The First Part of Jordan's Theorem for Special Polygons

Yatsuka Nakamura
Shinshu University
Nagano
Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We prove here the first part of Jordan's theorem for special polygons, i.e., the complement of a special polygon is the union of two components (a left component and a right component). At this stage, we do not know if the two components are different from each other.

MML Identifier: GOBRD12.

The articles [7], [11], [5], [21], [24], [23], [8], [1], [16], [25], [18], [19], [4], [3], [2], [22], [9], [10], [26], [17], [6], [12], [15], [20], [14], and [13] provide the notation and terminology for this paper.

We adopt the following convention: $i, j, k_{1}, k_{2}, i_{1}, i_{2}, j_{1}, j_{2}$ will be natural numbers and f will be a non constant standard special circular sequence.

The following propositions are true:
(1) $\quad(\widetilde{\mathcal{L}}(f))^{\mathrm{c}} \neq \emptyset$.
(2) For all i, j such that $i \leq$ len the Go-board of f and $j \leq$ width the Go-board of f holds Int cell(the Go-board of $f, i, j) \subseteq(\widetilde{\mathcal{L}}(f))^{\text {c }}$.
(3) Given i, j. Suppose $i \leq$ len the Go-board of f and $j \leq$ width the Go-board of f. Then $\overline{\left.\text { Down(Int cell(the Go-board of } f, i, j),(\tilde{\mathcal{L}}(f))^{\mathrm{c}}\right)}=$ cell(the Go-board of $f, i, j) \cap(\widetilde{\mathcal{L}}(f))^{\text {c }}$.
(4) Given i, j. Suppose $i \leq$ len the Go-board of f and $j \leq$ width the Goboard of f. Then Down $(\operatorname{Int}$ cell(the Go-board of $\left.f, i, j),(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}\right)$ is connected and Down $(\operatorname{Int}$ cell(the Go-board of $\left.f, i, j),(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}\right)=\operatorname{Int} \operatorname{cell}($ the Go-board of f, i, j).
(5) $\quad(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}=\bigcup\left\{\overline{\left.\text { Down }(\text { Int cell(the Go-board of } f, i, j),(\widetilde{\mathcal{L}}(f))^{c}\right)}: i \leq\right.$ len the Go-board of $f \wedge j \leq$ width the Go-board of $f\}$.
(6) $\operatorname{Down}\left(\operatorname{Left} \operatorname{Comp}(f),(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}\right) \cup \operatorname{Down}\left(\operatorname{Right} \operatorname{Comp}(f),(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}\right)$ is a union of components of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $\operatorname{Down}\left(\operatorname{Left} \operatorname{Comp}(f),(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}\right)=$ $\operatorname{Left} \operatorname{Comp}(f)$ and $\operatorname{Down}\left(\operatorname{RightComp}(f),(\widetilde{\mathcal{L}}(f))^{c}\right)=\operatorname{RightComp}(f)$.
(7) Given $i_{1}, j_{1}, i_{2}, j_{2}$. Suppose that
(i) $\quad i_{1} \leq$ len the Go-board of f,
(ii) $j_{1} \leq$ width the Go-board of f,
(iii) $i_{2} \leq$ len the Go-board of f,
(iv) $\quad j_{2} \leq$ width the Go-board of f, and
(v) i_{1}, j_{1}, i_{2}, and j_{2} are adjacent.

Then Int cell(the Go-board of $\left.f, i_{1}, j_{1}\right) \subseteq \operatorname{LeftComp}(f) \cup \operatorname{RightComp}(f)$ if and only if Int cell(the Go-board of $\left.f, i_{2}, j_{2}\right) \subseteq \operatorname{Left} \operatorname{Comp}(f) \cup$ $\operatorname{RightComp}(f)$.
(8) Let F_{1}, F_{2} be finite sequences of elements of \mathbb{N}. Suppose that
(i) $\operatorname{len} F_{1}=\operatorname{len} F_{2}$,
(ii) there exists i such that $i \in \operatorname{dom} F_{1}$ and Int cell(the Go-board of f, $\left.\pi_{i} F_{1}, \pi_{i} F_{2}\right) \subseteq \operatorname{Left} \operatorname{Comp}(f) \cup \operatorname{Right} \operatorname{Comp}(f)$,
(iii) for every i such that $1 \leq i$ and $i<\operatorname{len} F_{1}$ holds $\pi_{i} F_{1}, \pi_{i} F_{2}, \pi_{i+1} F_{1}$, and $\pi_{i+1} F_{2}$ are adjacent, and
(iv) for all i, k_{1}, k_{2} such that $i \in \operatorname{dom} F_{1}$ and $k_{1}=F_{1}(i)$ and $k_{2}=F_{2}(i)$ holds $k_{1} \leq$ len the Go-board of f and $k_{2} \leq$ width the Go-board of f.
Given i. If $i \in \operatorname{dom} F_{1}$, then Int cell(the Go-board of $\left.f, \pi_{i} F_{1}, \pi_{i} F_{2}\right) \subseteq$ $\operatorname{LeftComp}(f) \cup \operatorname{RightComp}(f)$.
(9) There exist i, j such that $i \leq$ len the Go-board of f and $j \leq$ width the Go-board of f and Int cell(the Go-board of $f, i, j) \subseteq \operatorname{LeftComp}(f) \cup$ $\operatorname{RightComp}(f)$.
(10) For all i, j such that $i \leq$ len the Go-board of f and $j \leq$ width the Go-board of f holds Int cell(the Go-board of $f, i, j) \subseteq \operatorname{LeftComp}(f) \cup$ $\operatorname{RightComp}(f)$.

$$
\begin{equation*}
(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}=\operatorname{Left} \operatorname{Comp}(f) \cup \operatorname{Right} \operatorname{Comp}(f) . \tag{11}
\end{equation*}
$$

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part I. Formalized Mathematics, 3(1):107-115, 1992.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part II. Formalized Mathematics, 3(1):117-121, 1992.
[13] Yatsuka Nakamura and Andrzej Trybulec. Adjacency concept for pairs of natural numbers. Formalized Mathematics, 6(1):1-3, 1997.
[14] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. Formalized Mathematics, 5(4):513-517, 1996.
[15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[19] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[20] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[26] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received July 22, 1996

