non void non empty many sorted signatures, X be a nonempty many sorted set indexed by the carrier of S_{2}, f be a function from the carrier of S_{1} into the carrier of S_{2}, and g be a function. Suppose f and g form morphism between S_{1} and S_{2}. Let o be an operation symbol of S_{1}, p be an element of $\operatorname{Args}(o, \operatorname{Free}(X \cdot f))$, and q be a finite sequence. Suppose $q=\operatorname{hom}\left(f, g, X, S_{1}, S_{2}\right) \# p$. Then $\left(\operatorname{hom}\left(f, g, X, S_{1}, S_{2}\right)\right)($ the result sort of $o)\left(\left\langle o\right.\right.$, the carrier of $\left.S_{1}\right\rangle$-tree $\left.(p)\right)=\left\langle g(o)\right.$, the carrier of $\left.S_{2}\right\rangle$-tree (q).
(42) Let S_{1}, S_{2} be non void non empty many sorted signatures, X be a nonempty many sorted set indexed by the carrier of S_{2}, f be a function from the carrier of S_{1} into the carrier of S_{2}, and g be a function. Suppose f and g form morphism between S_{1} and S_{2}. Let t be a term of S_{1} over $X \cdot f$. Then $\left(\operatorname{hom}\left(f, g, X, S_{1}, S_{2}\right)\right)$ (the sort of $\left.t\right)(t)$ is a compound term of S_{2} over X if and only if t is a compound term of S_{1} over $X \cdot f$.
(43) Let S_{1}, S_{2} be non void non empty many sorted signatures, X be a non-empty many sorted set indexed by the carrier of S_{2}, f be a function from the carrier of S_{1} into the carrier of S_{2}, and g be an one-to-
one function. Suppose f and g form morphism between S_{1} and S_{2}. Then $\operatorname{hom}\left(f, g, X, S_{1}, S_{2}\right)$ is a monomorphism of $\operatorname{Free}(X \cdot f)$ into $\operatorname{Free}(X) \upharpoonright_{(f, g)} S_{1}$.
(44) Let S be a non void non empty many sorted signature and X be a non-empty many sorted set indexed by the carrier of S. Then hom $\left(\mathrm{id}_{\text {the }}\right.$ carrier of $\left.S, \mathrm{id}_{\text {the operation symbols of } S}, X, S, S\right)=$ $\mathrm{id}_{\text {the sorts of }}$ Free (X).
(45) Let S_{1}, S_{2}, S_{3} be non void non empty many sorted signatures, X be a non-empty many sorted set indexed by the carrier of S_{3}, f_{1} be a function from the carrier of S_{1} into the carrier of S_{2}, and g_{1} be a function. Suppose f_{1} and g_{1} form morphism between S_{1} and S_{2}. Let f_{2} be a function from the carrier of S_{2} into the carrier of S_{3} and g_{2} be a function. Suppose f_{2} and g_{2} form morphism between S_{2} and S_{3}. Then $\operatorname{hom}\left(f_{2} \cdot f_{1}, g_{2} \cdot g_{1}, X, S_{1}, S_{3}\right)=$ $\left(\operatorname{hom}\left(f_{2}, g_{2}, X, S_{2}, S_{3}\right) \cdot f_{1}\right) \circ \operatorname{hom}\left(f_{1}, g_{1}, X \cdot f_{2}, S_{1}, S_{2}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[5] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.
[6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[7] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, 5(2):191-198, 1996.
[8] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories. Formalized Mathematics, 5(4):553-564, 1996.
[9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[10] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[11] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[12] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[13] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[14] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[15] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[16] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[17] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[18] Artur Korniłowicz. On the group of automorphisms of universal algebra \& many sorted algebra. Formalized Mathematics, 5(2):221-226, 1996.
[19] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[20] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103108, 1993.
[21] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
[22] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):6774, 1996.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

