Institution of Many Sorted Algebras. Part I: Signature Reduct of an Algebra

Grzegorz Bancerek Warsaw University Białystok

Summary. In the paper the notation necessary to construct the institution of many sorted algebras is introduced.

MML Identifier: INSTALG1.

The papers [23], [27], [16], [1], [28], [14], [9], [13], [2], [26], [17], [3], [4], [10], [6], [11], [20], [24], [25], [15], [12], [21], [19], [5], [22], [7], [18], and [8] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) Let I be a set, f be a function, and F, G be many sorted functions indexed by I. If rng $f \subseteq I$, then $(G \circ F) \cdot f = (G \cdot f) \circ (F \cdot f)$.
- (2) Let S be a non empty non void many sorted signature, o be an operation symbol of S, V be a non-empty many sorted set indexed by the carrier of S, and x be a set. Then x is an argument sequence of Sym(o, V) if and only if x is an element of Args(o, Free(V)).

Let S be a non empty non void many sorted signature, let V be a non-empty many sorted set indexed by the carrier of S, and let o be an operation symbol of S. Note that every element of $\operatorname{Args}(o, \operatorname{Free}(V))$ is decorated tree yielding.

Next we state two propositions:

(3) Let S be a non empty non void many sorted signature and A_1 , A_2 be algebras over S. Suppose the sorts of A_1 are transformable to the sorts of A_2 . Let o be an operation symbol of S. If $\operatorname{Args}(o, A_1) \neq \emptyset$, then $\operatorname{Args}(o, A_2) \neq \emptyset$.

C 1997 University of Białystok ISSN 1426-2630

(4) Let S be a non empty non void many sorted signature, o be an operation symbol of S, V be a non-empty many sorted set indexed by the carrier of S, and x be an element of $\operatorname{Args}(o, \operatorname{Free}(V))$. Then $(\operatorname{Den}(o, \operatorname{Free}(V)))(x) = \langle o,$ the carrier of S \rangle -tree(x).

Let S be a non-empty non void many sorted signature and let A be a nonempty algebra over S. One can check that the algebra of A is non-empty.

Next we state three propositions:

- (5) Let S be a non empty non void many sorted signature and A, B be algebras over S. Suppose the algebra of A = the algebra of B. Let o be an operation symbol of S. Then Den(o, A) = Den(o, B).
- (6) Let S be a non empty non void many sorted signature and A₁, A₂, B₁, B₂ be algebras over S. Suppose the algebra of A₁ = the algebra of B₁ and the algebra of A₂ = the algebra of B₂. Let f be a many sorted function from A₁ into A₂ and g be a many sorted function from B₁ into B₂. Suppose f = g. Let o be an operation symbol of S. Suppose Args(o, A₁) ≠ Ø and Args(o, A₂) ≠ Ø. Let x be an element of Args(o, A₁) and y be an element of Args(o, B₁). If x = y, then f#x = g#y.
- (7) Let S be a non empty non void many sorted signature and A_1 , A_2 , B_1 , B_2 be algebras over S. Suppose that
- (i) the algebra of A_1 = the algebra of B_1 ,
- (ii) the algebra of A_2 = the algebra of B_2 , and
- (iii) the sorts of A_1 are transformable to the sorts of A_2 . Let h be a many sorted function from A_1 into A_2 . Suppose h is a homomorphism of A_1 into A_2 . Then there exists a many sorted function h' from B_1 into B_2 such that h' = h and h' is a homomorphism of B_1 into B_2 .

Let S be a many sorted signature. We say that S is feasible if and only if:

(Def. 1) If the carrier of $S = \emptyset$, then the operation symbols of $S = \emptyset$.

The following proposition is true

(8) Let S be a many sorted signature. Then S is feasible if and only if dom (the result sort of S) = the operation symbols of S.

One can verify the following observations:

- * every many sorted signature which is non empty is also feasible,
- * every many sorted signature which is void is also feasible,
- $\ast~$ every many sorted signature which is empty and feasible is also void, and
- $\ast~$ every many sorted signature which is non void and feasible is also non empty.

Let us note that there exists a many sorted signature which is non void and non empty.

One can prove the following propositions:

(9) Let S be a feasible many sorted signature. Then $id_{the \ carrier \ of \ S}$ and $id_{the \ operation \ symbols \ of \ S}$ form morphism between S and S.

280

- (10) Let S_1 , S_2 be many sorted signatures and f, g be functions. Suppose f and g form morphism between S_1 and S_2 . Then
 - (i) f is a function from the carrier of S_1 into the carrier of S_2 , and
 - (ii) g is a function from the operation symbols of S_1 into the operation symbols of S_2 .

2. Subsignatures

Let S be a feasible many sorted signature. A many sorted signature is said to be a subsignature of S if:

(Def. 2) $id_{the carrier of it}$ and $id_{the operation symbols of it}$ form morphism between it and S.

We now state the proposition

(11) Let S be a feasible many sorted signature and T be a subsignature of S. Then the carrier of $T \subseteq$ the carrier of S and the operation symbols of $T \subseteq$ the operation symbols of S.

Let S be a feasible many sorted signature. Note that every subsignature of S is feasible.

Next we state several propositions:

- (12) Let S be a feasible many sorted signature and T be a subsignature of S. Then the result sort of $T \subseteq$ the result sort of S and the arity of $T \subseteq$ the arity of S.
- (13) Let S be a feasible many sorted signature and T be a subsignature of S. Then
 - (i) the arity of T = (the arity of $S) \upharpoonright ($ the operation symbols of T), and
 - (ii) the result sort of T = (the result sort of $S) \upharpoonright ($ the operation symbols of T).
- (14) Let S, T be feasible many sorted signatures. Suppose that
 - (i) the carrier of $T \subseteq$ the carrier of S,
- (ii) the arity of $T \subseteq$ the arity of S, and
- (iii) the result sort of $T \subseteq$ the result sort of S. Then T is a subsignature of S.
- (15) Let S, T be feasible many sorted signatures. Suppose that
 - (i) the carrier of $T \subseteq$ the carrier of S,
- (ii) the arity of T = (the arity of S) (the operation symbols of T), and
- (iii) the result sort of T = (the result sort of $S) \upharpoonright ($ the operation symbols of T).

Then T is a subsignature of S.

- (16) Every feasible many sorted signature S is a subsignature of S.
- (17) For every feasible many sorted signature S_1 and for every subsignature S_2 of S_1 holds every subsignature of S_2 is a subsignature of S_1 .

(18) Let S_1 be a feasible many sorted signature and S_2 be a subsignature of S_1 . Suppose S_1 is a subsignature of S_2 . Then the many sorted signature of S_1 = the many sorted signature of S_2 .

Let S be a non empty many sorted signature. Observe that there exists a subsignature of S which is non empty.

Let S be a non void feasible many sorted signature. One can verify that there exists a subsignature of S which is non void.

One can prove the following three propositions:

- (19) Let S be a feasible many sorted signature, S' be a subsignature of S, T be a many sorted signature, and f, g be functions. Suppose f and g form morphism between S and T. Then f [the carrier of S' and g] the operation symbols of S' form morphism between S' and T.
- (20)Let S be a many sorted signature, T be a feasible many sorted signature, T' be a subsignature of T, and f, g be functions. Suppose f and g form morphism between S and T'. Then f and g form morphism between Sand T.
- (21)Let S be a many sorted signature, T be a feasible many sorted signature, T' be a subsignature of T, and f, g be functions. Suppose f and g form morphism between S and T and rng $f \subseteq$ the carrier of T' and rng $g \subseteq$ the operation symbols of T'. Then f and g form morphism between S and T'.

3. Signature reducts

Let S_1, S_2 be non empty many sorted signatures, let A be an algebra over S_2 , and let f, g be functions. Let us assume that f and g form morphism between S_1 and S_2 . The functor $A |_{(f,g)} S_1$ yields a strict algebra over S_1 and is defined by the conditions (Def. 3).

(Def. 3)(i)

The sorts of $A{\upharpoonright}_{(f,g)}S_1 = (\text{the sorts of } A) \cdot f$, and the characteristics of $A{\upharpoonright}_{(f,g)}S_1 = (\text{the characteristics of } A) \cdot g$. (ii)

Let S_2 , S_1 be non empty many sorted signatures and let A be an algebra over S_2 . The functor $A \upharpoonright S_1$ yields a strict algebra over S_1 and is defined as follows:

(Def. 4) $A \upharpoonright S_1 = A \upharpoonright_{(\mathrm{id}_{\mathrm{the carrier of } S_1}, \mathrm{id}_{\mathrm{the operation symbols of } S_1})} S_1.$

We now state two propositions:

- (22) Let S_1 , S_2 be non empty many sorted signatures and A, B be algebras over S_2 . Suppose the algebra of A = the algebra of B. Let f, g be functions. If f and g form morphism between S_1 and S_2 , then $A \upharpoonright_{(f,q)} S_1 = B \upharpoonright_{(f,q)} S_1$.
- (23) Let S_1 , S_2 be non empty many sorted signatures, A be a non-empty algebra over S_2 , and f, g be functions. If f and g form morphism between S_1 and S_2 , then $A \upharpoonright_{(f,g)} S_1$ is non-empty.

Let S_2 be a non empty many sorted signature, let S_1 be a non empty subsignature of S_2 , and let A be a non-empty algebra over S_2 . Observe that $A \upharpoonright S_1$ is non-empty.

282

The following propositions are true:

- (24) Let S_1 , S_2 be non void non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_1 and S_2 . Let A be an algebra over S_2 , o_1 be an operation symbol of S_1 , and o_2 be an operation symbol of S_2 . If $o_2 = g(o_1)$, then $\text{Den}(o_1, A \upharpoonright_{(f,g)} S_1) = \text{Den}(o_2, A)$.
- (25) Let S_1 , S_2 be non void non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_1 and S_2 . Let A be an algebra over S_2 , o_1 be an operation symbol of S_1 , and o_2 be an operation symbol of S_2 . If $o_2 = g(o_1)$, then $\operatorname{Args}(o_2, A) = \operatorname{Args}(o_1, A \upharpoonright_{(f,g)} S_1)$ and $\operatorname{Result}(o_1, A \upharpoonright_{(f,g)} S_1) = \operatorname{Result}(o_2, A)$.
- (26) Let S be a non empty many sorted signature and A be an algebra over S. Then $A \upharpoonright_{(id_{the carrier of S}, id_{the operation symbols of S})} S = the algebra of A.$
- (27) For every non empty many sorted signature S and for every algebra A over S holds $A \upharpoonright S =$ the algebra of A.
- (28) Let S_1 , S_2 , S_3 be non empty many sorted signatures and f_1 , g_1 be functions. Suppose f_1 and g_1 form morphism between S_1 and S_2 . Let f_2 , g_2 be functions. Suppose f_2 and g_2 form morphism between S_2 and S_3 . Let A be an algebra over S_3 . Then $A \upharpoonright_{(f_2 \cdot f_1, g_2 \cdot g_1)} S_1 = A \upharpoonright_{(f_2, g_2)} S_2 \upharpoonright_{(f_1, g_1)} S_1$.
- (29) Let S_1 be a non empty feasible many sorted signature, S_2 be a non empty subsignature of S_1 , S_3 be a non empty subsignature of S_2 , and A be an algebra over S_1 . Then $A \upharpoonright S_3 = A \upharpoonright S_2 \upharpoonright S_3$.
- (30) Let S_1 , S_2 be non empty many sorted signatures, f be a function from the carrier of S_1 into the carrier of S_2 , and g be a function. Suppose fand g form morphism between S_1 and S_2 . Let A_1 , A_2 be algebras over S_2 and h be a many sorted function from the sorts of A_1 into the sorts of A_2 . Then $h \cdot f$ is a many sorted function from the sorts of $A_1 \upharpoonright_{(f,g)} S_1$ into the sorts of $A_2 \upharpoonright_{(f,g)} S_1$.
- (31) Let S_1 be a non empty many sorted signature, S_2 be a non empty subsignature of S_1 , A_1 , A_2 be algebras over S_1 , and h be a many sorted function from the sorts of A_1 into the sorts of A_2 . Then $h \upharpoonright$ the carrier of S_2 is a many sorted function from the sorts of $A_1 \upharpoonright S_2$ into the sorts of $A_2 \upharpoonright S_2$.
- (32) Let S_1 , S_2 be non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_1 and S_2 . Let A be an algebra over S_2 . Then id_{the sorts of $A \cdot f = id_{the sorts of A \uparrow (f,g)} S_1$.}
- (33) Let S_1 be a non empty many sorted signature, S_2 be a non empty subsignature of S_1 , and A be an algebra over S_1 Then $\operatorname{id}_{\operatorname{the sorts of } A} \cap A$ the carrier of $S_2 = \operatorname{id}_{\operatorname{the sorts of } A \cap S_2}$.
- (34) Let S_1 , S_2 be non void non empty many sorted signatures and f, g be functions. Suppose f and g form morphism between S_1 and S_2 . Let A, B be algebras over S_2 , h_2 be a many sorted function from A into B, and h_1 be a many sorted function from $A \upharpoonright_{(f,g)} S_1$ into $B \upharpoonright_{(f,g)} S_1$. Suppose $h_1 = h_2 \cdot f$. Let o_1 be an operation symbol of S_1 and o_2 be an operation symbol of S_2 .

Suppose $o_2 = g(o_1)$ and $\operatorname{Args}(o_2, A) \neq \emptyset$ and $\operatorname{Args}(o_2, B) \neq \emptyset$. Let x_2 be an element of $\operatorname{Args}(o_2, A)$ and x_1 be an element of $\operatorname{Args}(o_1, A \upharpoonright_{(f,g)} S_1)$. If $x_2 = x_1$, then $h_1 \# x_1 = h_2 \# x_2$.

- (35) Let S, S' be non empty non void many sorted signatures and A_1, A_2 be algebras over S. Suppose the sorts of A_1 are transformable to the sorts of A_2 . Let h be a many sorted function from A_1 into A_2 . Suppose h is a homomorphism of A_1 into A_2 . Let f be a function from the carrier of S' into the carrier of S and g be a function. Suppose f and g form morphism between S' and S. Then there exists a many sorted function h' from $A_1 \upharpoonright_{(f,g)} S'$ into $A_2 \upharpoonright_{(f,g)} S'$ such that $h' = h \cdot f$ and h' is a homomorphism of $A_1 \upharpoonright_{(f,g)} S'$ into $A_2 \upharpoonright_{(f,g)} S'$.
- (36) Let S be a non void feasible many sorted signature, S' be a non void subsignature of S, and A_1 , A_2 be algebras over S. Suppose the sorts of A_1 are transformable to the sorts of A_2 . Let h be a many sorted function from A_1 into A_2 . Suppose h is a homomorphism of A_1 into A_2 . Then there exists a many sorted function h' from $A_1 \upharpoonright S'$ into $A_2 \upharpoonright S'$ such that $h' = h \upharpoonright$ the carrier of S' and h' is a homomorphism of $A_1 \upharpoonright S'$ into $A_2 \upharpoonright S'$.
- (37) Let S, S' be non empty non void many sorted signatures, A be a nonempty algebra over S, f be a function from the carrier of S' into the carrier of S, and g be a function. Suppose f and g form morphism between S' and S. Let B be a non-empty algebra over S'. Suppose $B = A \upharpoonright_{(f,g)} S'$. Let s_1 , s_2 be sort symbols of S' and t be a function. Suppose t is an elementary translation in B from s_1 into s_2 . Then t is an elementary translation in Afrom $f(s_1)$ into $f(s_2)$.
- (38) Let S, S' be non empty non void many sorted signatures, f be a function from the carrier of S' into the carrier of S, and g be a function. Suppose f and g form morphism between S' and S. Let s_1, s_2 be sort symbols of S'. If TranslRel(S') reduces s_1 to s_2 , then TranslRel(S) reduces $f(s_1)$ to $f(s_2)$.
- (39) Let S, S' be non void non empty many sorted signatures, A be a nonempty algebra over S, f be a function from the carrier of S' into the carrier of S, and g be a function. Suppose f and g form morphism between S'and S. Let B be a non-empty algebra over S'. Suppose $B = A \upharpoonright_{(f,g)} S'$. Let s_1, s_2 be sort symbols of S'. Suppose TranslRel(S') reduces s_1 to s_2 . Then every translation in B from s_1 into s_2 is a translation in A from $f(s_1)$ into $f(s_2)$.

4. TRANSLATING HOMOMORPHISMS

The scheme GenFuncEx concerns a non empty non void many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , a non-empty many sorted set \mathcal{C} indexed by the carrier of \mathcal{A} , and a binary functor \mathcal{F} yielding a set, and states that: There exists a many sorted function h from $Free(\mathcal{C})$ into \mathcal{B} such that

- (i) h is a homomorphism of Free(\mathcal{C}) into \mathcal{B} , and
- (ii) for every sort symbol s of A and for every element x of $\mathcal{C}(s)$ holds h(s) (the root tree of $\langle x, s \rangle$) = $\mathcal{F}(x, s)$

provided the parameters meet the following requirement:

• For every sort symbol s of \mathcal{A} and for every element x of $\mathcal{C}(s)$ holds $\mathcal{F}(x,s) \in (\text{the sorts of } \mathcal{B})(s).$

One can prove the following proposition

(40) Let I be a set, A, B be many sorted sets indexed by I, C be a many sorted subset of A, F be a many sorted function from A into B, and i be a set. Suppose $i \in I$. Let f, g be functions. Suppose f = F(i) and $g = (F \upharpoonright C)(i)$. Let x be a set. If $x \in C(i)$, then g(x) = f(x).

Let S be a non-void non empty many sorted signature and let X be a nonempty many sorted set indexed by the carrier of S. Note that $\operatorname{FreeGenerator}(X)$ is non-empty.

Let S_1 , S_2 be non empty non void many sorted signatures, let X be a nonempty many sorted set indexed by the carrier of S_2 , let f be a function from the carrier of S_1 into the carrier of S_2 , and let g be a function. Let us assume that f and g form morphism between S_1 and S_2 . The functor hom (f, g, X, S_1, S_2) yields a many sorted function from $\text{Free}(X \cdot f)$ into $\text{Free}(X) \upharpoonright_{(f,g)} S_1$ and is defined by the conditions (Def. 5).

- (Def. 5)(i) $\hom(f, g, X, S_1, S_2)$ is a homomorphism of $\operatorname{Free}(X \cdot f)$ into $\operatorname{Free}(X) \upharpoonright_{(f,g)} S_1$, and
 - (ii) for every sort symbol s of S_1 and for every element x of $(X \cdot f)(s)$ holds $(\hom(f, g, X, S_1, S_2))(s)$ (the root tree of $\langle x, s \rangle$) = the root tree of $\langle x, f(s) \rangle$.

We now state several propositions:

- (41) Let S_1 , S_2 be non void non empty many sorted signatures, X be a nonempty many sorted set indexed by the carrier of S_2 , f be a function from the carrier of S_1 into the carrier of S_2 , and g be a function. Suppose f and g form morphism between S_1 and S_2 . Let o be an operation symbol of S_1 , p be an element of Args $(o, \operatorname{Free}(X \cdot f))$, and q be a finite sequence. Suppose $q = \operatorname{hom}(f, g, X, S_1, S_2) \# p$. Then $(\operatorname{hom}(f, g, X, S_1, S_2))$ (the result sort of $o)(\langle o, \text{ the carrier of } S_1 \rangle$ -tree $(p)) = \langle g(o), \text{ the carrier of } S_2 \rangle$ -tree(q).
- (42) Let S_1 , S_2 be non void non empty many sorted signatures, X be a nonempty many sorted set indexed by the carrier of S_2 , f be a function from the carrier of S_1 into the carrier of S_2 , and g be a function. Suppose f and g form morphism between S_1 and S_2 . Let t be a term of S_1 over $X \cdot f$. Then $(\hom(f, g, X, S_1, S_2))$ (the sort of t)(t) is a compound term of S_2 over X if and only if t is a compound term of S_1 over $X \cdot f$.
- (43) Let S_1 , S_2 be non void non empty many sorted signatures, X be a non-empty many sorted set indexed by the carrier of S_2 , f be a function from the carrier of S_1 into the carrier of S_2 , and g be an one-to-

one function. Suppose f and g form morphism between S_1 and S_2 . Then hom (f, g, X, S_1, S_2) is a monomorphism of $\operatorname{Free}(X \cdot f)$ into $\operatorname{Free}(X) \upharpoonright_{(f,g)} S_1$.

- (44) Let S be a non void non empty many sorted signature and X be a non-empty many sorted set indexed by the carrier of S. Then hom(id_{the carrier of S}, id_{the operation symbols of S}, X, S, S) = id_{the sorts of Free(X)}.
- (45) Let S_1 , S_2 , S_3 be non void non empty many sorted signatures, X be a non-empty many sorted set indexed by the carrier of S_3 , f_1 be a function from the carrier of S_1 into the carrier of S_2 , and g_1 be a function. Suppose f_1 and g_1 form morphism between S_1 and S_2 . Let f_2 be a function from the carrier of S_2 into the carrier of S_3 and g_2 be a function. Suppose f_2 and g_2 form morphism between S_2 and S_3 . Then hom $(f_2 \cdot f_1, g_2 \cdot g_1, X, S_1, S_3) =$ $(hom(f_2, g_2, X, S_2, S_3) \cdot f_1) \circ hom(f_1, g_1, X \cdot f_2, S_1, S_2).$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993.
- [5] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.
- [6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
- [7] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, 5(2):191–198, 1996.
- [8] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories. Formalized Mathematics, 5(4):553–564, 1996.
- [9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [10] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [12] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [13] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [14] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [15] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [16] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [17] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part 1. Formalized Mathematics, 2(5):683–687, 1991.
- [18] Artur Korniłowicz. On the group of automorphisms of universal algebra & many sorted algebra. Formalized Mathematics, 5(2):221–226, 1996.
- [19] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [20] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103– 108, 1993.

- [21] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60, 1996.
 [22] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67–
- Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67-74, 1996.
 Andrea Turbulas, Tareli Crothandias, at theory. Formalized Mathematics, 1(1):0, 11
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [24] Andrzej Trybulez. Many control acts. Formalized Mathematics, 4(1):15, 22, 1002.
- [24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
 [25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1
- [25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
 [26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
- 1990. [27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
- thematics, 1(1):17-23, 1990.
 [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received December 30, 1996