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Summary. Theorem (5) states that if an iterate of a function
has a unique fixpoint then it is also the fixpoint of the function. It has
been included here in response to P. Andrews claim that such a proof
in set theory takes thousands of lines when one starts with the axioms.
While probably true, such a claim is misleading about the usefulness of
proof-checking systems based on set theory.

Next, we prove the existence of the least and the greatest fixpoints
for ⊆-monotone functions from a powerset to a powerset of a set. Scheme
Knaster is the Knaster theorem about the existence of fixpoints, cf. [14].
Theorem (11) is the Banach decomposition theorem which is then used
to prove the Schröder-Bernstein theorem (12) (we followed Paulson’s de-
velopment of these theorems in Isabelle [16]). It is interesting to note
that the last theorem when stated in Mizar in terms of cardinals becomes
trivial to prove as in the Mizar development of cardinals the ≤ relation
is synonymous with ⊆.

Section 3 introduces the notion of the lattice of a lattice subset pro-
vided the subset has lubs and glbs.

The main theorem of Section 4 is the Tarski theorem (43) that every
monotone function f over a complete lattice L has a complete lattice of
fixpoints. As the consequence of this theorem we get the existence of the
least fixpoint equal to fβ(⊥L) for some ordinal β with cardinality not
bigger than the cardinality of the carrier of L, cf. [14], and analogously

the existence of the greatest fixpoint equal to fβ(⊤L).
Section 5 connects the fixpoint properties of monotone functions over

complete lattices with the fixpoints of ⊆-monotone functions over the
lattice of subsets of a set (Boolean lattice).

MML Identifier: KNASTER.

The papers [19], [21], [13], [4], [22], [24], [23], [10], [11], [9], [18], [15], [12], [17],
[8], [5], [7], [1], [3], [25], [2], [6], and [20] provide the notation and terminology
for this paper.
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1. Preliminaries

In this paper f , g, h will be functions.
The following three propositions are true:

(1) If f is one-to-one and g is one-to-one and rng f misses rng g, then f+·g
is one-to-one.

(2) If dom f misses dom g, then f ∪ g is a function.

(3) Suppose h = f ∪ g and dom f misses dom g. Then h is one-to-one if and
only if the following conditions are satisfied:

(i) f is one-to-one,
(ii) g is one-to-one, and
(iii) rng f misses rng g.

2. Fixpoints in general

Let x be a set and let f be a function. We say that x is a fixpoint of f if and
only if:

(Def. 1) x ∈ dom f and x = f(x).

Let A be a non empty set, let a be an element of A, and let f be a function
from A into A. Let us observe that a is a fixpoint of f if and only if:

(Def. 2) a = f(a).

For simplicity we follow a convention: x, y, X will be sets, A will be a non
empty set, n will be a natural number, and f will be a function from X into X.

Next we state two propositions:

(4) If x is a fixpoint of fn, then f(x) is a fixpoint of fn.

(5) If there exists n such that x is a fixpoint of f n and for every y such that
y is a fixpoint of fn holds x = y, then x is a fixpoint of f .

Let A, B be non empty sets and let f be a function from A into B. Let us
observe that f is ⊆-monotone if and only if:

(Def. 3) For all elements x, y of A such that x ⊆ y holds f(x) ⊆ f(y).

Let A be a set and let B be a non empty set. Observe that there exists a
function from A into B which is ⊆-monotone.

Let X be a set and let f be a ⊆-monotone function from 2X into 2X . The
functor lfp(X, f) yields a subset of X and is defined by:

(Def. 4) lfp(X, f) =
⋂
{h : h ranges over subsets of X, f(h) ⊆ h}.

The functor gfp(X, f) yielding a subset of X is defined by:

(Def. 5) gfp(X, f) =
⋃
{h : h ranges over subsets of X, h ⊆ f(h)}.

In the sequel f will be a ⊆-monotone function from 2X into 2X and S will
be a subset of X.

One can prove the following propositions:
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(6) lfp(X, f) is a fixpoint of f .

(7) gfp(X, f) is a fixpoint of f .

(8) If f(S) ⊆ S, then lfp(X, f) ⊆ S.

(9) If S ⊆ f(S), then S ⊆ gfp(X, f).

(10) If S is a fixpoint of f , then lfp(X, f) ⊆ S and S ⊆ gfp(X, f).

The scheme Knaster deals with a set A and a unary functor F yielding a set,
and states that:

There exists a set D such that F(D) = D and D ⊆ A
provided the parameters meet the following requirements:

• For all sets X, Y such that X ⊆ Y holds F(X) ⊆ F(Y ),
• F(A) ⊆ A.

In the sequel X, Y are non empty sets, f is a function from X into Y , and
g is a function from Y into X.

We now state several propositions:

(11) There exist sets X1, X2, Y1, Y2 such that X1 misses X2 and Y1 misses
Y2 and X1 ∪ X2 = X and Y1 ∪ Y2 = Y and f ◦X1 = Y1 and g◦Y2 = X2.

(12) If f is one-to-one and g is one-to-one, then there exists function from
X into Y which is bijective.

(13) If there exists f which is bijective, then X ≈ Y.

(14) If f is one-to-one and g is one-to-one, then X ≈ Y.

(15) For all cardinal numbers N , M such that N ≤ M and M ≤ N holds
N = M.

3. The lattice of lattice subset

Let L be a non empty lattice structure, let f be a unary operation on L, and
let x be an element of L. Then f(x) is an element of L.

Let L be a lattice, let f be a function from the carrier of L into the carrier
of L, let x be an element of the carrier of L, and let O be an ordinal number.
The functor fO

⊔ (x) is defined by the condition (Def. 6).

(Def. 6) There exists a transfinite sequence L0 such that
(i) fO

⊔ (x) = last L0,

(ii) domL0 = succ O,

(iii) L0(∅) = x,

(iv) for every ordinal number C and for arbitrary y such that succ C ∈
succO and y = L0(C) holds L0(succ C) = f(y), and

(v) for every ordinal number C and for every transfinite sequence L1 such
that C ∈ succ O and C 6= ∅ and C is a limit ordinal number and L1 =
L0 � C holds L0(C) =

⊔
L rng L1.

The functor fO
⊓ (x) is defined by the condition (Def. 7).



112 piotr rudnicki and andrzej trybulec

(Def. 7) There exists a transfinite sequence L0 such that
(i) fO

⊓ (x) = last L0,

(ii) domL0 = succ O,

(iii) L0(∅) = x,

(iv) for every ordinal number C and for arbitrary y such that succC ∈
succO and y = L0(C) holds L0(succ C) = f(y), and

(v) for every ordinal number C and for every transfinite sequence L1 such
that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 =
L0 � C holds L0(C) = ⌈−⌉L rng L1.

For simplicity we adopt the following rules: L will denote a lattice, f will
denote a function from the carrier of L into the carrier of L, x will denote an
element of the carrier of L, O, O1, O2 will denote ordinal numbers, and T will
denote a transfinite sequence.

One can prove the following propositions:

(16) f ∅
⊔(x) = x.

(17) f ∅
⊓(x) = x.

(18) f succO
⊔ (x) = f(fO

⊔ (x)).

(19) f succO
⊓ (x) = f(fO

⊓ (x)).

(20) Suppose O 6= ∅ and O is a limit ordinal number and domT = O and
for every ordinal number A such that A ∈ O holds T (A) = f A

⊔ (x). Then
fO
⊔ (x) =

⊔
L rng T.

(21) Suppose O 6= ∅ and O is a limit ordinal number and domT = O and
for every ordinal number A such that A ∈ O holds T (A) = f A

⊓ (x). Then
fO
⊓ (x) = ⌈−⌉L rng T.

(22) fn(x) = fn
⊔(x).

(23) fn(x) = fn
⊓(x).

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an
element of the carrier of L, and let O be an ordinal number. Then f O

⊔ (a) is an
element of L.

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an
element of the carrier of L, and let O be an ordinal number. Then f O

⊓ (a) is an
element of L.

Let L be a non empty lattice structure and let P be a subset of L. We say
that P has l.u.b.’s if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let x, y be elements of L. Suppose x ∈ P and y ∈ P. Then there exists
an element z of L such that z ∈ P and x ⊑ z and y ⊑ z and for every
element z′ of L such that z′ ∈ P and x ⊑ z′ and y ⊑ z′ holds z ⊑ z′.

We say that P has g.l.b.’s if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y be elements of L. Suppose x ∈ P and y ∈ P. Then there exists
an element z of L such that z ∈ P and z ⊑ x and z ⊑ y and for every
element z′ of L such that z′ ∈ P and z′ ⊑ x and z′ ⊑ y holds z′ ⊑ z.

Let L be a lattice. One can verify that there exists a subset of L which is
non empty and has l.u.b.’s and g.l.b.’s.
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Let L be a lattice and let P be a non empty subset of L with l.u.b.’s and
g.l.b.’s. The functor � P yields a strict lattice and is defined by the conditions
(Def. 10).

(Def. 10) (i) The carrier of � P = P, and

(ii) for all elements x, y of � P there exist elements x′, y′ of L such that
x = x′ and y = y′ and x ⊑ y iff x′ ⊑ y′.

4. Complete lattices

Let us mention that every lattice which is complete is also bounded.

In the sequel L will be a complete lattice, f will be a monotone unary oper-
ation on L, and a, b will be elements of L.

The following propositions are true:

(24) There exists a which is a fixpoint of f .

(25) For every a such that a ⊑ f(a) and for every O holds a ⊑ f O
⊔ (a).

(26) For every a such that f(a) ⊑ a and for every O holds f O
⊓ (a) ⊑ a.

(27) For every a such that a ⊑ f(a) and for all O1, O2 such that O1 ⊆ O2

holds fO1
⊔ (a) ⊑ fO2

⊔ (a).

(28) For every a such that f(a) ⊑ a and for all O1, O2 such that O1 ⊆ O2

holds fO2
⊓ (a) ⊑ fO1

⊓ (a).

(29) For every a such that a ⊑ f(a) and for all O1, O2 such that O1 ⊆ O2

and O1 6= O2 and fO2
⊔ (a) is not a fixpoint of f holds fO1

⊔ (a) 6= fO2
⊔ (a).

(30) For every a such that f(a) ⊑ a and for all O1, O2 such that O1 ⊆ O2

and O1 6= O2 and fO2

⊓ (a) is not a fixpoint of f holds fO1

⊓ (a) 6= fO2

⊓ (a).

(31) If a ⊑ f(a) and fO1
⊔ (a) is a fixpoint of f , then for every O2 such that

O1 ⊆ O2 holds fO1
⊔ (a) = fO2

⊔ (a).

(32) If f(a) ⊑ a and fO1

⊓ (a) is a fixpoint of f , then for every O2 such that

O1 ⊆ O2 holds fO1

⊓ (a) = fO2

⊓ (a).

(33) For every a such that a ⊑ f(a) there exists O such that O ≤

the carrier of L and fO
⊔ (a) is a fixpoint of f .

(34) For every a such that f(a) ⊑ a there exists O such that O ≤

the carrier of L and fO
⊓ (a) is a fixpoint of f .

(35) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f . Then

there exists O such that O ≤ the carrier of L and f O
⊔ (a ⊔ b) is a fixpoint

of f and a ⊑ fO
⊔ (a ⊔ b) and b ⊑ fO

⊔ (a ⊔ b).

(36) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f . Then

there exists O such that O ≤ the carrier of L and f O
⊓ (a ⊓ b) is a fixpoint

of f and fO
⊓ (a ⊓ b) ⊑ a and fO

⊓ (a ⊓ b) ⊑ b.
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(37) If a ⊑ f(a) and a ⊑ b and b is a fixpoint of f , then for every O2 holds

fO2
⊔ (a) ⊑ b.

(38) If f(a) ⊑ a and b ⊑ a and b is a fixpoint of f , then for every O2 holds

b ⊑ fO2
⊓ (a).

Let L be a complete lattice and let f be a unary operation on L. Let us
assume that f is monotone. The functor FixPoints(f) yielding a strict lattice is
defined by:

(Def. 11) There exists a non empty subset P of L with l.u.b.’s and g.l.b.’s such
that P = {x : x ranges over elements of L, x is a fixpoint of f} and
FixPoints(f) = � P .

One can prove the following propositions:

(39) The carrier of FixPoints(f) = {x : x ranges over elements of L, x is a
fixpoint of f}.

(40) The carrier of FixPoints(f) ⊆ the carrier of L.

(41) a ∈ the carrier of FixPoints(f) iff a is a fixpoint of f .

(42) For all elements x, y of FixPoints(f) and for all a, b such that x = a

and y = b holds x ⊑ y iff a ⊑ b.

(43) FixPoints(f) is complete.

Let us consider L, f . The functor lfp(f) yields an element of L and is defined
as follows:

(Def. 12) lfp(f) = f
(the carrier of L)+

⊔ (⊥L).

The functor gfp(f) yielding an element of L is defined as follows:

(Def. 13) gfp(f) = f
(the carrier of L)+

⊓ (⊤L).

Next we state several propositions:

(44) lfp(f) is a fixpoint of f and there exists O such that O ≤

the carrier of L and fO
⊔ (⊥L) = lfp(f).

(45) gfp(f) is a fixpoint of f and there exists O such that O ≤

the carrier of L and fO
⊓ (⊤L) = gfp(f).

(46) If a is a fixpoint of f , then lfp(f) ⊑ a and a ⊑ gfp(f).

(47) If f(a) ⊑ a, then lfp(f) ⊑ a.

(48) If a ⊑ f(a), then a ⊑ gfp(f).

5. Boolean lattices

In the sequel f is a monotone unary operation on the lattice of subsets of A.
Let A be a set. One can verify that the lattice of subsets of A is complete.
One can prove the following propositions:

(49) Let f be a unary operation on the lattice of subsets of A. Then f is
monotone if and only if f is ⊆-monotone.
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(50) There exists a ⊆-monotone function g from 2A into 2A such that
lfp(A, g) = lfp(f).

(51) There exists a ⊆-monotone function g from 2A into 2A such that
gfp(A, g) = gfp(f).
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[13] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[14] J.-L. Lassez, V. L. Nguyen, and E. A Sonenberg. Fixed point theorems and semantics:
a folk tale. Information Processing Letters, 14(3):112–116, 1982.

[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[16] Lawrence C. Paulson. Set theory for verification: II, induction and recursion. Journal

of Automated Reasoning, 15(2):167–215, 1995.
[17] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,

1996.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[21] Zinaida Trybulec and Halina Świe
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