# Inverse Limits of Many Sorted Algebras 

Adam Grabowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. This article introduces the construction of an inverse limit of many sorted algebras. A few preliminary notions such as an ordered family of many sorted algebras and a binding of family are formulated. Definitions of a set of many sorted signatures and a set of signature morphisms are also given.


MML Identifier: MSALIMIT.

The terminology and notation used here are introduced in the following articles: [21], [25], [12], [22], [26], [9], [28], [10], [5], [23], [8], [18], [27], [11], [3], [7], [24], [2], [1], [20], [15], [19], [6], [14], [17], [16], [4], and [13].

## 1. Inverse Limits of Many Sorted Algebras

We adopt the following rules: $P$ denotes a non empty poset, $i, j, k$ denote elements of $P$, and $S$ denotes a non void non empty many sorted signature.

Let $I$ be a non empty set, let us consider $S$, let $A_{1}$ be an algebra family of $I$ over $S$, let $i$ be an element of $I$, and let $o$ be an operation symbol of $S$. One can verify that $\left(\operatorname{OPER}\left(A_{1}\right)\right)(i)(o)$ is function-like and relation-like.

Let $I$ be a non empty set, let us consider $S$, let $A_{1}$ be an algebra family of $I$ over $S$, and let $s$ be a sort symbol of $S$. Note that $\left(\operatorname{SORTS}\left(A_{1}\right)\right)(s)$ is functional.

Let us consider $P, S$. An algebra family of the carrier of $P$ over $S$ is called a family of algebras over $S$ ordered by $P$ if it satisfies the condition (Def. 1).
(Def. 1) There exists a many sorted function $F$ of the internal relation of $P$ such that for all $i, j, k$ if $i \geq j$ and $j \geq k$, then there exists a many sorted function $f_{1}$ from it $(i)$ into it $(j)$ and there exists a many sorted function $f_{2}$ from it $(j)$ into it $(k)$ such that $f_{1}=F(j, i)$ and $f_{2}=F(k, j)$ and $F(k$, $i)=f_{2} \circ f_{1}$ and $f_{1}$ is a homomorphism of it $(i) \operatorname{into} \operatorname{it}(j)$.

In the sequel $O_{1}$ is a family of algebras over $S$ ordered by $P$.
Let us consider $P, S, O_{1}$. A many sorted function of the internal relation of $P$ is called a binding of $O_{1}$ if it satisfies the condition (Def. 2).
(Def. 2) Given $i, j, k$. Suppose $i \geq j$ and $j \geq k$. Then there exists a many sorted function $f_{1}$ from $O_{1}(i)$ into $O_{1}(j)$ and there exists a many sorted function $f_{2}$ from $O_{1}(j)$ into $O_{1}(k)$ such that $f_{1}=\operatorname{it}(j, i)$ and $f_{2}=\operatorname{it}(k$, $j$ ) and $\operatorname{it}(k, i)=f_{2} \circ f_{1}$ and $f_{1}$ is a homomorphism of $O_{1}(i)$ into $O_{1}(j)$.
Let us consider $P, S, O_{1}$, let $B$ be a binding of $O_{1}$, and let us consider $i$, $j$. Let us assume that $i \geq j$. The functor $\operatorname{bind}(B, i, j)$ yielding a many sorted function from $O_{1}(i)$ into $O_{1}(j)$ is defined by:
(Def. 3) $\quad \operatorname{bind}(B, i, j)=B(j, i)$.
In the sequel $B$ will be a binding of $O_{1}$.
Next we state the proposition
(1) If $i \geq j$ and $j \geq k$, then $\operatorname{bind}(B, j, k) \circ \operatorname{bind}(B, i, j)=\operatorname{bind}(B, i, k)$.

Let us consider $P, S, O_{1}$ and let $I_{1}$ be a binding of $O_{1}$. We say that $I_{1}$ is normalized if and only if:
(Def. 4) For every $i$ holds $I_{1}(i, i)=\mathrm{id}_{\left(\text {the sorts of } O_{1}(i)\right)}$.
We now state the proposition
(2) Given $P, S, O_{1}, B, i, j$. Suppose $i \geq j$. Let $f$ be a many sorted function from $O_{1}(i)$ into $O_{1}(j)$. If $f=\operatorname{bind}(B, i, j)$, then $f$ is a homomorphism of $O_{1}(i)$ into $O_{1}(j)$.
Let us consider $P, S, O_{1}, B$. The functor $\operatorname{Normalized}(B)$ yields a binding of $O_{1}$ and is defined as follows:
(Def. 5) For all $i, j$ such that $i \geq j$ holds $(\operatorname{Normalized}(B))(j, i)=(j=i \rightarrow$ $\left.\mathrm{id}_{\left(\text {the sorts of } O_{1}(i)\right)}, \operatorname{bind}(B, i, j) \circ \mathrm{id}_{\left(\text {the sorts of } O_{1}(i)\right)}\right)$.
Next we state the proposition
(3) For all $i, j$ such that $i \geq j$ and $i \neq j$ holds $B(j, i)=(\operatorname{Normalized}(B))(j$, $i)$.
Let us consider $P, S, O_{1}, B$. One can verify that $\operatorname{Normalized}(B)$ is normalized.

Let us consider $P, S, O_{1}$. Note that there exists a binding of $O_{1}$ which is normalized.

The following proposition is true
(4) For every normalized binding $N_{1}$ of $O_{1}$ and for all $i, j$ such that $i \geq j$ holds $\left(\operatorname{Normalized}\left(N_{1}\right)\right)(j, i)=N_{1}(j, i)$.
Let us consider $P, S, O_{1}$ and let $B$ be a binding of $O_{1}$. The functor $\lim _{\longleftarrow} B$ yields a strict subalgebra of $\prod O_{1}$ and is defined by the condition (Def. 6).
(Def. 6) Let $s$ be a sort symbol of $S$ and let $f$ be an element of $\left(\operatorname{SORTS}\left(O_{1}\right)\right)(s)$. Then $f \in($ the sorts of $\lim B)(s)$ if and only if for all $i, j$ such that $i \geq j$ holds $(\operatorname{bind}(B, i, j))(s)(\overleftarrow{f(i)})=f(j)$.
Next we state the proposition
(5) Let $D_{1}$ be a discrete non empty poset, and given $S$, and let $O_{1}$ be a family of algebras over $S$ ordered by $D_{1}$, and let $B$ be a normalized binding of $O_{1}$. Then $\lim _{\longleftarrow} B=\Pi O_{1}$.

## 2. Sets and Morphisms of Many Sorted Signatures

In the sequel $x$ will be a set and $A$ will be a non empty set.
Let $X$ be a set. We say that $X$ is MSS-membered if and only if:
(Def. 7) If $x \in X$, then $x$ is a strict non empty non void many sorted signature.
One can verify that there exists a set which is non empty and MSS-membered.
The strict many sorted signature TrivialMSSign is defined by:
(Def. 8) TrivialMSSign is empty and void.
Let us note that TrivialMSSign is empty and void.
One can check that there exists a many sorted signature which is strict, empty, and void.

The following proposition is true
(6) Let $S$ be a void many sorted signature. Then $\mathrm{id}_{(\text {the carrier of } S \text { ) }}$ and $\mathrm{id}_{\text {(the operation symbols of } S \text { ) }}$ form morphism between $S$ and $S$.
Let us consider $A$. The functor $\operatorname{MSS}-\operatorname{set}(A)$ is defined by the condition (Def. 9).
(Def. 9) $\quad x \in \operatorname{MSS}-s e t(A)$ if and only if there exists a strict non empty non void many sorted signature $S$ such that $x=S$ and the carrier of $S \subseteq A$ and the operation symbols of $S \subseteq A$.
Let us consider $A$. One can check that MSS-set $(A)$ is non empty and MSSmembered.

Let $A$ be a non empty MSS-membered set. We see that the element of $A$ is a strict non empty non void many sorted signature.

The following proposition is true
(7) Let $x$ be an element of $\operatorname{MSS}-\operatorname{set}(A)$. Then $\mathrm{id}_{(\text {the carrier of } x)}$ and $\mathrm{id}_{\text {(the operation symbols of } x)}$ form morphism between $x$ and $x$.
Let $S_{1}, S_{2}$ be many sorted signatures. The functor $\operatorname{MSS}-m o r p h\left(S_{1}, S_{2}\right)$ is defined by:
(Def. 10) $\quad x \in \operatorname{MSS}-m o r p h\left(S_{1}, S_{2}\right)$ iff there exist functions $f, g$ such that $x=\langle f$, $g\rangle$ and $f$ and $g$ form morphism between $S_{1}$ and $S_{2}$.

## REFERENCES

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501-505, 1996.
[14] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[15] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[16] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[18] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[20] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[25] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received June 11, 1996

