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Summary. Theorem (5) states that if an iterate of a function
has a unique fixpoint then it is also the fixpoint of the function. It has
been included here in response to P. Andrews claim that such a proof
in set theory takes thousands of lines when one starts with the axioms.
While probably true, such a claim is misleading about the usefulness of
proof-checking systems based on set theory.

Next, we prove the existence of the least and the greatest fixpoints
for C-monotone functions from a powerset to a powerset of a set. Scheme
Knaster is the Knaster theorem about the existence of fixpoints, cf. [14].
Theorem (11) is the Banach decomposition theorem which is then used
to prove the Schroder-Bernstein theorem (12) (we followed Paulson’s de-
velopment of these theorems in Isabelle [16]). It is interesting to note
that the last theorem when stated in Mizar in terms of cardinals becomes
trivial to prove as in the Mizar development of cardinals the < relation
is synonymous with C.

Section 3 introduces the notion of the lattice of a lattice subset pro-
vided the subset has lubs and glbs.

The main theorem of Section 4 is the Tarski theorem (43) that every
monotone function f over a complete lattice L has a complete lattice of
fixpoints. As the consequence of this theorem we get the existence of the
least fixpoint equal to f° (Lz) for some ordinal 8 with cardinality not
bigger than the cardinality of the carrier of L, cf. [14], and analogously
the existence of the greatest fixpoint equal to f°(T ).

Section 5 connects the fixpoint properties of monotone functions over
complete lattices with the fixpoints of C-monotone functions over the
lattice of subsets of a set (Boolean lattice).
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1. PRELIMINARIES

In this paper f, g, h will be functions.

The following three propositions are true:

(1) If f is one-to-one and g is one-to-one and rng f misses rng g, then f+-g
is one-to-one.

(2) If dom f misses dom g, then f U g is a function.

(3) Suppose h = fUg and dom f misses dom g. Then h is one-to-one if and
only if the following conditions are satisfied:

(i)  f is one-to-one,
(ii) g is one-to-one, and
(ili)) rng f misses rngg.

2. FIXPOINTS IN GENERAL

Let « be a set and let f be a function. We say that x is a fixpoint of f if and
only if:
(Def. 1) 2z €dom f and x = f(z).
Let A be a non empty set, let a be an element of A, and let f be a function
from A into A. Let us observe that a is a fixpoint of f if and only if:
(Def. 2)  a= f(a).
For simplicity we follow a convention: x, y, X will be sets, A will be a non
empty set, n will be a natural number, and f will be a function from X into X.
Next we state two propositions:
(4) If z is a fixpoint of f", then f(x) is a fixpoint of f™.
(5)  If there exists n such that z is a fixpoint of f™ and for every y such that
y is a fixpoint of f™ holds x = y, then z is a fixpoint of f.
Let A, B be non empty sets and let f be a function from A into B. Let us
observe that f is C-monotone if and only if:
(Def. 3)  For all elements x, y of A such that x C y holds f(x) C f(y).
Let A be a set and let B be a non empty set. Observe that there exists a
function from A into B which is C-monotone.
Let X be a set and let f be a C-monotone function from 2X into 2%X. The
functor Ifp(X, f) yields a subset of X and is defined by:
(Def. 4)  Ufp(X, f) = N{h : h ranges over subsets of X, f(h) C h}.
The functor gfp(X, f) yielding a subset of X is defined by:
(Def. 5)  gfp(X, f) = U{h : h ranges over subsets of X, h C f(h)}.
In the sequel f will be a C-monotone function from 2% into 2% and S will
be a subset of X.
One can prove the following propositions:



FIXPOINTS IN COMPLETE LATTICES 111

(6) 1p(X,f) is a fixpoint of f.
(7)  gfp(X, f) is a fixpoint of f.
(8) If f(S) C S, then Ifp(X, f) C S.
(9) If SCf(S), then S C gfp(X, f).
(10) If S is a fixpoint of f, then lfp(X, f) € S and S C gfp(X, f).

The scheme Knaster deals with a set .4 and a unary functor F yielding a set,
and states that:
There exists a set D such that (D) =D and D C A
provided the parameters meet the following requirements:
e For all sets X, Y such that X CY holds F(X) C F(Y),
o F(A) C A
In the sequel X, Y are non empty sets, f is a function from X into Y, and
g is a function from Y into X.
We now state several propositions:
(11)  There exist sets X1, Xo, Y1, Ya such that X; misses Xy and Y] misses
Yoand X1 UXo =X and YUY, =Y and f°X; = Y] and ¢°Ys = Xo.
(12) If f is one-to-one and g is one-to-one, then there exists function from
X into Y which is bijective.
(13)  If there exists f which is bijective, then X ~ Y.
(14) If f is one-to-one and g is one-to-one, then X ~ Y.

(15)  For all cardinal numbers N, M such that N < M and M < N holds
N =M.

3. THE LATTICE OF LATTICE SUBSET

Let L be a non empty lattice structure, let f be a unary operation on L, and
let z be an element of L. Then f(z) is an element of L.

Let L be a lattice, let f be a function from the carrier of L into the carrier
of L, let z be an element of the carrier of L, and let O be an ordinal number.
The functor £9(x) is defined by the condition (Def. 6).

(Def. 6)  There exists a transfinite sequence Lo such that
()  fQ(x) = last Lo,
(i) dom Ly = succO,

(i) Lo(®) ==,

(iv)  for every ordinal number C' and for arbitrary y such that succC €
succ O and y = Lo(C) holds Ly(succ C) = f(y), and

(v)  for every ordinal number C' and for every transfinite sequence L; such

that C' € succO and C # () and C is a limit ordinal number and L, =
Ly 1 C holds Ly(C) = | rng Ly.

The functor f9(x) is defined by the condition (Def. 7).



112 PIOTR RUDNICKI AND ANDRZEJ TRYBULEC

(Def. 7)  There exists a transfinite sequence Lo such that
) fQ(z) = last L,
i) dom Lo = succO,
) Lo(0) ==,
) for every ordinal number C' and for arbitrary y such that succC €
succ O and y = Lo(C) holds Ly(succ C) = f(y), and
(v)  for every ordinal number C' and for every transfinite sequence L; such
that C' € succO and C # () and C is a limit ordinal number and L, =
Lo | C holds Ly(C) = [ |nrng Ly.

For simplicity we adopt the following rules: L will denote a lattice, f will
denote a function from the carrier of L into the carrier of L, x will denote an
element of the carrier of L, O, O1, Os will denote ordinal numbers, and 7" will
denote a transfinite sequence.

One can prove the following propositions:

(16)  fl(x) =2

(17)  fh(x) =2

(18)  fieO(x) = f(fT ().

(19)  fEeeO(@) = F(fS ().

(20)  Suppose O # ) and O is a limit ordinal number and dom7T = O and

for every ordinal number A such that A € O holds T'(A) = f/}(x). Then
f9 (@) = Uy mgT.

(21)  Suppose O # () and O is a limit ordinal number and dom7T = O and
for every ordinal number A such that A € O holds T'(A) = fZ'(x). Then
f9(@) = [y mgT.

(22) (=) = fi(2).

(23)  f"(x) = fi(2).

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an
element of the carrier of L, and let O be an ordinal number. Then f$(a) is an
element of L.

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an
element of the carrier of L, and let O be an ordinal number. Then £ (a) is an
element of L.

Let L be a non empty lattice structure and let P be a subset of L. We say
that P has L.u.b.’s if and only if the condition (Def. 8) is satisfied.

(Def. 8)  Let z, y be elements of L. Suppose x € P and y € P. Then there exists
an element z of L such that z € P and x C 2z and y C z and for every

element 2’ of L such that 2/ € P and z C 2/ and y C 2’ holds z C 2'.

We say that P has g.l.b.’s if and only if the condition (Def. 9) is satisfied.
(Def. 9)  Let z, y be elements of L. Suppose x € P and y € P. Then there exists
an element z of L such that z € P and z C x and z C y and for every

element 2’ of L such that 2’ € P and 2/ C z and 2’ C y holds 2’ C z.
Let L be a lattice. One can verify that there exists a subset of L which is

non empty and has l.u.b.’s and g.1.b.’s.
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Let L be a lattice and let P be a non empty subset of L with l.u.b.’s and
g.l.b.’s. The functor Lp yields a strict lattice and is defined by the conditions
(Def. 10).

(Def. 10) (i)  The carrier of Lp = P, and
(ii)  for all elements x, y of L p there exist elements 2/, y' of L such that
=2 andy=19 and z Cyiff 2/ C ¢/.

4. COMPLETE LATTICES

Let us mention that every lattice which is complete is also bounded.

In the sequel L will be a complete lattice, f will be a monotone unary oper-
ation on L, and a, b will be elements of L.

The following propositions are true:

24)  There exists a which is a fixpoint of f.

25)  For every a such that a C f(a) and for every O holds a C f9(a).

26)  For every a such that f(a) C a and for every O holds fS(a) C a.

27)  For every a such that a C f(a) and for all O1, Oy such that O; C Oy
holds f9"(a) C f3%(a).

(28)  For every a such that f(a) C a and for all O, Oy such that O; C O
holds f*(a) C " (a).

(29)  For every a such that a £ f(a) and for all O, Oy such that O; C O
and O1 # Oy and f92(a) is not a fixpoint of f holds £9'(a) # £52(a).

(30)  For every a such that f(a) C a and for all O, O such that O; C O,
and O1 # Oy and f52(a) is not a fixpoint of f holds £ (a) # £52(a).

(31) Ifa C f(a) and £9'(a) is a fixpoint of f, then for every Oy such that
01 C 0, holds £9"(a) = £*(a).

(32) If f(a) C a and fS'(a) is a fixpoint of f, then for every O such that
01 C O holds f5"(a) = £§(a).

(33) For every a such that a T f(a) there exists O such that 0 <
the carrier of L and fQ(a) is a fixpoint of f.

(34)  For every a such that f(a) T a there exists O such that 0 <

the carrier of L and fS(a) is a fixpoint of f.

(
(
(
(

(35) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f. Then
there exists O such that O < the carrier of L and f&(aUb) is a fixpoint
of fand a C f?(ab) and b C fQ(a L b).

(36) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f. Then

there exists O such that O < the carrier of L and f9(aMb) is a fixpoint
of fand f(amb) C a and f9(aMb) C b.
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b

(38) If f(a) Caand b C aand b is a fixpoint of f, then for every O2 holds
bE [T (a).

Let L be a complete lattice and let f be a unary operation on L. Let us

assume that f is monotone. The functor FixPoints(f) yielding a strict lattice is
defined by:

(Def. 11)  There exists a non empty subset P of L with L.u.b.’s and g.l.b.’s such
that P = {z : x ranges over elements of L, = is a fixpoint of f} and
FixPoints(f) = Lp.

One can prove the following propositions:
(39) The carrier of FixPoints(f) = {x : z ranges over elements of L, x is a
fixpoint of f}.
(40)  The carrier of FixPoints(f) C the carrier of L.
(41)  a € the carrier of FixPoints(f) iff a is a fixpoint of f.
(42)  For all elements x, y of FixPoints(f) and for all a, b such that z = a
and y = b holds z C y iff a C b.
(43)  FixPoints(f) is complete.
Let us consider L, f. The functor lfp(f) yields an element of L and is defined
as follows:
(Def 12) lfp(f) _ fﬁthe carrier of L (J-L)
The functor gfp(f) yielding an element of L is defined as follows:

he carrier of L)1
(Def. 13)  gfp(f) = f4 T(Tw).
Next we state several propositions:

)+

(44) Up(f) is a fixpoint of f and there exists O such that O <
the carrier of L and fQ(Lz) = Ifp(f).
(45) gfp(f) is a fixpoint of f and there exists O such that 0 <

the carrier of L and (T 1) = gfp(f).
(46) If a is a fixpoint of f, then Ifp(f) C a and a C gfp(f).
(47)  If f(a) C a, then lfp(f) C a.
(48) IfaC f(a), then a C gfp(f).

5. BOOLEAN LATTICES

In the sequel f is a monotone unary operation on the lattice of subsets of A.
Let A be a set. One can verify that the lattice of subsets of A is complete.
One can prove the following propositions:
(49) Let f be a unary operation on the lattice of subsets of A. Then f is
monotone if and only if f is C-monotone.
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(50)  There exists a C-monotone function g from 24 into 24 such that
Ifp(A, g) = lp(f).

(51)  There exists a C-monotone function g from 24 into 24 such that
8fp(4, 9) = gfp(f).
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