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Summary. We prove here the first part of Jordan’s theorem for
special polygons, i.e., the complement of a special polygon is the union of
two components (a left component and a right component). At this stage,
we do not know if the two components are different from each other.

MML Identifier: GOBRD12.

The articles [7], [11], [5], [21], [24], [23], [8], [1], [16], [25], [18], [19], [4], [3], [2],
[22], [9], [10], [26], [17], [6], [12], [15], [20], [14], and [13] provide the notation
and terminology for this paper.

We adopt the following convention: i, j, k1, k2, i1, i2, j1, j2 will be natural
numbers and f will be a non constant standard special circular sequence.

The following propositions are true:

(1) (L̃(f))c 6= ∅.

(2) For all i, j such that i ≤ len the Go-board of f and j ≤ width the

Go-board of f holds Int cell(the Go-board of f , i, j) ⊆ (L̃(f))c.

(3) Given i, j. Suppose i ≤ len the Go-board of f and j ≤ width the

Go-board of f . Then Down(Int cell(the Go-board of f , i, j), (L̃(f))c) =

cell(the Go-board of f , i, j) ∩ (L̃(f))c.

(4) Given i, j. Suppose i ≤ len the Go-board of f and j ≤ width the Go-

board of f . Then Down(Int cell(the Go-board of f , i, j), (L̃(f))c) is con-

nected and Down(Int cell(the Go-board of f , i, j), (L̃(f))c) = Int cell(the
Go-board of f , i, j).

(5) (L̃(f))c =
⋃
{Down(Int cell(the Go-board of f , i, j), (L̃(f))c) : i ≤

len the Go-board of f ∧ j ≤ width the Go-board of f}.
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(6) Down(LeftComp(f), (L̃(f))c) ∪ Down(RightComp(f), (L̃(f))c) is a

union of components of (E2
T) � (L̃(f))c and Down(LeftComp(f), (L̃(f))c) =

LeftComp(f) and Down(RightComp(f), (L̃(f))c) = RightComp(f).

(7) Given i1, j1, i2, j2. Suppose that
(i) i1 ≤ len the Go-board of f ,
(ii) j1 ≤ width the Go-board of f ,
(iii) i2 ≤ len the Go-board of f ,
(iv) j2 ≤ width the Go-board of f , and
(v) i1, j1, i2, and j2 are adjacent.

Then Int cell(the Go-board of f , i1, j1) ⊆ LeftComp(f) ∪ RightComp(f)
if and only if Int cell(the Go-board of f , i2, j2) ⊆ LeftComp(f) ∪
RightComp(f).

(8) Let F1, F2 be finite sequences of elements of
�
. Suppose that

(i) len F1 = len F2,

(ii) there exists i such that i ∈ dom F1 and Int cell(the Go-board of f ,
πiF1, πiF2) ⊆ LeftComp(f) ∪ RightComp(f),

(iii) for every i such that 1 ≤ i and i < len F1 holds πiF1, πiF2, πi+1F1,

and πi+1F2 are adjacent, and
(iv) for all i, k1, k2 such that i ∈ dom F1 and k1 = F1(i) and k2 = F2(i)

holds k1 ≤ len the Go-board of f and k2 ≤ width the Go-board of f .
Given i. If i ∈ domF1, then Int cell(the Go-board of f , πiF1, πiF2) ⊆
LeftComp(f) ∪ RightComp(f).

(9) There exist i, j such that i ≤ len the Go-board of f and j ≤ width the
Go-board of f and Int cell(the Go-board of f , i, j) ⊆ LeftComp(f) ∪
RightComp(f).

(10) For all i, j such that i ≤ len the Go-board of f and j ≤ width the
Go-board of f holds Int cell(the Go-board of f , i, j) ⊆ LeftComp(f) ∪
RightComp(f).

(11) (L̃(f))c = LeftComp(f) ∪ RightComp(f).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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