Fixpoints in Complete Lattices ${ }^{1}$

Piotr Rudnicki
University of Alberta
Edmonton

Andrzej Trybulec
Warsaw University
Białystok

Summary. Theorem (5) states that if an iterate of a function has a unique fixpoint then it is also the fixpoint of the function. It has been included here in response to P. Andrews claim that such a proof in set theory takes thousands of lines when one starts with the axioms. While probably true, such a claim is misleading about the usefulness of proof-checking systems based on set theory.

Next, we prove the existence of the least and the greatest fixpoints for \subseteq-monotone functions from a powerset to a powerset of a set. Scheme Knaster is the Knaster theorem about the existence of fixpoints, cf. [14]. Theorem (11) is the Banach decomposition theorem which is then used to prove the Schröder-Bernstein theorem (12) (we followed Paulson's development of these theorems in Isabelle [16]). It is interesting to note that the last theorem when stated in Mizar in terms of cardinals becomes trivial to prove as in the Mizar development of cardinals the \leq relation is synonymous with \subseteq.

Section 3 introduces the notion of the lattice of a lattice subset provided the subset has lubs and glbs.

The main theorem of Section 4 is the Tarski theorem (43) that every monotone function f over a complete lattice L has a complete lattice of fixpoints. As the consequence of this theorem we get the existence of the least fixpoint equal to $f^{\beta}\left(\perp_{L}\right)$ for some ordinal β with cardinality not bigger than the cardinality of the carrier of L, cf. [14], and analogously the existence of the greatest fixpoint equal to $f^{\beta}\left(\top_{L}\right)$.

Section 5 connects the fixpoint properties of monotone functions over complete lattices with the fixpoints of \subseteq-monotone functions over the lattice of subsets of a set (Boolean lattice).

MML Identifier: KNASTER.

The papers [19], [21], [13], [4], [22], [24], [23], [10], [11], [9], [18], [15], [12], [17], [8], [5], [7], [1], [3], [25], [2], [6], and [20] provide the notation and terminology for this paper.

[^0]
1. Preliminaries

In this paper f, g, h will be functions.
The following three propositions are true:
(1) If f is one-to-one and g is one-to-one and $\operatorname{rng} f$ misses $\operatorname{rng} g$, then $f+\cdot g$ is one-to-one.
(2) If $\operatorname{dom} f$ misses $\operatorname{dom} g$, then $f \cup g$ is a function.
(3) Suppose $h=f \cup g$ and $\operatorname{dom} f$ misses dom g. Then h is one-to-one if and only if the following conditions are satisfied:
(i) f is one-to-one,
(ii) g is one-to-one, and
(iii) $\quad \operatorname{rng} f$ misses $\operatorname{rng} g$.

2. Fixpoints in general

Let x be a set and let f be a function. We say that x is a fixpoint of f if and only if:
(Def. 1) $\quad x \in \operatorname{dom} f$ and $x=f(x)$.
Let A be a non empty set, let a be an element of A, and let f be a function from A into A. Let us observe that a is a fixpoint of f if and only if:
(Def. 2) $\quad a=f(a)$.
For simplicity we follow a convention: x, y, X will be sets, A will be a non empty set, n will be a natural number, and f will be a function from X into X.

Next we state two propositions:
(4) If x is a fixpoint of f^{n}, then $f(x)$ is a fixpoint of f^{n}.
(5) If there exists n such that x is a fixpoint of f^{n} and for every y such that y is a fixpoint of f^{n} holds $x=y$, then x is a fixpoint of f.
Let A, B be non empty sets and let f be a function from A into B. Let us observe that f is \subseteq-monotone if and only if:
(Def. 3) For all elements x, y of A such that $x \subseteq y$ holds $f(x) \subseteq f(y)$.
Let A be a set and let B be a non empty set. Observe that there exists a function from A into B which is \subseteq-monotone.

Let X be a set and let f be a \subseteq-monotone function from 2^{X} into 2^{X}. The functor $\operatorname{lfp}(X, f)$ yields a subset of X and is defined by:
(Def. 4) $\quad \operatorname{lfp}(X, f)=\bigcap\{h: h$ ranges over subsets of $X, f(h) \subseteq h\}$.
The functor $\operatorname{gfp}(X, f)$ yielding a subset of X is defined by:
(Def. 5) $\operatorname{gfp}(X, f)=\bigcup\{h: h$ ranges over subsets of $X, h \subseteq f(h)\}$.
In the sequel f will be a \subseteq-monotone function from 2^{X} into 2^{X} and S will be a subset of X.

One can prove the following propositions:
(6) $\operatorname{lfp}(X, f)$ is a fixpoint of f.
(7) $\operatorname{gfp}(X, f)$ is a fixpoint of f.
(8) If $f(S) \subseteq S$, then $\operatorname{lfp}(X, f) \subseteq S$.
(9) If $S \subseteq f(S)$, then $S \subseteq \operatorname{gfp}(X, f)$.
(10) If S is a fixpoint of f, then $\operatorname{lfp}(X, f) \subseteq S$ and $S \subseteq \operatorname{gfp}(X, f)$.

The scheme Knaster deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that:

There exists a set D such that $\mathcal{F}(D)=D$ and $D \subseteq \mathcal{A}$
provided the parameters meet the following requirements:

- For all sets X, Y such that $X \subseteq Y$ holds $\mathcal{F}(X) \subseteq \mathcal{F}(Y)$,
- $\mathcal{F}(\mathcal{A}) \subseteq \mathcal{A}$.

In the sequel X, Y are non empty sets, f is a function from X into Y, and g is a function from Y into X.

We now state several propositions:
(11) There exist sets $X_{1}, X_{2}, Y_{1}, Y_{2}$ such that X_{1} misses X_{2} and Y_{1} misses Y_{2} and $X_{1} \cup X_{2}=X$ and $Y_{1} \cup Y_{2}=Y$ and $f^{\circ} X_{1}=Y_{1}$ and $g^{\circ} Y_{2}=X_{2}$.
(12) If f is one-to-one and g is one-to-one, then there exists function from X into Y which is bijective.
(13) If there exists f which is bijective, then $X \approx Y$.
(14) If f is one-to-one and g is one-to-one, then $X \approx Y$.
(15) For all cardinal numbers N, M such that $N \leq M$ and $M \leq N$ holds $N=M$.

3. The lattice of lattice subset

Let L be a non empty lattice structure, let f be a unary operation on L, and let x be an element of L. Then $f(x)$ is an element of L.

Let L be a lattice, let f be a function from the carrier of L into the carrier of L, let x be an element of the carrier of L, and let O be an ordinal number. The functor $f_{\sqcup}^{O}(x)$ is defined by the condition (Def. 6).
(Def. 6) There exists a transfinite sequence L_{0} such that
(i) $f_{\sqcup}^{O}(x)=$ last L_{0},
(ii) $\operatorname{dom} L_{0}=\operatorname{succ} O$,
(iii) $L_{0}(\emptyset)=x$,
(iv) for every ordinal number C and for arbitrary y such that $\operatorname{succ} C \in$ succ O and $y=L_{0}(C)$ holds $L_{0}(\operatorname{succ} C)=f(y)$, and
(v) for every ordinal number C and for every transfinite sequence L_{1} such that $C \in \operatorname{succ} O$ and $C \neq \emptyset$ and C is a limit ordinal number and $L_{1}=$ $L_{0} \upharpoonright C$ holds $L_{0}(C)=\bigsqcup_{L} \operatorname{rng} L_{1}$.
The functor $f_{\square}^{O}(x)$ is defined by the condition (Def. 7).
(Def. 7) There exists a transfinite sequence L_{0} such that
(i) $f_{\square}^{O}(x)=$ last L_{0},
(ii) $\operatorname{dom} L_{0}=\operatorname{succ} O$,
(iii) $L_{0}(\emptyset)=x$,
(iv) for every ordinal number C and for arbitrary y such that succ $C \in$ $\operatorname{succ} O$ and $y=L_{0}(C)$ holds $L_{0}(\operatorname{succ} C)=f(y)$, and
(v) for every ordinal number C and for every transfinite sequence L_{1} such that $C \in \operatorname{succ} O$ and $C \neq \emptyset$ and C is a limit ordinal number and $L_{1}=$ $L_{0} \upharpoonright C$ holds $L_{0}(C)=\Pi_{L} \operatorname{rng} L_{1}$.
For simplicity we adopt the following rules: L will denote a lattice, f will denote a function from the carrier of L into the carrier of L, x will denote an element of the carrier of L, O, O_{1}, O_{2} will denote ordinal numbers, and T will denote a transfinite sequence.

One can prove the following propositions:

$$
\begin{align*}
& f_{\sqcup}^{\emptyset}(x)=x . \tag{16}\\
& f_{\Pi}^{Q}(x)=x . \tag{17}\\
& f_{\llcorner }^{\text {succ } O}(x)=f\left(f_{\sqcup}^{O}(x)\right) . \tag{18}\\
& f_{\Pi}^{\text {succ } O}(x)=f\left(f_{\Pi}^{O}(x)\right) . \tag{19}
\end{align*}
$$

Suppose $O \neq \emptyset$ and O is a limit ordinal number and $\operatorname{dom} T=O$ and for every ordinal number A such that $A \in O$ holds $T(A)=f_{\sqcup}^{A}(x)$. Then $f_{\sqcup}^{O}(x)=\bigsqcup_{L} \operatorname{rng} T$.
(21) Suppose $O \neq \emptyset$ and O is a limit ordinal number and $\operatorname{dom} T=O$ and for every ordinal number A such that $A \in O$ holds $T(A)=f_{\Pi}^{A}(x)$. Then $f_{\sqcap}^{O}(x)=\Pi_{L} \operatorname{rng} T$.

$$
\begin{align*}
& f^{n}(x)=f_{\cup}^{n}(x) . \tag{22}\\
& f^{n}(x)=f_{\square}^{n}(x) . \tag{23}
\end{align*}
$$

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an element of the carrier of L, and let O be an ordinal number. Then $f_{\sqcup}^{O}(a)$ is an element of L.

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an element of the carrier of L, and let O be an ordinal number. Then $f_{\square}^{O}(a)$ is an element of L.

Let L be a non empty lattice structure and let P be a subset of L. We say that P has l.u.b.'s if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let x, y be elements of L. Suppose $x \in P$ and $y \in P$. Then there exists an element z of L such that $z \in P$ and $x \sqsubseteq z$ and $y \sqsubseteq z$ and for every element z^{\prime} of L such that $z^{\prime} \in P$ and $x \sqsubseteq z^{\prime}$ and $y \sqsubseteq z^{\prime}$ holds $z \sqsubseteq z^{\prime}$.
We say that P has g.l.b.'s if and only if the condition (Def. 9) is satisfied.
(Def. 9) Let x, y be elements of L. Suppose $x \in P$ and $y \in P$. Then there exists an element z of L such that $z \in P$ and $z \sqsubseteq x$ and $z \sqsubseteq y$ and for every element z^{\prime} of L such that $z^{\prime} \in P$ and $z^{\prime} \sqsubseteq x$ and $z^{\prime} \sqsubseteq y$ holds $z^{\prime} \sqsubseteq z$.
Let L be a lattice. One can verify that there exists a subset of L which is non empty and has l.u.b.'s and g.l.b.'s.

Let L be a lattice and let P be a non empty subset of L with l.u.b.'s and g.l.b.'s. The functor \mathbb{Q}_{P} yields a strict lattice and is defined by the conditions (Def. 10).
(Def. 10) (i) The carrier of $\mathbb{L}_{P}=P$, and
(ii) for all elements x, y of \mathbb{L}_{P} there exist elements x^{\prime}, y^{\prime} of L such that $x=x^{\prime}$ and $y=y^{\prime}$ and $x \sqsubseteq y$ iff $x^{\prime} \sqsubseteq y^{\prime}$.

4. Complete lattices

Let us mention that every lattice which is complete is also bounded.
In the sequel L will be a complete lattice, f will be a monotone unary operation on L, and a, b will be elements of L.

The following propositions are true:
(24) There exists a which is a fixpoint of f.
(25) For every a such that $a \sqsubseteq f(a)$ and for every O holds $a \sqsubseteq f_{\sqcup}^{O}(a)$.
(26) For every a such that $f(a) \sqsubseteq a$ and for every O holds $f_{\square}^{O}(a) \sqsubseteq a$.
(27) For every a such that $a \sqsubseteq f(a)$ and for all O_{1}, O_{2} such that $O_{1} \subseteq O_{2}$ holds $f_{\sqcup}^{O_{1}}(a) \sqsubseteq f_{\sqcup}^{O_{2}}(a)$.
(28) For every a such that $f(a) \sqsubseteq a$ and for all O_{1}, O_{2} such that $O_{1} \subseteq O_{2}$ holds $f_{\square}^{O_{2}}(a) \sqsubseteq f_{\square}^{O_{1}}(a)$.
(29) For every a such that $a \sqsubseteq f(a)$ and for all O_{1}, O_{2} such that $O_{1} \subseteq O_{2}$ and $O_{1} \neq O_{2}$ and $f_{\sqcup}^{O_{2}}(a)$ is not a fixpoint of f holds $f_{\sqcup}^{O_{1}}(a) \neq f_{\sqcup}^{O_{2}}(a)$.
(30) For every a such that $f(a) \sqsubseteq a$ and for all O_{1}, O_{2} such that $O_{1} \subseteq O_{2}$ and $O_{1} \neq O_{2}$ and $f_{\Pi}^{O_{2}}(a)$ is not a fixpoint of f holds $f_{\square}^{O_{1}}(a) \neq f_{\Pi}^{O_{2}}(a)$.
(31) If $a \sqsubseteq f(a)$ and $f_{\sqcup}^{O_{1}}(a)$ is a fixpoint of f, then for every O_{2} such that $O_{1} \subseteq O_{2}$ holds $f_{\sqcup}^{O_{1}}(a)=f_{\sqcup}^{O_{2}}(a)$.
(32) If $f(a) \sqsubseteq a$ and $f_{\square}^{O_{1}}(a)$ is a fixpoint of f, then for every O_{2} such that $O_{1} \subseteq O_{2}$ holds $f_{\square}^{O_{1}}(a)=f_{\square}^{O_{2}}(a)$.
(33) For every a such that $a \sqsubseteq f(a)$ there exists O such that $\overline{\bar{O}} \leq$ $\overline{\overline{\text { the carrier of } L}}$ and $f_{\sqcup}^{O}(a)$ is a fixpoint of f.
(34) For every a such that $f(a) \sqsubseteq a$ there exists O such that $\overline{\bar{O}} \leq$ the carrier of L and $f_{\square}^{O}(a)$ is a fixpoint of f.
(35) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f. Then there exists O such that $\overline{\bar{O}} \leq \overline{\overline{\text { the carrier of } L}}$ and $f_{\sqcup}^{O}(a \sqcup b)$ is a fixpoint of f and $a \sqsubseteq f_{\sqcup}^{O}(a \sqcup b)$ and $b \sqsubseteq f_{\sqcup}^{O}(a \sqcup b)$.
(36) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f. Then there exists O such that $\overline{\bar{O}} \leq \overline{\text { the carrier of } L}$ and $f_{\square}^{O}(a \sqcap b)$ is a fixpoint of f and $f_{\sqcap}^{O}(a \sqcap b) \sqsubseteq a$ and $f_{\sqcap}^{O}(a \sqcap b) \sqsubseteq b$.
(37) If $a \sqsubseteq f(a)$ and $a \sqsubseteq b$ and b is a fixpoint of f, then for every O_{2} holds $f_{\sqcup}^{O_{2}}(a) \sqsubseteq b$.
(38) If $f(a) \sqsubseteq a$ and $b \sqsubseteq a$ and b is a fixpoint of f, then for every O_{2} holds $b \sqsubseteq f_{\square}^{O_{2}}(a)$.
Let L be a complete lattice and let f be a unary operation on L. Let us assume that f is monotone. The functor FixPoints (f) yielding a strict lattice is defined by:
(Def. 11) There exists a non empty subset P of L with l.u.b.'s and g.l.b.'s such that $P=\{x: x$ ranges over elements of L, x is a fixpoint of $f\}$ and FixPoints $(f)=\mathbb{L}_{P}$.
One can prove the following propositions:
(39) The carrier of FixPoints $(f)=\{x: x$ ranges over elements of L, x is a fixpoint of $f\}$.
(40) The carrier of FixPoints $(f) \subseteq$ the carrier of L.
(41) $a \in$ the carrier of FixPoints (f) iff a is a fixpoint of f.
(42) For all elements x, y of $\operatorname{FixPoints}(f)$ and for all a, b such that $x=a$ and $y=b$ holds $x \sqsubseteq y$ iff $a \sqsubseteq b$.
(43) FixPoints (f) is complete.

Let us consider L, f. The functor $\operatorname{lfp}(f)$ yields an element of L and is defined as follows:
(Def. 12) $\quad \operatorname{lfp}(f)=f_{\sqcup}^{(\text {the carrier of } L)^{+}}\left(\perp_{L}\right)$.
The functor $\operatorname{gfp}(f)$ yielding an element of L is defined as follows:
(Def. 13) $\quad \operatorname{gfp}(f)=f_{\Pi}^{\text {(the carrier of } L)^{+}}\left(\top_{L}\right)$.
Next we state several propositions:
(44) $\operatorname{lfp}(f)$ is a fixpoint of f and there exists O such that $\overline{\bar{O}} \leq$ $\overline{\overline{\text { the carrier of } L}}$ and $f_{\sqcup}^{O}\left(\perp_{L}\right)=\operatorname{lfp}(f)$.
(45) $\operatorname{gfp}(f)$ is a fixpoint of f and there exists O such that $\overline{\bar{O}} \leq$ $\overline{\overline{\text { the carrier of } L}}$ and $f_{\Pi}^{O}\left(\top_{L}\right)=\operatorname{gfp}(f)$.
(46) If a is a fixpoint of f, then $\operatorname{lfp}(f) \sqsubseteq a$ and $a \sqsubseteq \operatorname{gfp}(f)$.
(47) If $f(a) \sqsubseteq a$, then $\operatorname{lfp}(f) \sqsubseteq a$.
(48) If $a \sqsubseteq f(a)$, then $a \sqsubseteq \operatorname{gfp}(f)$.

5. Boolean lattices

In the sequel f is a monotone unary operation on the lattice of subsets of A. Let A be a set. One can verify that the lattice of subsets of A is complete.
One can prove the following propositions:
(49) Let f be a unary operation on the lattice of subsets of A. Then f is monotone if and only if f is \subseteq-monotone.
(50) There exists a \subseteq-monotone function g from 2^{A} into 2^{A} such that $\operatorname{lfp}(A, g)=\operatorname{lfp}(f)$.
(51) There exists a \subseteq-monotone function g from 2^{A} into 2^{A} such that $\operatorname{gfp}(A, g)=\operatorname{gfp}(f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[3] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. Formalized Mathematics, 5(3):381-393, 1996.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek. Quantales. Formalized Mathematics, 5(1):85-91, 1996.
[7] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[8] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
[9] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[10] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[14] J.-L. Lassez, V. L. Nguyen, and E. A Sonenberg. Fixed point theorems and semantics: a folk tale. Information Processing Letters, 14(3):112-116, 1982.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] Lawrence C. Paulson. Set theory for verification: II, induction and recursion. Journal of Automated Reasoning, 15(2):167-215, 1995.
[17] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144, 1996.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[21] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
[25] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received September 16, 1996

[^0]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

