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Summary. The aim of this paper is to formalize the second part of Chap-
ter I Section 1 (1.9–1.19) in [12]. Definitions of Scott’s auxiliary and approxima-
ting relations are introduced in this work. We showed that in a meet-continuous
lattice, the way-below relation is the intersection of all approximating auxiliary
relations (proposition (40) — compare 1.13 in [12, pp. 43–47]). By (41) a con-
tinuous lattice is a complete lattice in which � is the smallest approximating
auxiliary relation. The notions of the strong interpolation property and the in-
terpolation property are also introduced.

MML Identifier: WAYBEL 4.

The articles [21], [25], [19], [10], [23], [24], [20], [9], [3], [26], [28], [7], [8], [27],
[2], [4], [22], [18], [1], [17], [13], [29], [14], [15], [5], [11], [16], and [6] provide the
notation and terminology for this paper.

1. Auxiliary Relations

Let L be a 1-sorted structure.

(Def. 1) A binary relation on the carrier of L is called a binary relation on L.

Let L be a non empty reflexive relational structure. The functor �L yields
a binary relation on L and is defined as follows:

(Def. 2) For all elements x, y of L holds 〈〈x, y〉〉 ∈ �L iff x� y.

Let L be a relational structure. The functor ¬L yielding a binary relation
on L is defined by:
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(Def. 3) ¬L = the internal relation of L.

Let L be a relational structure and let R be a binary relation on L. We say
that R is auxiliary(i) if and only if:

(Def. 4) For all elements x, y of L such that 〈〈x, y〉〉 ∈ R holds x ¬ y.

We say that R is auxiliary(ii) if and only if:

(Def. 5) For all elements x, y, z, u of L such that u ¬ x and 〈〈x, y〉〉 ∈ R and y ¬ z
holds 〈〈u, z〉〉 ∈ R.

Let L be a non empty relational structure and let R be a binary relation on
L. We say that R is auxiliary(iii) if and only if:

(Def. 6) For all elements x, y, z of L such that 〈〈x, z〉〉 ∈ R and 〈〈y, z〉〉 ∈ R holds
〈〈x t y, z〉〉 ∈ R.

We say that R is auxiliary(iv) if and only if:

(Def. 7) For every element x of L holds 〈〈⊥L, x〉〉 ∈ R.

Let L be a non empty relational structure and let R be a binary relation on
L. We say that R is auxiliary if and only if:

(Def. 8) R is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv).

Let L be a non empty relational structure. Note that every binary relation
on L which is auxiliary is also auxiliary(i), auxiliary(ii), auxiliary(iii), and au-
xiliary(iv) and every binary relation on L which is auxiliary(i), auxiliary(ii),
auxiliary(iii), and auxiliary(iv) is also auxiliary.

Let L be a lower-bounded transitive antisymmetric relational structure with
l.u.b.’s. Note that there exists a binary relation on L which is auxiliary.

Next we state the proposition

(1) Let L be a lower-bounded sup-semilattice, A1 be an auxiliary binary
relation on L, and x, y, z, u be elements of L. If 〈〈x, z〉〉 ∈ A1 and 〈〈y,
u〉〉 ∈ A1, then 〈〈x t y, z t u〉〉 ∈ A1.

Let L be a lower-bounded sup-semilattice. Observe that every binary relation
on L which is auxiliary is also transitive.

Let L be a relational structure. Note that ¬L is auxiliary(i).

Let L be a transitive relational structure. One can verify that ¬L is auxi-
liary(ii).

Let L be an antisymmetric relational structure with l.u.b.’s. One can check
that ¬L is auxiliary(iii).

Let L be a lower-bounded antisymmetric non empty relational structure.
Note that ¬L is auxiliary(iv).

In the sequel a will denote a set.

Let L be a lower-bounded sup-semilattice. The functor Aux(L) is defined as
follows:

(Def. 9) a ∈ Aux(L) iff a is an auxiliary binary relation on L.

Let L be a lower-bounded sup-semilattice. Note that Aux(L) is non empty.

The following two propositions are true:
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(2) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A1 on L holds A1 ⊆ ¬L .

(3) For every lower-bounded sup-semilattice L holds >〈Aux(L),⊆〉 = ¬L .

Let L be a lower-bounded sup-semilattice. Note that 〈Aux(L),⊆〉 is upper-
bounded.
Let L be a non empty relational structure. The functor AuxBottom(L) yields

a binary relation on L and is defined as follows:

(Def. 10) For all elements x, y of L holds 〈〈x, y〉〉 ∈ AuxBottom(L) iff x = ⊥L.

Let L be a lower-bounded sup-semilattice. Observe that AuxBottom(L) is
auxiliary.
The following propositions are true:

(4) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A1 on L holds AuxBottom(L) ⊆ A1.

(5) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A1 on L holds ⊥〈Aux(L),⊆〉 = AuxBottom(L).

Let L be a lower-bounded sup-semilattice. One can verify that 〈Aux(L),⊆〉
is lower-bounded.
The following two propositions are true:

(6) Let L be a lower-bounded sup-semilattice and a, b be auxiliary binary
relations on L. Then a ∩ b is an auxiliary binary relation on L.

(7) Let L be a lower-bounded sup-semilattice and X be a non empty subset
of 〈Aux(L),⊆〉. Then

⋂
X is an auxiliary binary relation on L.

Let L be a lower-bounded sup-semilattice. Note that 〈Aux(L),⊆〉 has g.l.b.’s.
Let L be a lower-bounded sup-semilattice. Observe that 〈Aux(L),⊆〉 is com-

plete.
Let L be a non empty relational structure, let x be an element of L, and

let A1 be a binary relation on L. The functor ↓↓A1x yields a subset of L and is
defined by:

(Def. 11) ↓↓A1x = {y, y ranges over elements of L: 〈〈y, x〉〉 ∈ A1}.

The functor ↑↑A1
x yielding a subset of L is defined by:

(Def. 12) ↑↑A1
x = {y, y ranges over elements of L: 〈〈x, y〉〉 ∈ A1}.

One can prove the following proposition

(8) Let L be a lower-bounded sup-semilattice, x be an element of L, and A1

be an auxiliary(i) binary relation on L. Then ↓↓A1x ⊆ ↓x.

Let L be a lower-bounded sup-semilattice, let x be an element of L, and let
A1 be an auxiliary(ii) auxiliary(iii) auxiliary(iv) binary relation on L. Observe
that ↓↓A1x is directed lower and non empty.
Let L be a lower-bounded sup-semilattice and let A1 be an auxiliary(ii)

auxiliary(iii) auxiliary(iv) binary relation on L. The functor ↓↓A1 yields a map
from L into 〈Ids(L),⊆〉 and is defined by:

(Def. 13) For every element x of L holds (↓↓A1)(x) = ↓↓A1x.

We now state three propositions:
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(9) Let L be a non empty relational structure, A1 be a binary relation on
L, a be a set, and y be an element of L. Then a ∈ ↓↓A1y if and only if 〈〈a,
y〉〉 ∈ A1.

(10) Let L be a sup-semilattice, A1 be a binary relation on L, and y be an
element of L. Then a ∈ ↑↑A1

y if and only if 〈〈y, a〉〉 ∈ A1.

(11) Let L be a lower-bounded sup-semilattice, A1 be an auxiliary binary
relation on L, and x be an element of L. If A1 = the internal relation of
L, then ↓↓A1x = ↓x.

Let L be a non empty poset. The functor MonSet(L) yields a strict relational
structure and is defined by the conditions (Def. 14).

(Def. 14)(i) a ∈ the carrier of MonSet(L) iff there exists a map s from L into
〈Ids(L),⊆〉 such that a = s and s is monotone and for every element x of
L holds s(x) ⊆ ↓x, and

(ii) for all sets c, d holds 〈〈c, d〉〉 ∈ the internal relation of MonSet(L) iff
there exist maps f , g from L into 〈Ids(L),⊆〉 such that c = f and d = g
and c ∈ the carrier of MonSet(L) and d ∈ the carrier of MonSet(L) and
f ¬ g.

One can prove the following propositions:

(12) Let L be a lower-bounded sup-semilattice. Then MonSet(L) is a full
relational substructure of (〈Ids(L),⊆〉)the carrier of L.

(13) Let L be a lower-bounded sup-semilattice, A1 be an auxiliary binary
relation on L, and x, y be elements of L. If x ¬ y, then ↓↓A1x ⊆ ↓↓A1y.

Let L be a lower-bounded sup-semilattice and let A1 be an auxiliary binary
relation on L. Note that ↓↓A1 is monotone.
Next we state the proposition

(14) Let L be a lower-bounded sup-semilattice and A1 be an auxiliary binary
relation on L. Then ↓↓A1 ∈ the carrier of MonSet(L).

Let L be a lower-bounded sup-semilattice. Observe that MonSet(L) is non
empty.
Next we state several propositions:

(15) For every lower-bounded sup-semilattice L holds IdsMap(L) ∈ the car-
rier of MonSet(L).

(16) For every lower-bounded sup-semilattice L and for every auxiliary binary
relation A1 on L holds ↓↓A1 ¬ IdsMap(L).

(17) For every lower-bounded non empty poset L and for every ideal I of L
holds ⊥L ∈ I.

(18) For every upper-bounded non empty poset L and for every filter F of L
holds >L ∈ F.

(19) For every lower-bounded non empty poset L holds ↓(⊥L) = {⊥L}.

(20) For every upper-bounded non empty poset L holds ↑(>L) = {>L}.

In the sequel L is a lower-bounded sup-semilattice, A1 is an auxiliary binary
relation on L, and x is an element of L.
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The following propositions are true:

(21) The carrier of L 7−→ {⊥L} is a map from L into 〈Ids(L),⊆〉.

(22) The carrier of L 7−→ {⊥L} ∈ the carrier of MonSet(L).

(23) 〈〈the carrier of L 7−→ {⊥L}, ↓↓A1〉〉 ∈ the internal relation of MonSet(L).

Let us consider L. Note that MonSet(L) is upper-bounded.
Let us consider L. The functor Rel2Map(L) yields a map from 〈Aux(L),⊆〉

into MonSet(L) and is defined by:

(Def. 15) For every A1 holds (Rel2Map(L))(A1) = ↓↓A1.

The following propositions are true:

(24) For all auxiliary binary relations R1, R2 on L such that R1 ⊆ R2 holds
↓↓R1 ¬ ↓↓R2.

(25) For all auxiliary binary relations R1, R2 on L such that R1 ⊆ R2 holds
↓↓R1x ⊆ ↓↓R2x.

Let us consider L. One can verify that Rel2Map(L) is monotone.

Let us consider L. The functor Map2Rel(L) yields a map from MonSet(L)
into 〈Aux(L),⊆〉 and is defined by the condition (Def. 16).

(Def. 16) Let s be a set. Suppose s ∈ the carrier of MonSet(L). Then there exists
an auxiliary binary relation A1 on L such that
(i) A1 = (Map2Rel(L))(s), and

(ii) for all sets x, y holds 〈〈x, y〉〉 ∈ A1 iff there exist elements x′, y′ of L and
there exists a map s′ from L into 〈Ids(L),⊆〉 such that x′ = x and y′ = y
and s′ = s and x′ ∈ s′(y′).

Let us consider L. One can check that Map2Rel(L) is monotone.
We now state two propositions:

(26) Map2Rel(L) · Rel2Map(L) = iddomRel2Map(L).

(27) Rel2Map(L) ·Map2Rel(L) = idthe carrier of MonSet(L).

Let us consider L. Observe that Rel2Map(L) is one-to-one.

The following three propositions are true:

(28) (Rel2Map(L))−1 = Map2Rel(L).

(29) Rel2Map(L) is isomorphic.

(30) For every complete lattice L and for every element x of L holds
⋂
{I, I

ranges over ideals of L: x ¬ sup I} = ↓↓x.

The scheme LambdaC’ concerns a non empty relational structure A, a unary
functor F yielding a set, a unary functor G yielding a set, and a unary predicate
P, and states that:

There exists a function f such that dom f = the carrier of A and
for every element x of A holds if P[x], then f(x) = F(x) and if
not P[x], then f(x) = G(x)

for all values of the parameters.

Let L be a semilattice and let I be an ideal of L. The functor DownMap(I)
yields a map from L into 〈Ids(L),⊆〉 and is defined by:
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(Def. 17) For every element x of L holds if x ¬ sup I, then (DownMap(I))(x) =
↓x ∩ I and if x 6¬ sup I, then (DownMap(I))(x) = ↓x.

One can prove the following two propositions:

(31) For every semilattice L and for every ideal I of L holds DownMap(I) ∈
the carrier of MonSet(L).

(32) Let L be an antisymmetric reflexive relational structure with g.l.b.’s,
x be an element of L, and D be a non empty lower subset of L. Then
{x} uD = ↓x ∩D.

2. Approximating Relations

Let L be a non empty relational structure and let A1 be a binary relation
on L. We say that A1 is approximating if and only if:

(Def. 18) For every element x of L holds x = sup ↓↓A1x.

Let L be a non empty poset and let m1 be a map from L into 〈Ids(L),⊆〉.
We say that m1 is approximating if and only if:

(Def. 19) For every element x of L there exists a subset i1 of L such that i1 = m1(x)
and x = sup i1.

Next we state two propositions:

(33) For every lower-bounded meet-continuous semilattice L and for every
ideal I of L holds DownMap(I) is approximating.

(34) Every lower-bounded continuous lattice is meet-continuous.

Let us mention that every lower-bounded lattice which is continuous is also
meet-continuous.
The following proposition is true

(35) For every lower-bounded continuous lattice L and for every ideal I of L
holds DownMap(I) is approximating.

Let L be a non empty reflexive antisymmetric relational structure. Observe
that �L is auxiliary(i).
Let L be a non empty reflexive transitive relational structure. One can check

that �L is auxiliary(ii).
Let L be a poset with l.u.b.’s. One can verify that �L is auxiliary(iii).
Let L be an inf-complete non empty poset. Note that �L is auxiliary(iii).
Let L be a lower-bounded antisymmetric reflexive non empty relational

structure. Observe that �L is auxiliary(iv).
Next we state two propositions:

(36) For every complete lattice L and for every element x of L holds ↓↓�L
x =

↓↓x.

(37) For every lattice L holds ¬L is approximating.

Let L be a lower-bounded continuous lattice. One can verify that �L is
approximating.
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Let L be a complete lattice. Observe that there exists an auxiliary binary
relation on L which is approximating.

Let L be a complete lattice. The functor App(L) is defined as follows:

(Def. 20) a ∈ App(L) iff a is an approximating auxiliary binary relation on L.

Let L be a complete lattice. Note that App(L) is non empty.

Next we state three propositions:

(38) Let L be a complete lattice and m1 be a map from L into 〈Ids(L),⊆〉.
Suppose m1 is approximating and m1 ∈ the carrier of MonSet(L). Then
there exists an approximating auxiliary binary relation A1 on L such that
A1 = (Map2Rel(L))(m1).

(39) For every complete lattice L and for every element x of L holds⋂
{(DownMap(I))(x) : I ranges over ideals of L} = ↓↓x.

(40) Let L be a lower-bounded meet-continuous lattice and x be an element
of L. Then

⋂
{↓↓A1x,A1 ranges over auxiliary binary relations on L: A1 ∈

App(L)} = ↓↓x.

In the sequel L denotes a complete lattice.

Next we state two propositions:

(41) L is continuous if and only if for every approximating auxiliary binary
relation R on L holds �L ⊆ R and �L is approximating.

(42) L is continuous if and only if the following conditions are satisfied:

(i) L is meet-continuous, and

(ii) there exists an approximating auxiliary binary relation R on L such that
for every approximating auxiliary binary relation R′ on L holds R ⊆ R′.

Let L be a non empty relational structure and let A1 be a binary relation
on L. We say that A1 satisfies strong interpolation property if and only if:

(Def. 21) For all elements x, z of L such that 〈〈x, z〉〉 ∈ A1 and x 6= z there exists
an element y of L such that 〈〈x, y〉〉 ∈ A1 and 〈〈y, z〉〉 ∈ A1 and x 6= y.

Let L be a non empty relational structure and let A1 be a binary relation
on L. We say that A1 satisfies interpolation property if and only if:

(Def. 22) For all elements x, z of L such that 〈〈x, z〉〉 ∈ A1 there exists an element
y of L such that 〈〈x, y〉〉 ∈ A1 and 〈〈y, z〉〉 ∈ A1.

Next we state two propositions:

(43) Let L be a non empty relational structure, A1 be a binary relation on
L, and x, z be elements of L. If 〈〈x, z〉〉 ∈ A1 and x = z, then there exists
an element y of L such that 〈〈x, y〉〉 ∈ A1 and 〈〈y, z〉〉 ∈ A1.

(44) Let L be a non empty relational structure and A1 be a binary relation
on L. Suppose A1 satisfies strong interpolation property. Then A1 satisfies
interpolation property.

Let L be a non empty relational structure. Observe that every binary relation
on L which satisfies strong interpolation property satisfies also interpolation
property.
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In the sequel A1 is an auxiliary binary relation on L and x, y, z are elements
of L.
The following four propositions are true:

(45) Let A1 be an approximating auxiliary binary relation on L. If x 6¬ y,
then there exists an element u of L such that 〈〈u, x〉〉 ∈ A1 and u 6¬ y.

(46) Let R be an approximating auxiliary binary relation on L. If 〈〈x, z〉〉 ∈ R
and x 6= z, then there exists y such that x ¬ y and 〈〈y, z〉〉 ∈ R and x 6= y.

(47) Let R be an approximating auxiliary binary relation on L. Suppose x�
z and x 6= z. Then there exists an element y of L such that 〈〈x, y〉〉 ∈ R
and 〈〈y, z〉〉 ∈ R and x 6= y.

(48) For every lower-bounded continuous lattice L holds �L satisfies strong
interpolation property.

Let L be a lower-bounded continuous lattice. Observe that �L satisfies
strong interpolation property.
Next we state two propositions:

(49) Let L be a lower-bounded continuous lattice and x, y be elements of L. If
x� y, then there exists an element x′ of L such that x� x′ and x′ � y.

(50) Let L be a lower-bounded continuous lattice and x, y be elements of L.
Then x � y if and only if for every non empty directed subset D of L
such that y ¬ supD there exists an element d of L such that d ∈ D and
x� d.

3. Exercises

Let L be a relational structure, let X be a subset of L, and let R be a binary
relation on the carrier of L. We say that X is directed w.r.t. R if and only if:

(Def. 23) For all elements x, y of L such that x ∈ X and y ∈ X there exists an
element z of L such that z ∈ X and 〈〈x, z〉〉 ∈ R and 〈〈y, z〉〉 ∈ R.

We now state the proposition

(51) Let L be a relational structure and X be a subset of L. Suppose X is
directed w.r.t. the internal relation of L. Then X is directed.

Let L be a relational structure, let X be a set, let x be an element of L, and
let R be a binary relation on the carrier of L. We say that x is maximal w.r.t.
X, R if and only if:

(Def. 24) x ∈ X and it is not true that there exists an element y of L such that
y ∈ X and y 6= x and 〈〈x, y〉〉 ∈ R.

Let L be a relational structure, let X be a set, and let x be an element of
L. We say that x is maximal in X if and only if:

(Def. 25) x is maximal w.r.t. X, the internal relation of L.

One can prove the following proposition
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(52) Let L be a relational structure, X be a set, and x be an element of L.
Then x is maximal in X if and only if the following conditions are satisfied:
(i) x ∈ X, and
(ii) it is not true that there exists an element y of L such that y ∈ X and

x < y.

Let L be a relational structure, let X be a set, let x be an element of L, and
let R be a binary relation on the carrier of L. We say that x is minimal w.r.t.
X, R if and only if:

(Def. 26) x ∈ X and it is not true that there exists an element y of L such that
y ∈ X and y 6= x and 〈〈y, x〉〉 ∈ R.

Let L be a relational structure, let X be a set, and let x be an element of
L. We say that x is minimal in X if and only if:

(Def. 27) x is minimal w.r.t. X, the internal relation of L.

We now state several propositions:

(53) Let L be a relational structure, X be a set, and x be an element of L.
Then x is minimal in X if and only if the following conditions are satisfied:
(i) x ∈ X, and
(ii) it is not true that there exists an element y of L such that y ∈ X and

x > y.

(54) If A1 satisfies strong interpolation property, then for every x such that
there exists y which is maximal w.r.t. ↓↓A1x, A1 holds 〈〈x, x〉〉 ∈ A1.

(55) If for every x such that there exists y which is maximal w.r.t. ↓↓A1x, A1

holds 〈〈x, x〉〉 ∈ A1, then A1 satisfies strong interpolation property.

(56) If A1 satisfies interpolation property, then for every x holds ↓↓A1x is
directed w.r.t. A1.

(57) If for every x holds ↓↓A1x is directed w.r.t. A1, then A1 satisfies interpo-
lation property.

(58) Let R be an approximating auxiliary binary relation on L. Suppose R
satisfies interpolation property. Then R satisfies strong interpolation pro-
perty.

Let us consider L. One can verify that every approximating auxiliary bi-
nary relation on L which satisfies interpolation property satisfies also strong
interpolation property.
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Summary. This article introduces various Boolean operators which are
used in discussing the properties and stability of a 2’s complement circuit. We pre-
sent the definitions and related theorems for the following logical operators which
include negative input/output: ’and2a’, ’or2a’, ’xor2a’ and ’nand2a’, ’nor2a’, etc.
We formalize the concept of a 2’s complement circuit, define the structures of
complementors/incrementors for binary operations, and prove the stability of the
circuit.

MML Identifier: TWOSCOMP.

The terminology and notation used here are introduced in the following articles:
[13], [15], [12], [1], [17], [5], [6], [16], [2], [4], [11], [14], [10], [8], [9], [7], and [3].

1. Boolean Operators

Let x be a set. Then 〈x〉 is a finite sequence with length 1. Let y be a set.
Then 〈x, y〉 is a finite sequence with length 2. Let z be a set. Then 〈x, y, z〉 is a
finite sequence with length 3.
Let n, m be natural numbers, let p be a finite sequence with length n, and

let q be a finite sequence with length m. Then p a q is a finite sequence with
length n + m.
Let S be an unsplit non void non empty many sorted signature, let A be a

Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v)
is an element of Boolean .
Next we state two propositions:

(1) For every function f and for all sets x1, x2 such that x1 ∈ dom f and
x2 ∈ dom f holds f · 〈x1, x2〉 = 〈f(x1), f(x2)〉.
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(2) For every function f and for all sets x1, x2, x3 such that x1 ∈ dom f and
x2 ∈ dom f and x3 ∈ dom f holds f · 〈x1, x2, x3〉 = 〈f(x1), f(x2), f(x3)〉.

The function and2 from Boolean
2 into Boolean is defined by:

(Def. 1) For all elements x, y of Boolean holds and2(〈x, y〉) = x ∧ y.

The function and2a from Boolean
2 into Boolean is defined by:

(Def. 2) For all elements x, y of Boolean holds (and2a)(〈x, y〉) = ¬x ∧ y.

The function and2b from Boolean
2 into Boolean is defined as follows:

(Def. 3) For all elements x, y of Boolean holds (and2b)(〈x, y〉) = ¬x ∧ ¬y.

The function nand2 from Boolean
2 into Boolean is defined by:

(Def. 4) For all elements x, y of Boolean holds nand2(〈x, y〉) = ¬(x ∧ y).

The function nand2a from Boolean
2 into Boolean is defined as follows:

(Def. 5) For all elements x, y of Boolean holds (nand2a)(〈x, y〉) = ¬(¬x ∧ y).

The function nand2b from Boolean
2 into Boolean is defined as follows:

(Def. 6) For all elements x, y of Boolean holds (nand2b)(〈x, y〉) = ¬(¬x ∧ ¬y).

The function or2 from Boolean
2 into Boolean is defined by:

(Def. 7) For all elements x, y of Boolean holds or2(〈x, y〉) = x ∨ y.

The function or2a from Boolean
2 into Boolean is defined as follows:

(Def. 8) For all elements x, y of Boolean holds (or2a)(〈x, y〉) = ¬x ∨ y.

The function or2b from Boolean
2 into Boolean is defined as follows:

(Def. 9) For all elements x, y of Boolean holds (or2b)(〈x, y〉) = ¬x ∨ ¬y.

The function nor2 from Boolean
2 into Boolean is defined by:

(Def. 10) For all elements x, y of Boolean holds nor2(〈x, y〉) = ¬(x ∨ y).

The function nor2a from Boolean
2 into Boolean is defined by:

(Def. 11) For all elements x, y of Boolean holds (nor2a)(〈x, y〉) = ¬(¬x ∨ y).

The function nor2b from Boolean
2 into Boolean is defined as follows:

(Def. 12) For all elements x, y of Boolean holds (nor2b)(〈x, y〉) = ¬(¬x ∨ ¬y).

The function xor2 from Boolean
2 into Boolean is defined by:

(Def. 13) For all elements x, y of Boolean holds xor2(〈x, y〉) = x⊕ y.

The function xor2a from Boolean
2 into Boolean is defined as follows:

(Def. 14) For all elements x, y of Boolean holds (xor2a)(〈x, y〉) = ¬x⊕ y.

The function xor2b from Boolean
2 into Boolean is defined as follows:

(Def. 15) For all elements x, y of Boolean holds (xor2b)(〈x, y〉) = ¬x⊕ ¬y.

We now state a number of propositions:

(3) For all elements x, y of Boolean holds and2(〈x, y〉) = x∧y and (and2a)(〈x,
y〉) = ¬x ∧ y and (and2b)(〈x, y〉) = ¬x ∧ ¬y.

(4) For all elements x, y of Boolean holds nand2(〈x, y〉) = ¬(x ∧ y) and
(nand2a)(〈x, y〉) = ¬(¬x ∧ y) and (nand2b)(〈x, y〉) = ¬(¬x ∧ ¬y).

(5) For all elements x, y of Boolean holds or2(〈x, y〉) = x ∨ y and (or2a)(〈x,
y〉) = ¬x ∨ y and (or2b)(〈x, y〉) = ¬x ∨ ¬y.



2’s complement circuit 191

(6) For all elements x, y of Boolean holds nor2(〈x, y〉) = ¬(x ∨ y) and
(nor2a)(〈x, y〉) = ¬(¬x ∨ y) and (nor2b)(〈x, y〉) = ¬(¬x ∨ ¬y).

(7) For all elements x, y of Boolean holds xor2(〈x, y〉) = x⊕y and (xor2a)(〈x,
y〉) = ¬x⊕ y and (xor2b)(〈x, y〉) = ¬x⊕ ¬y.

(8) For all elements x, y of Boolean holds and2(〈x, y〉) = (nor2b)(〈x, y〉) and
(and2a)(〈x, y〉) = (nor2a)(〈y, x〉) and (and2b)(〈x, y〉) = nor2(〈x, y〉).

(9) For all elements x, y of Boolean holds or2(〈x, y〉) = (nand2b)(〈x, y〉) and
(or2a)(〈x, y〉) = (nand2a)(〈y, x〉) and (or2b)(〈x, y〉) = nand2(〈x, y〉).

(10) For all elements x, y of Boolean holds (xor2b)(〈x, y〉) = xor2(〈x, y〉).

(11)(i) and2(〈0, 0〉) = 0,
(ii) and2(〈0, 1〉) = 0,
(iii) and2(〈1, 0〉) = 0,
(iv) and2(〈1, 1〉) = 1,
(v) (and2a)(〈0, 0〉) = 0,
(vi) (and2a)(〈0, 1〉) = 1,
(vii) (and2a)(〈1, 0〉) = 0,
(viii) (and2a)(〈1, 1〉) = 0,
(ix) (and2b)(〈0, 0〉) = 1,
(x) (and2b)(〈0, 1〉) = 0,
(xi) (and2b)(〈1, 0〉) = 0, and
(xii) (and2b)(〈1, 1〉) = 0.

(12)(i) or2(〈0, 0〉) = 0,
(ii) or2(〈0, 1〉) = 1,
(iii) or2(〈1, 0〉) = 1,
(iv) or2(〈1, 1〉) = 1,
(v) (or2a)(〈0, 0〉) = 1,
(vi) (or2a)(〈0, 1〉) = 1,
(vii) (or2a)(〈1, 0〉) = 0,
(viii) (or2a)(〈1, 1〉) = 1,
(ix) (or2b)(〈0, 0〉) = 1,
(x) (or2b)(〈0, 1〉) = 1,
(xi) (or2b)(〈1, 0〉) = 1, and
(xii) (or2b)(〈1, 1〉) = 0.

(13) xor2(〈0, 0〉) = 0 and xor2(〈0, 1〉) = 1 and xor2(〈1, 0〉) = 1 and xor2(〈1,
1〉) = 0 and (xor2a)(〈0, 0〉) = 1 and (xor2a)(〈0, 1〉) = 0 and (xor2a)(〈1,
0〉) = 0 and (xor2a)(〈1, 1〉) = 1.

The function and3 from Boolean
3 into Boolean is defined as follows:

(Def. 16) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = x ∧ y ∧ z.

The function and3a from Boolean
3 into Boolean is defined by:

(Def. 17) For all elements x, y, z of Boolean holds (and3a)(〈x, y, z〉) = ¬x ∧ y ∧ z.

The function and3b from Boolean
3 into Boolean is defined by:

(Def. 18) For all elements x, y, z of Boolean holds (and3b)(〈x, y, z〉) = ¬x∧¬y∧ z.

The function and3c from Boolean
3 into Boolean is defined by:
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(Def. 19) For all elements x, y, z of Boolean holds (and3c)(〈x, y, z〉) = ¬x∧¬y∧¬z.

The function nand3 from Boolean
3 into Boolean is defined by:

(Def. 20) For all elements x, y, z of Boolean holds nand3(〈x, y, z〉) = ¬(x∧ y ∧ z).

The function nand3a from Boolean
3 into Boolean is defined as follows:

(Def. 21) For all elements x, y, z of Boolean holds (nand3a)(〈x, y, z〉) = ¬(¬x ∧
y ∧ z).

The function nand3b from Boolean
3 into Boolean is defined as follows:

(Def. 22) For all elements x, y, z of Boolean holds (nand3b)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ z).

The function nand3c from Boolean
3 into Boolean is defined by:

(Def. 23) For all elements x, y, z of Boolean holds (nand3c)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ ¬z).

The function or3 from Boolean
3 into Boolean is defined by:

(Def. 24) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z.

The function or3a from Boolean
3 into Boolean is defined as follows:

(Def. 25) For all elements x, y, z of Boolean holds (or3a)(〈x, y, z〉) = ¬x ∨ y ∨ z.

The function or3b from Boolean
3 into Boolean is defined as follows:

(Def. 26) For all elements x, y, z of Boolean holds (or3b)(〈x, y, z〉) = ¬x ∨ ¬y ∨ z.

The function or3c from Boolean
3 into Boolean is defined as follows:

(Def. 27) For all elements x, y, z of Boolean holds (or3c)(〈x, y, z〉) = ¬x∨¬y∨¬z.

The function nor3 from Boolean
3 into Boolean is defined by:

(Def. 28) For all elements x, y, z of Boolean holds nor3(〈x, y, z〉) = ¬(x ∨ y ∨ z).

The function nor3a from Boolean
3 into Boolean is defined as follows:

(Def. 29) For all elements x, y, z of Boolean holds (nor3a)(〈x, y, z〉) = ¬(¬x∨y∨z).

The function nor3b from Boolean
3 into Boolean is defined by:

(Def. 30) For all elements x, y, z of Boolean holds (nor3b)(〈x, y, z〉) = ¬(¬x∨¬y∨
z).

The function nor3c from Boolean
3 into Boolean is defined by:

(Def. 31) For all elements x, y, z of Boolean holds (nor3c)(〈x, y, z〉) = ¬(¬x∨¬y∨
¬z).

The function xor3 from Boolean
3 into Boolean is defined by:

(Def. 32) For all elements x, y, z of Boolean holds xor3(〈x, y, z〉) = x⊕ y ⊕ z.

Next we state a number of propositions:

(14) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = x ∧ y ∧ z and
(and3a)(〈x, y, z〉) = ¬x ∧ y ∧ z and (and3b)(〈x, y, z〉) = ¬x ∧ ¬y ∧ z and
(and3c)(〈x, y, z〉) = ¬x ∧ ¬y ∧ ¬z.

(15) Let x, y, z be elements of Boolean . Then nand3(〈x, y, z〉) = ¬(x∧ y ∧ z)
and (nand3a)(〈x, y, z〉) = ¬(¬x ∧ y ∧ z) and (nand3b)(〈x, y, z〉) = ¬(¬x ∧
¬y ∧ z) and (nand3c)(〈x, y, z〉) = ¬(¬x ∧ ¬y ∧ ¬z).
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(16) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z and
(or3a)(〈x, y, z〉) = ¬x∨y∨z and (or3b)(〈x, y, z〉) = ¬x∨¬y∨z and (or3c)(〈x,
y, z〉) = ¬x ∨ ¬y ∨ ¬z.

(17) Let x, y, z be elements of Boolean . Then nor3(〈x, y, z〉) = ¬(x∨y∨z) and
(nor3a)(〈x, y, z〉) = ¬(¬x ∨ y ∨ z) and (nor3b)(〈x, y, z〉) = ¬(¬x ∨ ¬y ∨ z)
and (nor3c)(〈x, y, z〉) = ¬(¬x ∨ ¬y ∨ ¬z).

(18) For all elements x, y, z of Boolean holds xor3(〈x, y, z〉) = x⊕ y ⊕ z.

(19) For all elements x, y, z of Boolean holds and3(〈x, y, z〉) = (nor3c)(〈x,
y, z〉) and (and3a)(〈x, y, z〉) = (nor3b)(〈z, y, x〉) and (and3b)(〈x, y, z〉) =
(nor3a)(〈z, y, x〉) and (and3c)(〈x, y, z〉) = nor3(〈x, y, z〉).

(20) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = (nand3c)(〈x,
y, z〉) and (or3a)(〈x, y, z〉) = (nand3b)(〈z, y, x〉) and (or3b)(〈x, y, z〉) =
(nand3a)(〈z, y, x〉) and (or3c)(〈x, y, z〉) = nand3(〈x, y, z〉).

(21) and3(〈0, 0, 0〉) = 0 and and3(〈0, 0, 1〉) = 0 and and3(〈0, 1, 0〉) = 0 and
and3(〈0, 1, 1〉) = 0 and and3(〈1, 0, 0〉) = 0 and and3(〈1, 0, 1〉) = 0 and
and3(〈1, 1, 0〉) = 0 and and3(〈1, 1, 1〉) = 1.

(22) (and3a)(〈0, 0, 0〉) = 0 and (and3a)(〈0, 0, 1〉) = 0 and (and3a)(〈0, 1, 0〉) = 0
and (and3a)(〈0, 1, 1〉) = 1 and (and3a)(〈1, 0, 0〉) = 0 and (and3a)(〈1, 0,
1〉) = 0 and (and3a)(〈1, 1, 0〉) = 0 and (and3a)(〈1, 1, 1〉) = 0.

(23) (and3b)(〈0, 0, 0〉) = 0 and (and3b)(〈0, 0, 1〉) = 1 and (and3b)(〈0, 1, 0〉) =
0 and (and3b)(〈0, 1, 1〉) = 0 and (and3b)(〈1, 0, 0〉) = 0 and (and3b)(〈1, 0,
1〉) = 0 and (and3b)(〈1, 1, 0〉) = 0 and (and3b)(〈1, 1, 1〉) = 0.

(24) (and3c)(〈0, 0, 0〉) = 1 and (and3c)(〈0, 0, 1〉) = 0 and (and3c)(〈0, 1, 0〉) =
0 and (and3c)(〈0, 1, 1〉) = 0 and (and3c)(〈1, 0, 0〉) = 0 and (and3c)(〈1, 0,
1〉) = 0 and (and3c)(〈1, 1, 0〉) = 0 and (and3c)(〈1, 1, 1〉) = 0.

(25) or3(〈0, 0, 0〉) = 0 and or3(〈0, 0, 1〉) = 1 and or3(〈0, 1, 0〉) = 1 and or3(〈0,
1, 1〉) = 1 and or3(〈1, 0, 0〉) = 1 and or3(〈1, 0, 1〉) = 1 and or3(〈1, 1, 0〉) = 1
and or3(〈1, 1, 1〉) = 1.

(26) (or3a)(〈0, 0, 0〉) = 1 and (or3a)(〈0, 0, 1〉) = 1 and (or3a)(〈0, 1, 0〉) = 1 and
(or3a)(〈0, 1, 1〉) = 1 and (or3a)(〈1, 0, 0〉) = 0 and (or3a)(〈1, 0, 1〉) = 1 and
(or3a)(〈1, 1, 0〉) = 1 and (or3a)(〈1, 1, 1〉) = 1.

(27) (or3b)(〈0, 0, 0〉) = 1 and (or3b)(〈0, 0, 1〉) = 1 and (or3b)(〈0, 1, 0〉) = 1 and
(or3b)(〈0, 1, 1〉) = 1 and (or3b)(〈1, 0, 0〉) = 1 and (or3b)(〈1, 0, 1〉) = 1 and
(or3b)(〈1, 1, 0〉) = 0 and (or3b)(〈1, 1, 1〉) = 1.

(28) (or3c)(〈0, 0, 0〉) = 1 and (or3c)(〈0, 0, 1〉) = 1 and (or3c)(〈0, 1, 0〉) = 1 and
(or3c)(〈0, 1, 1〉) = 1 and (or3c)(〈1, 0, 0〉) = 1 and (or3c)(〈1, 0, 1〉) = 1 and
(or3c)(〈1, 1, 0〉) = 1 and (or3c)(〈1, 1, 1〉) = 0.

(29) xor3(〈0, 0, 0〉) = 0 and xor3(〈0, 0, 1〉) = 1 and xor3(〈0, 1, 0〉) = 1 and
xor3(〈0, 1, 1〉) = 0 and xor3(〈1, 0, 0〉) = 1 and xor3(〈1, 0, 1〉) = 0 and
xor3(〈1, 1, 0〉) = 0 and xor3(〈1, 1, 1〉) = 1.
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2. 2’s Complement Circuit Properties

Let x, b be sets. The functor CompStr(x, b) yields an unsplit non void strict
non empty many sorted signature with arity held in gates and Boolean denota-
tion held in gates and is defined by:

(Def. 33) CompStr(x, b) = 1GateCircStr(〈x, b〉, xor2a).

Let x, b be sets. The functor CompCirc(x, b) yields a strict Boolean circuit
of CompStr(x, b) with denotation held in gates and is defined as follows:

(Def. 34) CompCirc(x, b) = 1GateCircuit(x, b, xor2a).

Let x, b be sets. The functor CompOutput(x, b) yielding an element of
InnerVertices(CompStr(x, b)) is defined by:

(Def. 35) CompOutput(x, b) = 〈〈〈x, b〉, xor2a 〉〉.

Let x, b be sets. The functor IncrementStr(x, b) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined by:

(Def. 36) IncrementStr(x, b) = 1GateCircStr(〈x, b〉, and2a).

Let x, b be sets. The functor IncrementCirc(x, b) yields a strict Boolean
circuit of IncrementStr(x, b) with denotation held in gates and is defined as
follows:

(Def. 37) IncrementCirc(x, b) = 1GateCircuit(x, b, and2a).

Let x, b be sets. The functor IncrementOutput(x, b) yields an element of
InnerVertices(IncrementStr(x, b)) and is defined by:

(Def. 38) IncrementOutput(x, b) = 〈〈〈x, b〉, and2a 〉〉.

Let x, b be sets. The functor BitCompStr(x, b) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined as follows:

(Def. 39) BitCompStr(x, b) = CompStr(x, b)+· IncrementStr(x, b).

Let x, b be sets. The functor BitCompCirc(x, b) yielding a strict Boolean
circuit of BitCompStr(x, b) with denotation held in gates is defined by:

(Def. 40) BitCompCirc(x, b) = CompCirc(x, b)+· IncrementCirc(x, b).

One can prove the following propositions:

(30) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) is a binary
relation.

(31) For all non pair sets x, b holds x ∈ the carrier of CompStr(x, b) and
b ∈ the carrier of CompStr(x, b) and 〈〈〈x, b〉, xor2a 〉〉 ∈ the carrier of
CompStr(x, b).

(32) For all non pair sets x, b holds the carrier of CompStr(x, b) = {x, b} ∪
{〈〈〈x, b〉, xor2a 〉〉}.

(33) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) = {〈〈〈x, b〉,
xor2a 〉〉}.
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(34) For all non pair sets x, b holds 〈〈〈x, b〉, xor2a 〉〉 ∈
InnerVertices(CompStr(x, b)).

(35) For all non pair sets x, b holds InputVertices(CompStr(x, b)) = {x, b}.

(36) For all non pair sets x, b holds x ∈ InputVertices(CompStr(x, b)) and
b ∈ InputVertices(CompStr(x, b)).

(37) For all non pair sets x, b holds InputVertices(CompStr(x, b)) has no pairs.

(38) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) is a
binary relation.

(39) For all non pair sets x, b holds x ∈ the carrier of IncrementStr(x, b) and
b ∈ the carrier of IncrementStr(x, b) and 〈〈〈x, b〉, and2a 〉〉 ∈ the carrier of
IncrementStr(x, b).

(40) For all non pair sets x, b holds the carrier of IncrementStr(x, b) = {x, b}∪
{〈〈〈x, b〉, and2a 〉〉}.

(41) For all non pair sets x, b holds InnerVertices(IncrementStr(x, b)) = {〈〈〈x,
b〉, and2a 〉〉}.

(42) For all non pair sets x, b holds 〈〈〈x, b〉, and2a 〉〉 ∈
InnerVertices(IncrementStr(x, b)).

(43) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) =
{x, b}.

(44) For all non pair sets x, b holds x ∈ InputVertices(IncrementStr(x, b))
and b ∈ InputVertices(IncrementStr(x, b)).

(45) For all non pair sets x, b holds InputVertices(IncrementStr(x, b)) has no
pairs.

(46) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) is a
binary relation.

(47) Let x, b be non pair sets. Then
(i) x ∈ the carrier of BitCompStr(x, b),
(ii) b ∈ the carrier of BitCompStr(x, b),
(iii) 〈〈〈x, b〉, xor2a 〉〉 ∈ the carrier of BitCompStr(x, b), and
(iv) 〈〈〈x, b〉, and2a 〉〉 ∈ the carrier of BitCompStr(x, b).

(48) For all non pair sets x, b holds the carrier of BitCompStr(x, b) = {x, b}∪
{〈〈〈x, b〉, xor2a 〉〉, 〈〈〈x, b〉, and2a 〉〉}.

(49) For all non pair sets x, b holds InnerVertices(BitCompStr(x, b)) = {〈〈〈x,
b〉, xor2a 〉〉, 〈〈〈x, b〉, and2a 〉〉}.

(50) For all non pair sets x, b holds 〈〈〈x, b〉, xor2a 〉〉 ∈
InnerVertices(BitCompStr(x, b)) and 〈〈〈x, b〉, and2a 〉〉 ∈
InnerVertices(BitCompStr(x, b)).

(51) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) = {x, b}.

(52) For all non pair sets x, b holds x ∈ InputVertices(BitCompStr(x, b)) and
b ∈ InputVertices(BitCompStr(x, b)).

(53) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) has no
pairs.
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(54) For all non pair sets x, b and for every state s of CompCirc(x, b)
holds (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(55) Let x, b be non pair sets, s be a state of CompCirc(x, b), and
a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(b), then
(Following(s))(CompOutput(x, b)) = ¬a1⊕a2 and (Following(s))(x) = a1

and (Following(s))(b) = a2.

(56) For all non pair sets x, b and for every state s of BitCompCirc(x, b)
holds (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(57) Let x, b be non pair sets, s be a state of BitCompCirc(x, b), and
a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(b), then
(Following(s))(CompOutput(x, b)) = ¬a1⊕a2 and (Following(s))(x) = a1

and (Following(s))(b) = a2.

(58) For all non pair sets x, b and for every state s of IncrementCirc(x, b)
holds (Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(59) Let x, b be non pair sets, s be a state of IncrementCirc(x, b),
and a1, a2 be elements of Boolean . If a1 = s(x) and a2 =
s(b), then (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(60) For all non pair sets x, b and for every state s of BitCompCirc(x, b)
holds (Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(61) Let x, b be non pair sets, s be a state of BitCompCirc(x, b),
and a1, a2 be elements of Boolean . If a1 = s(x) and a2 =
s(b), then (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(62) Let x, b be non pair sets and s be a state of BitCompCirc(x, b).
Then (Following(s))(CompOutput(x, b)) = (xor2a)(〈s(x), s(b)〉) and
(Following(s))(IncrementOutput(x, b)) = (and2a)(〈s(x), s(b)〉) and
(Following(s))(x) = s(x) and (Following(s))(b) = s(b).

(63) Let x, b be non pair sets, s be a state of BitCompCirc(x, b),
and a1, a2 be elements of Boolean . Suppose a1 = s(x) and
a2 = s(b). Then (Following(s))(CompOutput(x, b)) = ¬a1 ⊕
a2 and (Following(s))(IncrementOutput(x, b)) = ¬a1 ∧ a2 and
(Following(s))(x) = a1 and (Following(s))(b) = a2.

(64) For all non pair sets x, b and for every state s of BitCompCirc(x, b) holds
Following(s) is stable.
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Summary. The class of continuous lattices can be characterized by infi-
nitary equations. Therefore, it is closed under the formation of subalgebras and
homomorphic images. Following the terminology of [18] we introduce a continu-
ous lattice subframe to be a sublattice closed under the formation of arbitrary
infs and directed sups. This notion corresponds with a subalgebra of a continuous
lattice in [16].
The class of completely distributive lattices is also introduced in the paper.

Such lattices are complete and satisfy the most restrictive type of the general
distributivity law. Obviously each completely distributive lattice is a Heyting
algebra. It was hard to find the best Mizar implementation of the complete di-
stributivity equational condition (denoted by CD in [16]). The powerful and well
developed Many Sorted Theory gives the most convenient way of this formaliza-
tion. A set double indexed by K, introduced in the paper, corresponds with a
family {xj,k : j ∈ J, k ∈ K(j)}. It is defined to be a suitable many sorted function.
Two special functors: Sups and Infs as counterparts of Sup and Inf respectively,
introduced in [38], are also defined. Originally the equation in Definition 2.4 of
[16, p. 58] looks as follows:

∧
j∈J

∨
k∈K(j)xj,k =

∨
f∈M

∧
j∈J

xj,f(j),

where M is the set of functions defined on J with values f(j) ∈ K(j).

MML Identifier: WAYBEL 5.
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[38], [14], [7], [8], and [34] provide the terminology and notation for this paper.

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.

199
c© 1997 University of Białystok

ISSN 1426–2630



200 mariusz żynel

1. The Continuity of Lattices

In this paper x, y are arbitrary, X denotes a set, and L denotes an up-
complete semilattice.

One can prove the following propositions:

(1) L is continuous if and only if for every element x of L holds ↓↓x is an
ideal of L and x ¬ sup ↓↓x and for every ideal I of L such that x ¬ sup I
holds ↓↓x ⊆ I.

(2) L is continuous if and only if for every element x of L there exists an
ideal I of L such that x ¬ sup I and for every ideal J of L such that
x ¬ supJ holds I ⊆ J.

(3) For every continuous lower-bounded sup-semilattice L holds SupMap(L)
has a lower adjoint.

(4) For every up-complete lower-bounded lattice L such that SupMap(L) is
upper adjoint holds L is continuous.

(5) For every complete semilattice L such that SupMap(L) is infs-preserving
and sups-preserving holds SupMap(L) has a lower adjoint.

Let J , D be sets and let K be a many sorted set indexed by J . A set of
elements of D double indexed by K is a many sorted function from K into
J 7−→ D.

Let J be a set, let K be a many sorted set indexed by J , and let S be a 1-
sorted structure. A set of elements of S double indexed by K is a set of elements
of the carrier of S double indexed by K.

We now state the proposition

(6) Let J , D be sets, K be a many sorted set indexed by J , F be a set of
elements of D double indexed by K, and j be arbitrary. If j ∈ J, then
F (j) is a function from K(j) into D.

Let J , D be non empty sets, let K be a many sorted set indexed by J , let
F be a set of elements of D double indexed by K, and let j be an element of J .
Then F (j) is a function from K(j) into D.

Let J , D be non empty sets, let K be a non-empty many sorted set indexed
by J , let F be a set of elements of D double indexed by K, and let j be an
element of J . One can check that rngF (j) is non empty.

Let J be a set, let D be a non empty set, and let K be a non-empty many
sorted set indexed by J . One can check that every set of elements of D double
indexed by K is non-empty.

Next we state four propositions:

(7) For every function yielding function F and for arbitrary f such that
f ∈ domFrege(F ) holds f is a function.

(8) For every function yielding function F and for every function f such that
f ∈ domFrege(F ) holds dom f = domF and domF = dom(Frege(F ))(f).
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(9) Let F be a function yielding function and f be a function. Suppose
f ∈ domFrege(F ). Let i be arbitrary. If i ∈ domF, then f(i) ∈ domF (i)
and (Frege(F ))(f)(i) = F (i)(f(i)) and F (i)(f(i)) ∈ rng(Frege(F ))(f).

(10) Let J , D be sets, K be a many sorted set indexed by J , F be a set of ele-
ments ofD double indexed byK, and f be a function. If f ∈ domFrege(F ),
then (Frege(F ))(f) is a function from J into D.

Let f be a non-empty function. Note that domκ f(κ) is non-empty.
Let J , D be sets, let K be a many sorted set indexed by J , and let F be a

set of elements of D double indexed by K. Then Frege(F ) is a set of elements
of D double indexed by

∏
(domκ F (κ)) 7−→ J.

Let J , D be non empty sets, let K be a non-empty many sorted set indexed
by J , let F be a set of elements of D double indexed by K, let G be a set of
elements of D double indexed by

∏
(domκ F (κ)) 7−→ J, and let f be an element

of
∏

(domκ F (κ)). Then G(f) is a function from J into D.
Let L be a non empty relational structure and let F be a function yielding

function. The functor
⊔

L
F yields a function from domF into the carrier of L

and is defined as follows:

(Def. 1) For every x such that x ∈ domF holds (
⊔

L
F )(x) =

⊔
L F (x).

The functor d−eL F yields a function from domF into the carrier of L and is
defined by:

(Def. 2) For every x such that x ∈ domF holds (d−eL F )(x) = d−eLF (x).

Let J be a set, let K be a many sorted set indexed by J , let L be a non
empty relational structure, and let F be a set of elements of L double indexed
by K. We introduce Sups(F ) as a synonym of

⊔
L

F. We introduce Infs(F ) as a

synonym of d−eL F.
Let I, J be sets, let L be a non empty relational structure, and let F be

a set of elements of L double indexed by I 7−→ J. We introduce Sups(F ) as a

synonym of
⊔

L
F. We introduce Infs(F ) as a synonym of d−eL F.

The following four propositions are true:

(11) Let L be a non empty relational structure and F , G be function yielding
functions. If domF = domG and for every x such that x ∈ domF holds⊔

L F (x) =
⊔

L G(x), then
⊔

L
F =

⊔
L

G.

(12) Let L be a non empty relational structure and F , G be function yielding
functions. If domF = domG and for every x such that x ∈ domF holds
d−eLF (x) = d−eLG(x), then d−eL F = d−eL G.

(13) Let L be a non empty relational structure and F be a function yielding
function. Then
(i) y ∈ rng

⊔
L

F iff there exists x such that x ∈ domF and y =
⊔

L F (x),
and

(ii) y ∈ rng d−eL F iff there exists x such that x ∈ domF and y = d−eLF (x).

(14) Let L be a non empty relational structure, J be a non empty set, K be
a many sorted set indexed by J , and F be a set of elements of L double
indexed by K. Then
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(i) x ∈ rng Sups(F ) iff there exists an element j of J such that x =
Sup(F (j)), and

(ii) x ∈ rng Infs(F ) iff there exists an element j of J such that x =
Inf(F (j)).

Let J be a non empty set, let K be a many sorted set indexed by J , let L
be a non empty relational structure, and let F be a set of elements of L double
indexed by K. Observe that rng Sups(F ) is non empty and rng Infs(F ) is non
empty.
For simplicity we follow the rules: L is a complete lattice, a, b, c are elements

of L, J is a non empty set, and K is a non-empty many sorted set indexed by
J .
One can prove the following propositions:

(15) Let F be a function yielding function. If for every function f such that

f ∈ domFrege(F ) holds d−eL(Frege(F ))(f) ¬ a, then Sup(d−eL Frege(F )) ¬
a.

(16) For every set F of elements of L double indexed by K holds
Inf(Sups(F )) ­ Sup(Infs(Frege(F ))).

(17) If L is continuous and for every c such that c � a holds c ¬ b, then
a ¬ b.

(18) Suppose that for every non empty set J such that J ∈ the universe
of the carrier of L and for every non-empty many sorted set K indexed
by J such that for every element j of J holds K(j) ∈ the universe of
the carrier of L and for every set F of elements of L double indexed by
K such that for every element j of J holds rngF (j) is directed holds
Inf(Sups(F )) = Sup(Infs(Frege(F ))). Then L is continuous.

(19) L is continuous if and only if for all J , K and for every set F of elements
of L double indexed byK such that for every element j of J holds rngF (j)
is directed holds Inf(Sups(F )) = Sup(Infs(Frege(F ))).

Let J , K, D be non empty sets and let F be a function from [:J, K :] into
D. Then curryF is a set of elements of D double indexed by J 7−→ K.
We follow a convention: J , K, D will denote non empty sets, j will denote

an element of J , and k will denote an element of K.
One can prove the following four propositions:

(20) For every function F from [:J, K :] into D holds domcurryF = J and
dom(curryF )(j) = K and F (〈〈j, k〉〉) = (curryF )(j)(k).

(21) L is continuous if and only if for all non empty sets J , K and for every
function F from [: J, K :] into the carrier of L such that for every ele-
ment j of J holds rng(curryF )(j) is directed holds Inf(Sups(curryF )) =
Sup(Infs(Frege(curryF ))).

(22) Let F be a function from [:J, K :] into the carrier of L and
X be a subset of L. Suppose X = {a, a ranges over ele-
ments of L:

∨
f : non-empty many sorted set indexed by J (f ∈ (FinK)J ∧∨

G : set of elements of L double indexed by f (
∧

j,x (x ∈ f(j) ⇒ G(j)(x) =
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F (〈〈j, x〉〉)) ∧ a = Inf(Sups(G))))}. Then Inf(Sups(curryF )) ­ supX.

(23) L is continuous if and only if for all J , K and for every
function F from [: J, K :] into the carrier of L and for every
subset X of L such that X = {a, a ranges over elements
of L:

∨
f : non-empty many sorted set indexed by J (f ∈ (FinK)J ∧∨

G : set of elements of L double indexed by f (
∧

j,x (x ∈ f(j) ⇒ G(j)(x) =

F (〈〈j, x〉〉)) ∧ a = Inf(Sups(G))))} holds Inf(Sups(curryF )) = supX.

2. Completely-Distributive Lattices

Let L be a non empty relational structure. We say that L is completely-
distributive if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) L is complete, and
(ii) for every non empty set J and for every non-empty many sorted set K
indexed by J and for every set F of elements of L double indexed by K
holds Inf(Sups(F )) = Sup(Infs(Frege(F ))).

In the sequel J will denote a non empty set and K will denote a non-empty
many sorted set indexed by J .
One can check that every non empty poset which is trivial is also completely-

distributive.
One can verify that there exists a lattice which is completely-distributive.
Next we state the proposition

(24) Every completely-distributive lattice is continuous.

Let us observe that every lattice which is completely-distributive is also
complete and continuous.
Next we state two propositions:

(25) Let L be a non empty antisymmetric transitive relational structure with
g.l.b.’s, x be an element of L, and X, Y be subsets of L. Suppose sup X
exists in L and sup Y exists in L and Y = {x u y, y ranges over elements
of L: y ∈ X}. Then x u supX ­ supY.

(26) Let L be a completely-distributive lattice, X be a subset of L, and x be
an element of L. Then xu supX =

⊔
L{xu y, y ranges over elements of L:

y ∈ X}.

Let us note that every lattice which is completely-distributive is also Heyting.

3. Sub–Frames of Continuous Lattices

Let L be a non empty relational structure. A continuous subframe of L is an
infs-inheriting directed-sups-inheriting non empty full relational substructure of
L.
We now state three propositions:
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(27) Let F be a set of elements of L double indexed by K. If for every element
j of J holds rngF (j) is directed, then rng Infs(Frege(F )) is directed.

(28) If L is continuous, then every continuous subframe of L is a continuous
lattice.

(29) For every non empty poset S such that there exists a map from L into
S which is infs-preserving and onto holds S is a complete lattice.

Let J be a set and let y be arbitrary. We introduce J p=⇒ y as a synonym
of J 7−→ y.
Let J be a set and let y be arbitrary. Then J 7−→ y is a many sorted set

indexed by J . We introduce J p=⇒ y as a synonym of J 7−→ y.
Let A, B, J be sets and let f be a function from A into B. Then J p=⇒ f is

a many sorted function from J 7−→ A into J 7−→ B.
We now state four propositions:

(30) Let A, B be sets, f be a function from A into B, and g be a function
from B into A. If g · f = idA, then (J p=⇒ g) ◦ (J p=⇒ f) = idJ 7−→A.

(31) Let J , A be non empty sets, B be a set, K be a many sorted set indexed
by J , F be a set of elements of A double indexed byK, and f be a function
from A into B. Then (J p=⇒ f)◦F is a set of elements of B double indexed
by K.

(32) Let J , A, B be non empty sets, K be a many sorted set indexed by J , F
be a set of elements of A double indexed by K, and f be a function from
A into B. Then domκ((J p=⇒ f) ◦ F )(κ) = domκ F (κ).

(33) Suppose L is continuous. Let S be a non empty poset. Suppose there exi-
sts a map from L into S which is infs-preserving, directed-sups-preserving,
and onto. Then S is a continuous lattice.
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The papers [1], [3], [4], [2], [6], and [7] provide the terminology and notation for
this paper.

1. Introduction

One can prove the following propositions:

(1) For every reflexive antisymmetric relational structure L with l.u.b.’s and
for every element a of L holds a t a = a.

(2) For every reflexive antisymmetric relational structure L with g.l.b.’s and
for every element a of L holds a u a = a.

(3) Let L be a transitive antisymmetric relational structure with l.u.b.’s and
a, b, c be elements of L. If a t b ¬ c, then a ¬ c.

(4) Let L be a transitive antisymmetric relational structure with g.l.b.’s and
a, b, c be elements of L. If c ¬ a u b, then c ¬ a.

(5) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and g.l.b.’s and a, b, c be elements of L. Then a u b ¬ a t c.

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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(6) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and a, b, c be elements of L. If a ¬ b, then a u c ¬ b u c.

(7) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and a, b, c be elements of L. If a ¬ b, then a t c ¬ b t c.

(8) For every sup-semilattice L and for all elements a, b of L such that a ¬ b
holds a t b = b.

(9) For every sup-semilattice L and for all elements a, b, c of L such that
a ¬ c and b ¬ c holds a t b ¬ c.

(10) For every semilattice L and for all elements a, b of L such that b ¬ a
holds a u b = b.

2. Difference in Relation Structure

We now state the proposition

(11) For every Boolean lattice L and for all elements x, y of L holds y is a
complement of x iff y = ¬x.

Let L be a non empty relational structure and let a, b be elements of L. The
functor a \ b yielding an element of L is defined as follows:

(Def. 1) a \ b = a u ¬b.

Let L be a non empty relational structure and let a, b be elements of L. The
functor a−. b yields an element of L and is defined as follows:

(Def. 2) a−. b = (a \ b) t (b \ a).

Let L be an antisymmetric relational structure with g.l.b.’s and l.u.b.’s and
let a, b be elements of L. Let us notice that the functor a−. b is commutative.
Let L be a non empty relational structure and let a, b be elements of L. We

say that a meets b if and only if:

(Def. 3) a u b 6= ⊥L.

We introduce a misses b as an antonym of a meets b.
Let L be an antisymmetric relational structure with g.l.b.’s and let a, b

be elements of L. Let us note that the predicate a meets b is symmetric. We
introduce a misses b as an antonym of a meets b.
Next we state a number of propositions:

(12) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, c be elements of L. If a ¬ c, then a \ b ¬ c.

(13) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, c be elements of L. If a ¬ b, then a \ c ¬ b \ c.

(14) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b be elements of L. Then a \ b ¬ a.

(15) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b be elements of L. Then a \ b ¬ a−. b.
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(16) For every lattice L and for all elements a, b, c of L such that a \ b ¬ c
and b \ a ¬ c holds a−. b ¬ c.

(17) For every lattice L and for every element a of L holds a meets a iff
a 6= ⊥L.

(18) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and l.u.b.’s and a, b, c be elements of L. Then a u (b \ c) = a u b \ c.

(19) Let L be an antisymmetric transitive relational structure with g.l.b.’s.
Suppose L is distributive. Let a, b, c be elements of L. If au bt au c = a,
then a ¬ b t c.

(20) For every lattice L such that L is distributive and for all elements a, b,
c of L holds a t b u c = (a t b) u (a t c).

(21) For every lattice L such that L is distributive and for all elements a, b,
c of L holds (a t b) \ c = (a \ c) t (b \ c).

3. Lower-bound in Relation Structure

Next we state a number of propositions:

(22) Let L be a lower-bounded non empty antisymmetric relational structure
and a be an element of L. If a ¬ ⊥L, then a = ⊥L.

(23) Let L be a lower-bounded semilattice and a, b, c be elements of L. If
a ¬ b and a ¬ c and b u c = ⊥L, then a = ⊥L.

(24) Let L be a lower-bounded antisymmetric relational structure with l.u.b.’s
and a, b be elements of L. If a t b = ⊥L, then a = ⊥L and b = ⊥L.

(25) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a ¬ b and b u c = ⊥L, then
a u c = ⊥L.

(26) For every lower-bounded semilattice L and for every element a of L holds
⊥L \ a = ⊥L.

(27) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a meets b and b ¬ c, then a
meets c.

(28) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s
and a be an element of L. Then a u ⊥L = ⊥L.

(29) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and l.u.b.’s and a, b, c be elements of L. If a meets bu c, then
a meets b.

(30) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and l.u.b.’s and a, b, c be elements of L. If a meets b \ c, then
a meets b.

(31) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a be an element of L. Then a misses ⊥L.
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(32) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a misses c and b ¬ c, then a
misses b.

(33) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a misses b or a misses c, then
a misses b u c.

(34) Let L be a lower-bounded lattice and a, b, c be elements of L. If a ¬ b
and a ¬ c and b misses c, then a = ⊥L.

(35) Let L be a lower-bounded antisymmetric transitive relational structure
with g.l.b.’s and a, b, c be elements of L. If a misses b, then a u c misses
b u c.

4. Boolean Lattices

We adopt the following rules: L will denote a Boolean non empty relational
structure and a, b, c, d will denote elements of L.
Next we state a number of propositions:

(36) a u b t b u c t c u a = (a t b) u (b t c) u (c t a).

(37) a u ¬a = ⊥L and a t ¬a = >L.

(38) If a \ b ¬ c, then a ¬ b t c.

(39) ¬(a t b) = ¬a u ¬b and ¬(a u b) = ¬a t ¬b.

(40) If a ¬ b, then ¬b ¬ ¬a.

(41) If a ¬ b, then c \ b ¬ c \ a.

(42) If a ¬ b and c ¬ d, then a \ d ¬ b \ c.

(43) If a ¬ b t c, then a \ b ¬ c and a \ c ¬ b.

(44) ¬a ¬ ¬(a u b) and ¬b ¬ ¬(a u b).

(45) ¬(a t b) ¬ ¬a and ¬(a t b) ¬ ¬b.

(46) If a ¬ b \ a, then a = ⊥L.

(47) If a ¬ b, then b = a t (b \ a).

(48) a \ b = ⊥L iff a ¬ b.

(49) If a ¬ b t c and a u c = ⊥L, then a ¬ b.

(50) a t b = (a \ b) t b.

(51) a \ (a t b) = ⊥L.

(52) a \ a u b = a \ b.

(53) (a \ b) u b = ⊥L.

(54) a t (b \ a) = a t b.

(55) a u b t (a \ b) = a.

(56) a \ (b \ c) = (a \ b) t a u c.

(57) a \ (a \ b) = a u b.
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(58) (a t b) \ b = a \ b.

(59) a u b = ⊥L iff a \ b = a.

(60) a \ (b t c) = (a \ b) u (a \ c).

(61) a \ b u c = (a \ b) t (a \ c).

(62) a u (b \ c) = a u b \ a u c.

(63) (a t b) \ a u b = (a \ b) t (b \ a).

(64) a \ b \ c = a \ (b t c).

(65) ¬(⊥L) = >L.

(66) ¬(>L) = ⊥L.

(67) a \ a = ⊥L.

(68) a \ ⊥L = a.

(69) ¬(a \ b) = ¬a t b.

(70) a u b misses a \ b.

(71) a \ b misses b.

(72) If a misses b, then (a t b) \ b = a.
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The notation and terminology used here are introduced in the following papers:
[30], [36], [35], [13], [31], [14], [37], [38], [11], [12], [10], [26], [9], [1], [2], [33], [23],
[24], [3], [4], [25], [18], [20], [39], [15], [27], [32], [21], [34], [5], [28], [6], [7], [17],
[19], [29], [8], and [22].

1. Preliminaries

The scheme SubsetEq deals with a non empty set A, subsets B, C of A, and
a unary predicate P, and states that:

B = C
provided the following conditions are met:
• For every element y of A holds y ∈ B iff P[y],
• For every element y of A holds y ∈ C iff P[y].
We now state the proposition

(1) For all sets X, x holds X 7−→ x is constant.

Let X, x be sets. Note that X 7−→ x is constant.
Let f be a function. Let us assume that f is non empty and constant. The

value of f is defined by:

(Def. 1) There exists a set x such that x ∈ dom f and the value of f = f(x).

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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Let us note that there exists a function which is non empty and constant.

Let f be a non empty constant function. Then the value of f can be charac-
terized by the condition:

(Def. 2) There exists a set x such that x ∈ dom f and the value of f = f(x).

The following propositions are true:

(2) For every non empty set X and for every set x holds the value of X 7−→
x = x.

(3) For every function f holds rng f ⊆ dom f .

Let us note that every set which is universal is also transitive and a Tarski
class and every set which is transitive and a Tarski class is also universal.

In the sequel x, X will be sets and T will be a universal class.

Let us consider X. The universe of X is defined as follows:

(Def. 3) The universe of X = T(X∗∈).

We now state the proposition

(4) T(X) is a Tarski class.

Let us consider X. Note that T(X) is a Tarski class.

Let us consider X. Observe that the universe of X is transitive and a Tarski
class.

Let us consider X. One can check that the universe of X is universal and
non empty.

One can prove the following proposition

(5) For every function f such that dom f ∈ T and rng f ⊆ T holds
∏

f ∈ T.

2. Topological spaces

Next we state the proposition

(6) Let T be a non empty topological space, A be a subset of T , and p be
a point of T . Then p ∈ A if and only if for every neighbourhood G of p
holds G meets A.

Let T be a non empty topological space. We introduce T is Hausdorff as a
synonym of T is T2.

One can verify that there exists a non empty topological space which is
Hausdorff.

One can prove the following two propositions:

(7) Let X be a non empty topological space and A be a subset of the carrier
of X. Then ΩX is a neighbourhood of A.

(8) Let X be a non empty topological space, A be a subset of the carrier of
X, and Y be a neighbourhood of A. Then A ⊆ Y.
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3. 1-sorted structures

The following proposition is true

(9) Let Y be a non empty set, J be a 1-sorted yielding many sorted set
indexed by Y , and i be an element of Y . Then (supportJ)(i) = the carrier
of J(i).

Let us note that there exists a function which is non empty, constant, and
1-sorted yielding.
Let J be a 1-sorted yielding function. Let us observe that J is nonempty if

and only if:

(Def. 4) For every set i such that i ∈ rng J holds i is a non empty 1-sorted
structure.

We introduce J is yielding non-empty carriers as a synonym of J is nonempty.
Let X be a set and let L be a 1-sorted structure. Observe that X 7−→ L is

1-sorted yielding.
Let I be a set. Observe that there exists a 1-sorted yielding many sorted set

indexed by I which is yielding non-empty carriers.
Let I be a non empty set and let J be a relational structure yielding many

sorted set indexed by I. One can verify that the carrier of
∏

J is functional.
Let I be a set and let J be a yielding non-empty carriers 1-sorted yielding

many sorted set indexed by I. Observe that supportJ is non-empty.
Next we state the proposition

(10) Let T be a non empty 1-sorted structure, S be a subset of the carrier
of T , and p be an element of the carrier of T . Then p /∈ S if and only if
p ∈ −S.

4. Relational structures

Let T be a non empty relational structure and let A be a lower subset of T .
Observe that −A is upper.
Let T be a non empty relational structure and let A be an upper subset of

T . Observe that −A is lower.
Let N be a non empty relational structure. Let us observe that N is directed

if and only if:

(Def. 5) For all elements x, y of N there exists an element z of N such that x ¬ z
and y ¬ z.

Let X be a set. Note that 2X
⊆ is directed.

Let us mention that there exists a relational structure which is non empty,
directed, transitive, and strict.
Let M be a non empty set, let N be a non empty relational structure, let

f be a function from M into the carrier of N , and let m be an element of M .
Then f(m) is an element of N .
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Let I be a set. Note that there exists a relational structure yielding many
sorted set indexed by I which is yielding non-empty carriers.

Let I be a non empty set and let J be a yielding non-empty carriers relational
structure yielding many sorted set indexed by I. Observe that

∏
J is non empty.

Next we state the proposition

(11) For all relational structures R1, R2 holds Ω[: R1, R2 :] = [:Ω(R1), Ω(R2) :].

Let Y1, Y2 be directed relational structures. Observe that [: Y1, Y2 :] is direc-
ted.

Next we state the proposition

(12) For every relational structure R holds the carrier of R = the carrier of
R`.

Let S be a 1-sorted structure and let N be a net structure over S. We say
that N is constant if and only if:

(Def. 6) The mapping of N is constant.

Let R be a relational structure, let T be a non empty 1-sorted structure, and
let p be an element of the carrier of T . The functor R 7−→ p yielding a strict net
structure over T is defined by the conditions (Def. 7).

(Def. 7)(i) The relational structure of (R 7−→ p) = the relational structure of R,
and

(ii) the mapping of (R 7−→ p) = (the carrier of (R 7−→ p)) 7−→ p.

Let R be a relational structure, let T be a non empty 1-sorted structure,
and let p be an element of the carrier of T . Note that R 7−→ p is constant.

Let R be a non empty relational structure, let T be a non empty 1-sorted
structure, and let p be an element of the carrier of T . One can verify that R 7−→ p
is non empty.

Let R be a non empty directed relational structure, let T be a non empty
1-sorted structure, and let p be an element of the carrier of T . Note that R 7−→ p
is directed.

Let R be a non empty transitive relational structure, let T be a non empty
1-sorted structure, and let p be an element of the carrier of T . One can check
that R 7−→ p is transitive.

We now state two propositions:

(13) Let R be a relational structure, T be a non empty 1-sorted structure, and
p be an element of the carrier of T . Then the carrier of (R 7−→ p) = the
carrier of R.

(14) Let R be a non empty relational structure, T be a non empty 1-sorted
structure, p be an element of the carrier of T , and q be an element of the
carrier of (R 7−→ p).Then (R 7−→ p)(q) = p.

Let T be a non empty 1-sorted structure and let N be a non empty net
structure over T . Observe that the mapping of N is non empty.
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5. Substructures of nets

One can prove the following propositions:

(15) Every relational structure R is a full relational substructure of R.

(16) Let R be a relational structure and S be a relational substructure of R.
Then every relational substructure of S is a relational substructure of R.

Let S be a 1-sorted structure and let N be a net structure over S. A net
structure over S is called a structure of a subnet of N if:

(Def. 8) It is a relational substructure of N and the mapping of it = (the mapping
of N)�(the carrier of it).

Next we state two propositions:

(17) For every 1-sorted structure S holds every net structure N over S is a
structure of a subnet of N .

(18) Let Q be a 1-sorted structure, R be a net structure over Q, and S be
a structure of a subnet of R. Then every structure of a subnet of S is a
structure of a subnet of R.

Let S be a 1-sorted structure, let N be a net structure over S, and let M be
a structure of a subnet of N . We say that M is full if and only if:

(Def. 9) M is a full relational substructure of N .

Let S be a 1-sorted structure and let N be a net structure over S. Note that
there exists a structure of a subnet of N which is full and strict.
Let S be a 1-sorted structure and let N be a non empty net structure over

S. Note that there exists a structure of a subnet of N which is full, non empty,
and strict.
One can prove the following three propositions:

(19) Let S be a 1-sorted structure, N be a net structure over S, and M be a
structure of a subnet of N . Then the carrier of M ⊆ the carrier of N .

(20) Let S be a 1-sorted structure, N be a net structure over S, M be a
structure of a subnet of N , x, y be elements of N , and i, j be elements of
the carrier of M . If x = i and y = j and i ¬ j, then x ¬ y.

(21) Let S be a 1-sorted structure, N be a non empty net structure over S,
M be a non empty full structure of a subnet of N , x, y be elements of N ,
and i, j be elements of the carrier of M . If x = i and y = j and x ¬ y,
then i ¬ j.

6. More about nets

Let T be a non empty 1-sorted structure. One can verify that there exists a
net in T which is constant and strict.
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Let T be a non empty 1-sorted structure and let N be a constant net struc-
ture over T . One can verify that the mapping of N is constant.
Let T be a non empty 1-sorted structure and let N be a net structure over

T . Let us assume that N is constant and non empty. The value of N yields an
element of T and is defined as follows:

(Def. 10) The value of N = the value of the mapping of N .

Let T be a non empty 1-sorted structure and let N be a constant non empty
net structure over T . Then the value of N can be characterized by the condition:

(Def. 11) The value of N = the value of the mapping of N .

Next we state the proposition

(22) Let R be a non empty relational structure, T be a non empty 1-sorted
structure, and p be an element of the carrier of T . Then the value of
R 7−→ p = p.

Let T be a non empty 1-sorted structure and let N be a net in T . A net in
T is said to be a subnet of N if it satisfies the condition (Def. 12).

(Def. 12) There exists a map f from it into N such that
(i) the mapping of it = (the mapping of N) · f, and
(ii) for every element m of N there exists an element n of it such that for
every element p of it such that n ¬ p holds m ¬ f(p).

We now state several propositions:

(23) For every non empty 1-sorted structure T holds every net N in T is a
subnet of N .

(24) Let T be a non empty 1-sorted structure and N1, N2, N3 be nets in T .
Suppose N1 is a subnet of N2 and N2 is a subnet of N3. Then N1 is a
subnet of N3.

(25) Let T be a non empty 1-sorted structure, N be a constant net in T , and
i be an element of the carrier of N . Then N(i) = the value of N .

(26) Let L be a non empty 1-sorted structure, N be a net in L, and X, Y be
sets. If N is eventually in X and eventually in Y , then X meets Y .

(27) Let S be a non empty 1-sorted structure, N be a net in S,M be a subnet
of N , and given X. If M is often in X, then N is often in X.

(28) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is eventually in X, then N is often in X.

(29) For every non empty 1-sorted structure S holds every net in S is even-
tually in the carrier of S.

7. The restriction of a net

Let S be a 1-sorted structure, let N be a net structure over S, and let us
consider X. The functor N−1(X) yields a strict structure of a subnet of N and
is defined by:
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(Def. 13) N−1(X) is a full relational substructure of N and the carrier of
N−1(X) = (the mapping of N)−1(X).

Let S be a 1-sorted structure, let N be a transitive net structure over S,
and let us consider X. One can verify that N−1(X) is transitive and full.
We now state three propositions:

(30) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is often in X, then N−1(X) is non empty and directed.

(31) Let S be a non empty 1-sorted structure, N be a net in S, and given X.
If N is often in X, then N−1(X) is a subnet of N .

(32) Let S be a non empty 1-sorted structure, N be a net in S, given X, and
M be a subnet of N . If M = N−1(X), then M is eventually in X.

8. The universe of nets

Let X be a non empty 1-sorted structure. The functor NetUniv(X) is defined
by the condition (Def. 14).

(Def. 14) Let given x. Then x ∈ NetUniv(X) if and only if there exists a strict
net N in X such that N = x and the carrier of N ∈ the universe of the
carrier of X.

Let X be a non empty 1-sorted structure. One can check that NetUniv(X)
is non empty.

9. Parametrized families of nets, iteration

Let X be a set and let T be a 1-sorted structure. A many sorted set indexed
by X is said to be a net set of X, T if:

(Def. 15) For every set i such that i ∈ rng it holds i is a net in T .

The following proposition is true

(33) Let X be a set, T be a 1-sorted structure, and F be a many sorted set
indexed by X. Then F is a net set of X, T if and only if for every set i
such that i ∈ X holds F (i) is a net in T .

Let X be a non empty set, let T be a 1-sorted structure, let J be a net set
of X, T , and let i be an element of X. Then J(i) is a net in T .
Let X be a set and let T be a 1-sorted structure. One can check that every

net set of X, T is relational structure yielding.
Let T be a 1-sorted structure and let Y be a net in T . Observe that every

net set of the carrier of Y , T is yielding non-empty carriers.
Let T be a non empty 1-sorted structure, let Y be a net in T , and let J be a

net set of the carrier of Y , T . One can check that
∏

J is directed and transitive.
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Let X be a set and let T be a 1-sorted structure. Observe that every net set
of X, T is yielding non-empty carriers.
Let X be a set and let T be a 1-sorted structure. One can check that there

exists a net set of X, T which is yielding non-empty carriers.
Let T be a non empty 1-sorted structure, let Y be a net in T , and let J be

a net set of the carrier of Y , T . The functor Iterated(J) yielding a strict net in
T is defined by the conditions (Def. 16).

(Def. 16)(i) The relational structure of Iterated(J) = [: Y,
∏

J :], and
(ii) for every element i of the carrier of Y and for every function f such
that i ∈ the carrier of Y and f ∈ the carrier of

∏
J holds (the mapping

of Iterated(J))(i, f) = (the mapping of J(i))(f(i)).

We now state four propositions:

(34) Let T be a non empty 1-sorted structure, Y be a net in T , and J be
a net set of the carrier of Y , T . Suppose Y ∈ NetUniv(T ) and for every
element i of the carrier of Y holds J(i) ∈ NetUniv(T ). Then Iterated(J) ∈
NetUniv(T ).

(35) Let T be a non empty 1-sorted structure, N be a net in T , and J be
a net set of the carrier of N , T . Then the carrier of Iterated(J) = [: the
carrier of N ,

∏
supportJ :].

(36) Let T be a non empty 1-sorted structure, N be a net in T , J be a net set
of the carrier of N , T , i be an element of the carrier of N , f be an element
of the carrier of

∏
J, and x be an element of the carrier of Iterated(J). If

x = 〈〈i, f〉〉, then (Iterated(J))(x) = (the mapping of J(i))(f(i)).

(37) Let T be a non empty 1-sorted structure, Y be a net in T , and J be a
net set of the carrier of Y , T . Then rng (the mapping of Iterated(J)) ⊆⋃
{rng (the mapping of J(i)): i ranges over elements of Y }.

10. Poset of open neighbourhoods

Let T be a non empty topological space and let p be a point of T . The open
neighbourhoods of p constitute a relational structure and is defined as follows:

(Def. 17) The open neighbourhoods of p = (〈{V, V ranges over subsets of T : p ∈
V ∧ V is open},⊆〉)`.

Let T be a non empty topological space and let p be a point of T . One can
check that the open neighbourhoods of p is non empty.
One can prove the following propositions:

(38) Let T be a non empty topological space, p be a point of T , and x be an
element of the carrier of the open neighbourhoods of p. Then there exists
a subset W of T such that W = x and p ∈W and W is open.

(39) Let T be a non empty topological space, p be a point of T , and x be a
subset of the carrier of T . Then x ∈ the carrier of the open neighbourhoods
of p if and only if p ∈ x and x is open.
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(40) Let T be a non empty topological space, p be a point of T , and x, y be
elements of the carrier of the open neighbourhoods of p. Then x ¬ y if
and only if y ⊆ x.

Let T be a non empty topological space and let p be a point of T . Note that
the open neighbourhoods of p is transitive and directed.

11. Nets in topological spaces

Let T be a non empty topological space and let N be a net in T . The functor
LimN yields a subset of T and is defined as follows:

(Def. 18) For every point p of T holds p ∈ LimN iff for every neighbourhood V
of p holds N is eventually in V .

The following four propositions are true:

(41) For every non empty topological space T and for every net N in T and
for every subnet Y of N holds LimN ⊆ LimY.

(42) For every non empty topological space T and for every constant net N
in T holds the value of N ∈ LimN.

(43) Let T be a non empty topological space, N be a net in T , and p be a
point of T . Suppose p ∈ LimN. Let d be an element of N . Then there
exists a subset S of T such that S = {N(c), c ranges over elements of N :
d ¬ c} and p ∈ S.

(44) Let T be a non empty topological space. Then T is Hausdorff if and only
if for every net N in T and for all points p, q of T such that p ∈ LimN
and q ∈ LimN holds p = q.

Let T be a Hausdorff non empty topological space and let N be a net in T .
Observe that LimN is trivial.
Let T be a non empty topological space and let N be a net in T . We say

that N is convergent if and only if:

(Def. 19) LimN 6= ∅.

Let T be a non empty topological space. Observe that every net in T which
is constant is also convergent.
Let T be a non empty topological space. Note that there exists a net in T

which is convergent and strict.
Let T be a Hausdorff non empty topological space and let N be a convergent

net in T . The functor limN yielding an element of T is defined as follows:

(Def. 20) limN ∈ LimN.

One can prove the following propositions:

(45) For every Hausdorff non empty topological space T and for every con-
stant net N in T holds limN = the value of N .

(46) Let T be a non empty topological space, N be a net in T , and p be a
point of T . Suppose p /∈ LimN. Then it is not true that there exists a
subnet Y of N and there exists a subnet Z of Y such that p ∈ LimZ.
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(47) Let T be a non empty topological space and N be a net in T . Suppose
N ∈ NetUniv(T ). Let p be a point of T . Suppose p /∈ LimN. Then there
exists a subnet Y of N such that Y ∈ NetUniv(T ) and it is not true that
there exists a subnet Z of Y such that p ∈ LimZ.

(48) Let T be a non empty topological space, N be a net in T , and p be a
point of T . Suppose p ∈ LimN. Let J be a net set of the carrier of N , T .
Suppose that for every element i of the carrier of N holds N(i) ∈ Lim J(i).
Then p ∈ Lim Iterated(J).

12. Convergence classes

Let S be a non empty 1-sorted structure. Convergence class of S is defined
as follows:

(Def. 21) It ⊆ [:NetUniv(S), the carrier of S :].

Let S be a non empty 1-sorted structure. Note that every convergence class
of S is relation-like.

Let T be a non empty topological space. The functor Convergence(T ) yiel-
ding a convergence class of T is defined as follows:

(Def. 22) For every net N in T and for every point p of T holds 〈〈N, p〉〉 ∈
Convergence(T ) iff N ∈ NetUniv(T ) and p ∈ LimN.

Let T be a non empty 1-sorted structure and let C be a convergence class
of T . We say that C has (CONSTANTS) property if and only if:

(Def. 23) For every constant net N in T such that N ∈ NetUniv(T ) holds 〈〈N, the
value of N〉〉 ∈ C.

We say that C has (SUBNETS) property if and only if the condition (Def. 24)
is satisfied.

(Def. 24) Let N be a net in T and Y be a subnet of N . Suppose Y ∈ NetUniv(T ).
Let p be an element of the carrier of T . If 〈〈N, p〉〉 ∈ C, then 〈〈Y, p〉〉 ∈ C.

We say that C has (DIVERGENCE) property if and only if the condition
(Def. 25) is satisfied.

(Def. 25) Let X be a net in T and p be an element of the carrier of T . Suppose
X ∈ NetUniv(T ) and 〈〈X, p〉〉 /∈ C. Then there exists a subnet Y of X such
that Y ∈ NetUniv(T ) and it is not true that there exists a subnet Z of Y
such that 〈〈Z, p〉〉 ∈ C.

We say that C has (ITERATED LIMITS) property if and only if the condition
(Def. 26) is satisfied.

(Def. 26) Let X be a net in T and p be an element of the carrier of T . Suppose 〈〈X,
p〉〉 ∈ C. Let J be a net set of the carrier of X, T . Suppose that for every
element i of the carrier of X holds 〈〈J(i), X(i)〉〉 ∈ C. Then 〈〈 Iterated(J),
p〉〉 ∈ C.
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Let T be a non empty topological space. Note that Convergence(T ) has
(CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property,
and (ITERATED LIMITS) property.

Let S be a non empty 1-sorted structure and let C be a convergence class
of S. The functor ConvergenceSpace(C) yielding a strict topological structure
is defined by the conditions (Def. 27).

(Def. 27)(i) The carrier of ConvergenceSpace(C) = the carrier of S, and

(ii) the topology of ConvergenceSpace(C) = {V, V ranges over subsets of
the carrier of S:

∧
p : element of the carrier of S (p ∈ V ⇒

∧
N :net in S (〈〈N,

p〉〉 ∈ C ⇒ N is eventually in V ))}.

Let S be a non empty 1-sorted structure and let C be a convergence class
of S. Observe that ConvergenceSpace(C) is non empty.

Let S be a non empty 1-sorted structure and let C be a convergence class
of S. Note that ConvergenceSpace(C) is topological space-like.
One can prove the following proposition

(49) For every non empty 1-sorted structure S and for every convergence class
C of S holds C ⊆ Convergence(ConvergenceSpace(C)).

Let T be a non empty 1-sorted structure and let C be a convergence class
of T . We say that C is topological if and only if:

(Def. 28) C has (CONSTANTS) property, (SUBNETS) property, (DIVER-
GENCE) property, and (ITERATED LIMITS) property.

Let T be a non empty 1-sorted structure. One can check that there exists a
convergence class of T which is non empty and topological.

Let T be a non empty 1-sorted structure. One can verify that every conver-
gence class of T which is topological has (CONSTANTS) property, (SUBNETS)
property, (DIVERGENCE) property, and (ITERATED LIMITS) property and
every convergence class of T which has (CONSTANTS) property, (SUBNETS)
property, (DIVERGENCE) property, and (ITERATED LIMITS) property is
topological.

The following propositions are true:

(50) Let T be a non empty 1-sorted structure, C be a topological convergence
class of T , and S be a subset of ConvergenceSpace(C) qua non empty
topological space. Then S is open if and only if for every element p of
the carrier of T such that p ∈ S and for every net N in T such that 〈〈N,
p〉〉 ∈ C holds N is eventually in S.

(51) Let T be a non empty 1-sorted structure, C be a topological convergence
class of T , and S be a subset of ConvergenceSpace(C) qua non empty
topological space. Then S is closed if and only if for every element p of
the carrier of T and for every net N in T such that 〈〈N, p〉〉 ∈ C and N is
often in S holds p ∈ S.

(52) Let T be a non empty 1-sorted structure, C be a topological conver-
gence class of T , S be a subset of ConvergenceSpace(C), and p be a point
of ConvergenceSpace(C). Suppose p ∈ S. Then there exists a net N in
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ConvergenceSpace(C) such that 〈〈N, p〉〉 ∈ C and rng (the mapping of N)
⊆ S and p ∈ LimN.

(53) Let T be a non empty 1-sorted structure and C be a convergence class
of T . Then Convergence(ConvergenceSpace(C)) = C if and only if C is
topological.
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Let L be a relational structure. We introduce Lop as a synonym of L`.
We now state several propositions:

(1) For every relational structure L and for all elements x, y of Lop holds
x ¬ y iff xx ­xy.

(2) Let L be a relational structure, x be an element of L, and y be an element
of Lop. Then
(i) x ¬xy iff x` ­ y, and
(ii) x ­xy iff x` ¬ y.

(3) For every relational structure L holds L is empty iff Lop is empty.

(4) For every relational structure L holds L is reflexive iff Lop is reflexive.

(5) For every relational structure L holds L is antisymmetric iff Lop is anti-
symmetric.

(6) For every relational structure L holds L is transitive iff Lop is transitive.

(7) For every non empty relational structure L holds L is connected iff Lop

is connected.

Let L be a reflexive relational structure. One can check that Lop is reflexive.
Let L be a transitive relational structure. One can check that Lop is transi-

tive.
Let L be an antisymmetric relational structure. Note that Lop is antisym-

metric.
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Let L be a connected non empty relational structure. Observe that Lop is
connected.

One can prove the following propositions:

(8) Let L be a relational structure, x be an element of L, and X be a set.
Then

(i) x ¬ X iff x` ­ X, and

(ii) x ­ X iff x` ¬ X.

(9) Let L be a relational structure, x be an element of Lop, and X be a set.
Then

(i) x ¬ X iff xx ­ X, and

(ii) x ­ X iff xx ¬ X.

(10) Let L be a relational structure and X be a set. Then sup X exists in L
if and only if inf X exists in Lop.

(11) Let L be a relational structure and X be a set. Then sup X exists in
Lop if and only if inf X exists in L.

(12) Let L be a non empty relational structure and X be a set. If sup X
exists in L or inf X exists in Lop, then

⊔
L X = d−e(Lop)X.

(13) Let L be a non empty relational structure and X be a set. If inf X exists
in L or sup X exists in Lop, then d−eLX =

⊔
(Lop) X.

(14) For all relational structures L1, L2 such that the relational structure of
L1 = the relational structure of L2 and L1 has g.l.b.’s holds L2 has g.l.b.’s.

(15) For all relational structures L1, L2 such that the relational structure of
L1 = the relational structure of L2 and L1 has l.u.b.’s holds L2 has l.u.b.’s.

(16) For every relational structure L holds L has g.l.b.’s iff Lop has l.u.b.’s.

(17) For every non empty relational structure L holds L is complete iff Lop

is complete.

Let L be a relational structure with g.l.b.’s. Note that Lop has l.u.b.’s.

Let L be a relational structure with l.u.b.’s. One can check that Lop has
g.l.b.’s.

Let L be a complete non empty relational structure. One can check that Lop

is complete.

The following propositions are true:

(18) Let L be a non empty relational structure, X be a subset of L, and Y be
a subset of Lop. If X = Y, then fininfs(X) = finsups(Y ) and finsups(X) =
fininfs(Y ).

(19) Let L be a relational structure, X be a subset of L, and Y be a subset
of Lop. If X = Y, then ↓X = ↑Y and ↑X = ↓Y.

(20) Let L be a non empty relational structure, x be an element of L, and y
be an element of Lop. If x = y, then ↓x = ↑y and ↑x = ↓y.

(21) For every poset L with g.l.b.’s and for all elements x, y of L holds
x u y = x` t y`.
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(22) For every poset L with g.l.b.’s and for all elements x, y of Lop holds
xx uxy = x t y.

(23) For every poset L with l.u.b.’s and for all elements x, y of L holds
x t y = x` u y`.

(24) For every poset L with l.u.b.’s and for all elements x, y of Lop holds
xx txy = x u y.

(25) For every lattice L holds L is distributive iff Lop is distributive.

Let L be a distributive lattice. One can check that Lop is distributive.
Next we state a number of propositions:

(26) Let L be a relational structure and x be a set. Then x is a directed subset
of L if and only if x is a filtered subset of Lop.

(27) Let L be a relational structure and x be a set. Then x is a directed subset
of Lop if and only if x is a filtered subset of L.

(28) Let L be a relational structure and x be a set. Then x is a lower subset
of L if and only if x is an upper subset of Lop.

(29) Let L be a relational structure and x be a set. Then x is a lower subset
of Lop if and only if x is an upper subset of L.

(30) For every relational structure L holds L is lower-bounded iff Lop is upper-
bounded.

(31) For every relational structure L holds Lop is lower-bounded iff L is upper-
bounded.

(32) For every relational structure L holds L is bounded iff Lop is bounded.

(33) For every lower-bounded antisymmetric non empty relational structure
L holds (⊥L)` = >Lop and x(>Lop) = ⊥L.

(34) For every upper-bounded antisymmetric non empty relational structure
L holds (>L)` = ⊥Lop and x(⊥Lop) = >L.

(35) Let L be a bounded lattice and x, y be elements of L. Then y is a
complement of x if and only if y` is a complement of x`.

(36) For every bounded lattice L holds L is complemented iff Lop is comple-
mented.

Let L be a lower-bounded relational structure. One can verify that Lop is
upper-bounded.
Let L be an upper-bounded relational structure. Note that Lop is lower-

bounded.
Let L be a complemented bounded lattice. One can check that Lop is com-

plemented.
Next we state the proposition

(37) For every Boolean lattice L and for every element x of L holds ¬(x`) =
¬x.

Let L be a non empty relational structure. The functor ¬L yields a map
from L into Lop and is defined as follows:

(Def. 1) For every element x of L holds ¬L(x) = ¬x.
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Let L be a Boolean lattice. Observe that ¬L is one-to-one.

Let L be a Boolean lattice. One can verify that ¬L is isomorphic.

The following propositions are true:

(38) For every Boolean lattice L holds L and Lop are isomorphic.

(39) Let S, T be non empty relational structures and f be a set. Then

(i) f is a map from S into T iff f is a map from Sop into T ,

(ii) f is a map from S into T iff f is a map from S into T op, and

(iii) f is a map from S into T iff f is a map from Sop into T op.

(40) Let S, T be non empty relational structures, f be a map from S into T ,
and g be a map from S into T op such that f = g. Then

(i) f is monotone iff g is antitone, and

(ii) f is antitone iff g is monotone.

(41) Let S, T be non empty relational structures, f be a map from S into
T op, and g be a map from Sop into T such that f = g. Then

(i) f is monotone iff g is monotone, and

(ii) f is antitone iff g is antitone.

(42) Let S, T be non empty relational structures, f be a map from S into T ,
and g be a map from Sop into T op such that f = g. Then

(i) f is monotone iff g is monotone, and

(ii) f is antitone iff g is antitone.

(43) Let S, T be non empty relational structures and f be a set. Then

(i) f is a connection between S and T iff f is a connection between S`

and T ,

(ii) f is a connection between S and T iff f is a connection between S and
T`, and

(iii) f is a connection between S and T iff f is a connection between S`

and T`.

(44) Let S, T be non empty posets, f1 be a map from S into T , g1 be a map
from T into S, f2 be a map from S` into T`, and g2 be a map from
T` into S`. If f1 = f2 and g1 = g2, then 〈〈f1, g1〉〉 is Galois iff 〈〈g2, f2〉〉 is
Galois.

(45) Let J be a set, D be a non empty set, K be a many sorted set inde-
xed by J , and F be a set of elements of D double indexed by K. Then
domκ F (κ) = K.

Let J , D be non empty sets, let K be a non-empty many sorted set indexed
by J , let F be a set of elements of D double indexed by K, let j be an element
of J , and let k be an element of K(j). Then F (j)(k) is an element of D.

One can prove the following propositions:

(46) Let L be a non empty relational structure, J be a set, K be a many
sorted set indexed by J , and x be a set. Then x is a set of elements of L
double indexed by K if and only if x is a set of elements of Lop double
indexed by K.
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(47) Let L be a complete lattice, J be a non empty set, K be a non-empty
many sorted set indexed by J , and F be a set of elements of L double
indexed by K. Then Sup(Infs(F )) ¬ Inf(Sups(Frege(F ))).

(48) Let L be a complete lattice. Then L is completely-distributive if and
only if for every non empty set J and for every non-empty many sorted
set K indexed by J and for every set F of elements of L double indexed
by K holds Sup(Infs(F )) = Inf(Sups(Frege(F ))).

(49) Let L be a complete antisymmetric non empty relational structure and
F be a function. Then

⊔
L F = d−e(Lop)F and d

−eLF =
⊔

(Lop) F.

(50) Let L be a complete antisymmetric non empty relational structure and

F be a function yielding function. Then
⊔

L
F = d−e(Lop) F and d−eL F =⊔

(Lop)
F.

One can check that every non empty relational structure which is completely-
distributive is also complete.
Let us observe that there exists a non empty poset which is completely-

distributive, trivial, and strict.
The following proposition is true

(51) For every non empty poset L holds L is completely-distributive iff Lop

is completely-distributive.
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Summary. In the paper open and order generating subsets are defined.
Irreducible and prime elements are also defined. The article includes definitions
and facts presented in [16, pp. 68–72].
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The articles [29], [25], [1], [15], [28], [30], [31], [9], [23], [2], [24], [4], [11], [12],
[10], [13], [3], [27], [21], [22], [5], [18], [6], [14], [33], [19], [20], [8], [17], [32], [26],
and [7] provide the notation and terminology for this paper.

1. Preliminaries

In this paper L denotes a lattice and l denotes an element of L.
The scheme NonUniqExD1 concerns a non empty relational structure A, a

subset B of A, a non empty subset C of A, and a binary predicate P, and states
that:

There exists a function f from B into C such that for every element
e of A if e ∈ B, then there exists an element u of A such that
u ∈ C and u = f(e) and P[e, u]

provided the following requirement is met:
• For every element e of A such that e ∈ B there exists an element

u of A such that u ∈ C and P[e, u].
Let L be a lattice, let A be a non empty subset of the carrier of L, let f be

a function from A into A, and let n be an element of N. Then fn is a function
from A into A.

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.
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Let L be a lattice, let C, D be non empty subsets of the carrier of L, let
f be a function from C into D, and let c be an element of C. Then f(c) is an
element of L.
Let L be a non empty poset. One can check that every chain of L is filtered

and directed.
Let us observe that there exists a lattice which is strict, continuous, distri-

butive, and lower-bounded.
Next we state three propositions:

(1) Let S, T be semilattices and f be a map from S into T . Then f is
meet-preserving if and only if for all elements x, y of S holds f(x u y) =
f(x) u f(y).

(2) Let S, T be sup-semilattices and f be a map from S into T . Then f is
join-preserving if and only if for all elements x, y of S holds f(x t y) =
f(x) t f(y).

(3) Let S, T be lattices and f be a map from S into T . Suppose T is distri-
butive and f is meet-preserving, join-preserving, and one-to-one. Then S
is distributive.

Let S, T be complete lattices. Observe that there exists a map from S into
T which is sups-preserving.
The following proposition is true

(4) Let S, T be complete lattices and f be a sups-preserving map from S into
T . Suppose T is meet-continuous and f is meet-preserving and one-to-one.
Then S is meet-continuous.

2. Open sets

Let L be a non empty reflexive relational structure and let X be a subset of
L. We say that X is open if and only if:

(Def. 1) For every element x of L such that x ∈ X there exists an element y of
L such that y ∈ X and y � x.

The following two propositions are true:

(5) Let L be an up-complete lattice and X be an upper subset of L. Then
X is open if and only if for every element x of L such that x ∈ X holds
↓↓x ∩X 6= ∅.

(6) Let L be an up-complete lattice and X be an upper subset of L. Then
X is open if and only if X =

⋃
{↑↑x, x ranges over elements of L: x ∈ X}.

Let L be an up-complete lower-bounded lattice. Note that there exists a
filter of L which is open.
The following three propositions are true:

(7) For every lower-bounded continuous lattice L and for every element x of
L holds ↑↑x is open.
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(8) Let L be a lower-bounded continuous lattice and x, y be elements of L.
If x � y, then there exists an open filter F of L such that y ∈ F and
F ⊆ ↑↑x.

(9) Let L be a complete lattice, X be an open upper subset of L, and x be
an element of L. If x ∈ −X, then there exists an element m of L such that
x ¬ m and m is maximal in −X.

3. Irreducible elements

Let G be a non empty relational structure and let g be an element of G. We
say that g is meet-irreducible if and only if:

(Def. 2) For all elements x, y of G such that g = x u y holds x = g or y = g.

We introduce g is irreducible as a synonym of g is meet-irreducible.
Let G be a non empty relational structure and let g be an element of G. We

say that g is join-irreducible if and only if:

(Def. 3) For all elements x, y of G such that g = x t y holds x = g or y = g.

Let L be a non empty relational structure. The functor IRR(L) yielding a
subset of L is defined as follows:

(Def. 4) For every element x of L holds x ∈ IRR(L) iff x is irreducible.

The following proposition is true

(10) For every upper-bounded antisymmetric non empty relational structure
L with g.l.b.’s holds >L is irreducible.

Let L be an upper-bounded antisymmetric non empty relational structure
with g.l.b.’s. Observe that there exists an element of L which is irreducible.
We now state four propositions:

(11) Let L be a semilattice and x be an element of L. Then x is irreducible if
and only if for every finite non empty subset A of L such that x = inf A
holds x ∈ A.

(12) For every lattice L and for every element l of L such that ↑l \ {l} is a
filter of L holds l is irreducible.

(13) Let L be a lattice, p be an element of L, and F be a filter of L. If p is
maximal in −F, then p is irreducible.

(14) Let L be a lower-bounded continuous lattice and x, y be elements of
L. Suppose y 6¬ x. Then there exists an element p of L such that p is
irreducible and x ¬ p and y 6¬ p.

4. Order generating sets

Let L be a non empty relational structure and let X be a subset of L. We
say that X is order-generating if and only if:
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(Def. 5) For every element x of L holds inf ↑x∩X exists in L and x = inf(↑x∩X).

The following propositions are true:

(15) Let L be an up-complete lower-bounded lattice and X be a subset of L.
Then X is order-generating if and only if for every element l of L there
exists a subset Y of X such that l = d−eLY.

(16) Let L be an up-complete lower-bounded lattice and X be a subset of
L. Then X is order-generating if and only if for every subset Y of L such
that X ⊆ Y and for every subset Z of Y holds d−eLZ ∈ Y holds the carrier
of L = Y.

(17) Let L be an up-complete lower-bounded lattice and X be a subset of L.
Then X is order-generating if and only if for all elements l1, l2 of L such
that l2 6¬ l1 there exists an element p of L such that p ∈ X and l1 ¬ p and
l2 6¬ p.

(18) Let L be a lower-bounded continuous lattice and X be a subset of L. If
X = IRR(L) \ {>L}, then X is order-generating.

(19) Let L be a lower-bounded continuous lattice and X, Y be subsets of L.
If X is order-generating and X ⊆ Y, then Y is order-generating.

5. Prime elements

Let L be a non empty relational structure and let l be an element of L. We
say that l is prime if and only if:

(Def. 6) For all elements x, y of L such that x u y ¬ l holds x ¬ l or y ¬ l.

Let L be a non empty relational structure. The functor PRIME(L) yielding
a subset of L is defined by:

(Def. 7) For every element x of L holds x ∈ PRIME(L) iff x is prime.

Let L be a non empty relational structure and let l be an element of L. We
say that l is co-prime if and only if:

(Def. 8) l` is prime.

We now state two propositions:

(20) For every upper-bounded antisymmetric non empty relational structure
L holds >L is prime.

(21) For every lower-bounded antisymmetric non empty relational structure
L holds ⊥L is co-prime.

Let L be an upper-bounded antisymmetric non empty relational structure.
Note that there exists an element of L which is prime.
The following propositions are true:

(22) Let L be a semilattice and l be an element of L. Then l is prime if and
only if for every finite non empty subset A of L such that l ­ inf A there
exists an element a of L such that a ∈ A and l ­ a.
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(23) Let L be a sup-semilattice and x be an element of L. Then x is co-prime
if and only if for every finite non empty subset A of L such that x ¬ supA
there exists an element a of L such that a ∈ A and x ¬ a.

(24) For every lattice L and for every element l of L such that l is prime holds
l is irreducible.

(25) Let given l. Then l is prime if and only if for arbitrary x and for every

map f from L into 2
{x}
⊆ such that for every element p of L holds f(p) = ∅

iff p ¬ l holds f is meet-preserving and join-preserving.

(26) Let L be an upper-bounded lattice and l be an element of L. If l 6= >L,
then l is prime iff −↓l is a filter of L.

(27) For every distributive lattice L and for every element l of L holds l is
prime iff l is irreducible.

(28) For every distributive lattice L holds PRIME(L) = IRR(L).

(29) Let L be a Boolean lattice and l be an element of L. Suppose l 6= >L.
Then l is prime if and only if for every element x of L such that x > l
holds x = >L.

(30) Let L be a continuous distributive lower-bounded lattice and l be an
element of L. Suppose l 6= >L. Then l is prime if and only if there exists
an open filter F of L such that l is maximal in −F.

(31) Let L be a relational structure and X be a subset of the carrier of L.

Then χX,the carrier of L is a map from L into 2
{∅}
⊆ .

(32) Let L be a non empty relational structure and p, x be elements of L.
Then χ−↓p,the carrier of L(x) = ∅ if and only if x ¬ p.

(33) Let L be an upper-bounded lattice, f be a map from L into 2
{∅}
⊆ , and

p be a prime element of L. Suppose χ−↓p,the carrier of L = f. Then f is
meet-preserving and join-preserving.

(34) For every complete lattice L such that PRIME(L) is order-generating
holds L is distributive and meet-continuous.

(35) For every lower-bounded continuous lattice L holds L is distributive iff
PRIME(L) is order-generating.

(36) For every lower-bounded continuous lattice L holds L is distributive iff
L is Heyting.

(37) Let L be a continuous complete lattice. Suppose that for every element
l of L there exists a subset X of L such that l = supX and for every
element x of L such that x ∈ X holds x is co-prime. Let l be an element
of L. Then l =

⊔
L(↓↓l ∩ PRIME(Lop)).

(38) Let L be a complete lattice. Then L is completely-distributive if and
only if the following conditions are satisfied:

(i) L is continuous, and

(ii) for every element l of L there exists a subsetX of L such that l = supX
and for every element x of L such that x ∈ X holds x is co-prime.
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(39) Let L be a complete lattice. Then L is completely-distributive if and
only if L is distributive and continuous and Lop is continuous.
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Summary. The part of [12, pp. 73–77], i.e. definitions and propositions
3.16–3.27, is formalized in the paper.
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The notation and terminology used in this paper are introduced in the following
articles: [22], [25], [8], [24], [19], [26], [27], [7], [11], [6], [20], [10], [15], [21], [23],
[1], [2], [3], [14], [9], [16], [17], [5], [4], [18], and [13].

1. The lattice of subsets

One can prove the following propositions:

(1) For every complete lattice L and for every ideal I of L holds ⊥L ∈ I.

(2) For every upper-bounded non empty poset L and for every filter F of L
holds >L ∈ F.

(3) For every complete lattice L and for all sets X, Y such that X ⊆ Y
holds

⊔
L X ¬

⊔
L Y and d−eLX ­ d−eLY.

(4) For every set X holds the carrier of 2X
⊆ = 2X .

(5) For every bounded antisymmetric non empty relational structure L holds
L is trivial iff >L = ⊥L.

Let X be a set. Note that 2X
⊆ is Boolean.

Let X be a non empty set. Note that 2X
⊆ is non trivial.

We now state three propositions:

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.
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(6) For every upper-bounded non empty poset L holds {>L} = ↑(>L).

(7) For every lower-bounded non empty poset L holds {⊥L} = ↓(⊥L).

(8) For every lower-bounded non empty poset L and for every filter F of L
holds F is proper iff ⊥L /∈ F.

One can verify that there exists a lattice which is non trivial, Boolean, and
strict.
Let L be a non trivial upper-bounded non empty poset. One can check that

there exists a filter of L which is proper.
Next we state several propositions:

(9) For every set X and for every element a of 2X
⊆ holds ¬a = X \ a.

(10) Let X be a set and Y be a subset of 2X
⊆ . Then Y is lower if and only if

for all sets x, y such that x ⊆ y and y ∈ Y holds x ∈ Y.

(11) Let X be a set and Y be a subset of 2X
⊆ . Then Y is upper if and only if

for all sets x, y such that x ⊆ y and y ⊆ X and x ∈ Y holds y ∈ Y.

(12) Let X be a set and Y be a lower subset of 2X
⊆ . Then Y is directed if and

only if for all sets x, y such that x ∈ Y and y ∈ Y holds x ∪ y ∈ Y.

(13) Let X be a set and Y be an upper subset of 2X
⊆ . Then Y is filtered if

and only if for all sets x, y such that x ∈ Y and y ∈ Y holds x ∩ y ∈ Y.

(14) Let X be a set and Y be a non empty lower subset of 2X
⊆ . Then Y is

directed if and only if for every finite family Z of subsets of X such that
Z ⊆ Y holds

⋃
Z ∈ Y.

(15) Let X be a set and Y be a non empty upper subset of 2X
⊆ . Then Y is

filtered if and only if for every finite family Z of subsets of X such that
Z ⊆ Y holds Intersect(Z) ∈ Y.

2. Prime ideals and filters

Let L be a poset with g.l.b.’s and let I be an ideal of L. We say that I is
prime if and only if:

(Def. 1) For all elements x, y of L such that x u y ∈ I holds x ∈ I or y ∈ I.

One can prove the following proposition

(16) Let L be a poset with g.l.b.’s and I be an ideal of L. Then I is prime if
and only if for every finite non empty subset A of L such that inf A ∈ I
there exists an element a of L such that a ∈ A and a ∈ I.

Let L be a lattice. Note that there exists an ideal of L which is prime.
Next we state the proposition

(17) Let L1, L2 be lattices. Suppose the relational structure of L1 = the
relational structure of L2. Let x be a set. If x is a prime ideal of L1, then
x is a prime ideal of L2.

Let L be a poset with l.u.b.’s and let F be a filter of L. We say that F is
prime if and only if:
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(Def. 2) For all elements x, y of L such that x t y ∈ F holds x ∈ F or y ∈ F.

Next we state the proposition

(18) Let L be a poset with l.u.b.’s and F be a filter of L. Then F is prime if
and only if for every finite non empty subset A of L such that supA ∈ F
there exists an element a of L such that a ∈ A and a ∈ F.

Let L be a lattice. One can verify that there exists a filter of L which is
prime.
The following propositions are true:

(19) Let L1, L2 be lattices. Suppose the relational structure of L1 = the
relational structure of L2. Let x be a set. If x is a prime filter of L1, then
x is a prime filter of L2.

(20) Let L be a lattice and x be a set. Then x is a prime ideal of L if and
only if x is a prime filter of Lop.

(21) Let L be a lattice and x be a set. Then x is a prime filter of L if and
only if x is a prime ideal of Lop.

(22) Let L be a poset with g.l.b.’s and I be an ideal of L. Then I is prime if
and only if one of the following conditions is satisfied:
(i) −I is a filter of L, or
(ii) −I = ∅.

(23) For every lattice L and for every ideal I of L holds I is prime iff I ∈
PRIME(〈Ids(L),⊆〉).

(24) Let L be a Boolean lattice and F be a filter of L. Then F is prime if and
only if for every element a of L holds a ∈ F or ¬a ∈ F.

(25) Let X be a set and F be a filter of 2X
⊆ . Then F is prime if and only if

for every subset A of X holds A ∈ F or X \ A ∈ F.

Let L be a non empty poset and let F be a filter of L. We say that F is
ultra if and only if:

(Def. 3) F is proper and for every filter G of L such that F ⊆ G holds F = G or
G = the carrier of L.

Let L be a non empty poset. Note that every filter of L which is ultra is also
proper.
The following propositions are true:

(26) For every Boolean lattice L and for every filter F of L holds F is proper
and prime iff F is ultra.

(27) Let L be a distributive lattice, I be an ideal of L, and F be a filter of
L. Suppose I misses F . Then there exists an ideal P of L such that P is
prime and I ⊆ P and P misses F .

(28) Let L be a distributive lattice, I be an ideal of L, and x be an element
of L. If x /∈ I, then there exists an ideal P of L such that P is prime and
I ⊆ P and x /∈ P.

(29) Let L be a distributive lattice, I be an ideal of L, and F be a filter of
L. Suppose I misses F . Then there exists a filter P of L such that P is
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prime and F ⊆ P and I misses P .

(30) Let L be a non trivial Boolean lattice and F be a proper filter of L.
Then there exists a filter G of L such that F ⊆ G and G is ultra.

3. Cluster points of a filter of sets

Let T be a topological space and let F , x be sets. We say that x is a cluster
point of F , T if and only if:

(Def. 4) For every subset A of T such that A is open and x ∈ A and for every
set B such that B ∈ F holds A meets B.

We say that x is a convergence point of F , T if and only if:

(Def. 5) For every subset A of T such that A is open and x ∈ A holds A ∈ F.

Let X be a non empty set. Note that there exists a filter of 2X
⊆ which is

ultra.
We now state several propositions:

(31) Let T be a non empty topological space, F be an ultra filter of
2the carrier of T
⊆ , and p be a set. Then p is a cluster point of F , T if and
only if p is a convergence point of F , T .

(32) Let T be a non empty topological space and x, y be elements of 〈the to-
pology of T , ⊆〉. Suppose x� y. Let F be a proper filter of 2the carrier of T

⊆ .
Suppose x ∈ F. Then there exists an element p of T such that p ∈ y and
p is a cluster point of F , T .

(33) Let T be a non empty topological space and x, y be elements of 〈the to-
pology of T , ⊆〉. Suppose x� y. Let F be an ultra filter of 2the carrier of T

⊆ .
Suppose x ∈ F. Then there exists an element p of T such that p ∈ y and
p is a convergence point of F , T .

(34) Let T be a non empty topological space and x, y be elements of 〈the
topology of T , ⊆〉. Suppose that
(i) x ⊆ y, and
(ii) for every ultra filter F of 2the carrier of T

⊆ such that x ∈ F there exists
an element p of T such that p ∈ y and p is a convergence point of F , T .
Then x� y.

(35) Let T be a non empty topological space, B be a prebasis of T , and x,
y be elements of 〈the topology of T , ⊆〉. Suppose x ⊆ y. Then x � y if
and only if for every subset F of B such that y ⊆

⋃
F there exists a finite

subset G of F such that x ⊆
⋃

G.

(36) Let L be a distributive complete lattice and x, y be elements of L. Then
x � y if and only if for every prime ideal P of L such that y ¬ supP
holds x ∈ P.

(37) For every lattice L and for every element p of L such that p is prime
holds ↓p is prime.



prime ideals and filters 245

4. Pseudo prime elements

Let L be a lattice and let p be an element of L. We say that p is pseudoprime
if and only if:

(Def. 6) There exists a prime ideal P of L such that p = supP.

We now state several propositions:

(38) For every lattice L and for every element p of L such that p is prime
holds p is pseudoprime.

(39) Let L be a continuous lattice and p be an element of L. Suppose p is
pseudoprime. Let A be a finite non empty subset of L. If inf A� p, then
there exists an element a of L such that a ∈ A and a ¬ p.

(40) Let L be a continuous lattice and p be an element of L. Suppose that
(i) p 6= >L or >L is not compact, and
(ii) for every finite non empty subset A of L such that inf A � p there
exists an element a of L such that a ∈ A and a ¬ p.
Then ↑fininfs(−↓p) misses ↓↓p.

(41) Let L be a continuous lattice. Suppose >L is compact. Then
(i) for every finite non empty subset A of L such that inf A � >L there
exists an element a of L such that a ∈ A and a ¬ >L, and

(ii) ↑fininfs(−↓(>L)) meets ↓↓(>L).

(42) Let L be a continuous lattice and p be an element of L. Suppose
↑fininfs(−↓p) misses ↓↓p. Let A be a finite non empty subset of L. If
inf A � p, then there exists an element a of L such that a ∈ A and
a ¬ p.

(43) Let L be a distributive continuous lattice and p be an element of L. If
↑fininfs(−↓p) misses ↓↓p, then p is pseudoprime.

Let L be a non empty relational structure and let R be a binary relation on
the carrier of L. We say that R is multiplicative if and only if:

(Def. 7) For all elements a, x, y of L such that 〈〈a, x〉〉 ∈ R and 〈〈a, y〉〉 ∈ R holds
〈〈a, x u y〉〉 ∈ R.

Let L be a lower-bounded sup-semilattice, let R be an auxiliary binary re-
lation on L, and let x be an element of L. Observe that ↑↑Rx is upper.
We now state several propositions:

(44) Let L be a lower-bounded lattice and R be an auxiliary binary relation
on L. Then R is multiplicative if and only if for every element x of L holds
↑↑Rx is filtered.

(45) Let L be a lower-bounded lattice and R be an auxiliary binary relation
on L. Then R is multiplicative if and only if for all elements a, b, x, y of
L such that 〈〈a, x〉〉 ∈ R and 〈〈b, y〉〉 ∈ R holds 〈〈a u b, x u y〉〉 ∈ R.

(46) Let L be a lower-bounded lattice and R be an auxiliary binary rela-
tion on L. Then R is multiplicative if and only if for every full relational
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substructure S of [: L, L :] such that the carrier of S = R holds S is meet-
inheriting.

(47) Let L be a lower-bounded lattice and R be an auxiliary binary relation
on L. Then R is multiplicative if and only if ↓↓R is meet-preserving.

(48) Let L be a continuous lower-bounded lattice. Suppose�L is multiplica-
tive. Let p be an element of L. Then p is pseudoprime if and only if for all
elements a, b of L such that a u b� p holds a ¬ p or b ¬ p.

(49) Let L be a continuous lower-bounded lattice. Suppose�L is multiplica-
tive. Let p be an element of L. If p is pseudoprime, then p is prime.

(50) Let L be a distributive continuous lower-bounded lattice. Suppose that
for every element p of L such that p is pseudoprime holds p is prime. Then
�L is multiplicative.
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1. The Subset of All Compact Elements

Let L be a non empty reflexive relational structure. The functor
CompactSublatt(L) yields a strict full relational substructure of L and is defined
as follows:

(Def. 1) For every element x of L holds x ∈ the carrier of CompactSublatt(L) iff
x is compact.

Let L be a lower-bounded non empty reflexive antisymmetric relational
structure. Observe that CompactSublatt(L) is non empty.
Next we state three propositions:

(1) Let L be a complete lattice and x, y, k be elements of L. If x ¬ k and
k ¬ y and k ∈ the carrier of CompactSublatt(L), then x� y.

(2) Let L be a complete lattice and x be an element of L. Then ↑x is an
open filter of L if and only if x is compact.

(3) For every lower-bounded non empty poset L with l.u.b.’s holds
CompactSublatt(L) is join-inheriting and ⊥L ∈ the carrier of
CompactSublatt(L).

Let L be a non empty reflexive relational structure and let x be an element
of L. The functor compactbelow(x) yielding a subset of L is defined by:

(Def. 2) compactbelow(x) = {y, y ranges over elements of L: x ­ y ∧ y is
compact}.
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We now state three propositions:

(4) Let L be a non empty reflexive relational structure and x, y be elements
of L. Then y ∈ compactbelow(x) if and only if the following conditions
are satisfied:

(i) x ­ y, and

(ii) y is compact.

(5) For every non empty reflexive relational structure L and for every
element x of L holds compactbelow(x) = ↓x ∩ the carrier of
CompactSublatt(L).

(6) For every non empty reflexive transitive relational structure L and for
every element x of L holds compactbelow(x) ⊆ ↓↓x.

Let L be a non empty lower-bounded reflexive antisymmetric relational
structure and let x be an element of L. Note that compactbelow(x) is non
empty.

2. Algebraic Lattices

Let L be a non empty reflexive relational structure. We say that L satisfies
axiom K if and only if:

(Def. 3) For every element x of L holds x = sup compactbelow(x).

Let L be a non empty reflexive relational structure. We say that L is algebraic
if and only if:

(Def. 4) For every element x of L holds compactbelow(x) is non empty and di-
rected and L is up-complete and satisfies axiom K.

We now state the proposition

(7) Let L be a lattice. Then L is algebraic if and only if the following con-
ditions are satisfied:

(i) L is continuous, and

(ii) for all elements x, y of L such that x� y there exists an element k of
L such that k ∈ the carrier of CompactSublatt(L) and x ¬ k and k ¬ y.

Let us observe that every lattice which is algebraic is also continuous.

Let us note that every non empty reflexive relational structure which is
algebraic is also up-complete and satisfies axiom K.

Let L be a non empty poset with l.u.b.’s. One can check that
CompactSublatt(L) is join-inheriting.

Let L be a lattice. We say that L is arithmetic if and only if:

(Def. 5) L is algebraic and CompactSublatt(L) is meet-inheriting.
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3. Arithmetic Lattices

Let us note that every lattice which is arithmetic is also algebraic.

Let us note that every lattice which is trivial is also arithmetic.

Let us note that there exists a lattice which is trivial and strict.

We now state a number of propositions:

(8) Let L1, L2 be non empty reflexive antisymmetric relational structures.
Suppose the relational structure of L1 = the relational structure of L2 and
L1 is up-complete. Let x1, y1 be elements of L1 and x2, y2 be elements of
L2. If x1 = x2 and y1 = y2 and x1 � y1, then x2 � y2.

(9) Let L1, L2 be non empty reflexive antisymmetric relational structures.
Suppose the relational structure of L1 = the relational structure of L2 and
L1 is up-complete. Let x be an element of L1 and y be an element of L2.
If x = y and x is compact, then y is compact.

(10) Let L1, L2 be up-complete non empty reflexive antisymmetric relational
structures. Suppose the relational structure of L1 = the relational struc-
ture of L2. Let x be an element of L1 and y be an element of L2. If x = y,
then compactbelow(x) = compactbelow(y).

(11) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2 and L1 is non empty. Then L2 is non
empty.

(12) Let L1, L2 be non empty relational structures. Suppose the relational
structure of L1 = the relational structure of L2 and L1 is reflexive. Then
L2 is reflexive.

(13) Let L1, L2 be relational structures. Suppose the relational structure
of L1 = the relational structure of L2 and L1 is transitive. Then L2 is
transitive.

(14) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2 and L1 is antisymmetric. Then L2 is
antisymmetric.

(15) Let L1, L2 be non empty reflexive relational structures. Suppose the
relational structure of L1 = the relational structure of L2 and L1 is up-
complete. Then L2 is up-complete.

(16) For all up-complete non empty reflexive antisymmetric relational struc-
tures L1, L2 such that the relational structure of L1 = the relational
structure of L2 and L1 satisfies axiom K and for every element x of L1

holds compactbelow(x) is non empty and directed holds L2 satisfies axiom
K.

(17) Let L1, L2 be non empty reflexive antisymmetric relational structures.
Suppose the relational structure of L1 = the relational structure of L2 and
L1 is algebraic. Then L2 is algebraic.
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(18) Let L1, L2 be lattices. Suppose the relational structure of L1 = the
relational structure of L2 and L1 is arithmetic. Then L2 is arithmetic.

Let L be a non empty relational structure. Observe that the relational struc-
ture of L is non empty.
Let L be a non empty reflexive relational structure. One can check that the

relational structure of L is reflexive.
Let L be a transitive relational structure. Note that the relational structure

of L is transitive.
Let L be an antisymmetric relational structure. Observe that the relational

structure of L is antisymmetric.
Let L be a relational structure with g.l.b.’s. Note that the relational structure

of L has g.l.b.’s.
Let L be a relational structure with l.u.b.’s. One can check that the relational

structure of L has l.u.b.’s.
Let L be an up-complete non empty reflexive relational structure. One can

check that the relational structure of L is up-complete.
Let L be an algebraic non empty reflexive antisymmetric relational structure.

Note that the relational structure of L is algebraic.
Let L be an arithmetic lattice. One can verify that the relational structure

of L is arithmetic.
Next we state several propositions:

(19) Let L be a non empty transitive relational structure, S be a non empty
full relational substructure of L, and X be a subset of S. Suppose sup X
exists in L and

⊔
L X is an element of S. Then sup X exists in S and

supX =
⊔

L X.

(20) Let L be a non empty transitive relational structure, S be a non empty
full relational substructure of L, and X be a subset of S. Suppose inf X
exists in L and d−eLX is an element of S. Then inf X exists in S and
infX = d−eLX.

(21) For every algebraic lattice L holds L is arithmetic iff CompactSublatt(L)
is a lattice.

(22) For every algebraic lower-bounded lattice L holds L is arithmetic iff�L

is multiplicative.

(23) Let L be an arithmetic lower-bounded lattice and p be an element of L.
If p is pseudoprime, then p is prime.

(24) Let L be an algebraic distributive lower-bounded lattice. Suppose that
for every element p of L such that p is pseudoprime holds p is prime. Then
L is arithmetic.

Let L be an algebraic lattice and let c be a closure map from L into L. Note
that there exists a subset of Im c which is non empty and directed.
We now state three propositions:

(25) Let L be an algebraic lattice and c be a closure map from L
into L. If c is directed-sups-preserving, then c◦(ΩCompactSublatt(L)) ⊆
ΩCompactSublatt(Im c).
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(26) Let L be an algebraic lower-bounded lattice and c be a closure map from
L into L. If c is directed-sups-preserving, then Im c is an algebraic lattice.

(27) Let L be an algebraic lower-bounded lattice and c be a closure map from
L into L. If c is directed-sups-preserving, then c◦(ΩCompactSublatt(L)) =
ΩCompactSublatt(Im c).

4. Boolean Posets as Algebraic Lattices

Next we state several propositions:

(28) For all sets X, x holds x is an element of 2X
⊆ iff x ⊆ X.

(29) Let X be a set and x, y be elements of 2X
⊆ . Then x � y if and only if

for every family Y of subsets of X such that y ⊆
⋃

Y there exists a finite
subset Z of Y such that x ⊆

⋃
Z.

(30) For every set X and for every element x of 2X
⊆ holds x is finite iff x is

compact.

(31) For every set X and for every element x of 2X
⊆ holds compactbelow(x) =

{y : y ranges over finite subsets of x}.

(32) For every set X and for every subset F of X holds F ∈ the carrier of
CompactSublatt(2X

⊆ ) iff F is finite.

Let X be a set and let x be an element of 2X
⊆ . Observe that compactbelow(x)

is lower and directed.
The following proposition is true

(33) For every set X holds 2X
⊆ is algebraic.

Let X be a set. Observe that 2X
⊆ is algebraic.
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Summary. We discuss here some methods for reconstructing special se-
quences which generate special polygonal arcs in E2

T. For such reconstructions
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1. Preliminaries

We adopt the following convention: n, i, i1, i2, j denote natural numbers
and D denotes a non empty set.
We now state a number of propositions:

(1) For all natural numbers i, i1 such that i ­ i1 or i−′ i1 ­ 1 or i− i1 ­ 1
holds i−′ i1 = i− i1.

(2) For every natural number n holds n−′ 0 = n.

(3) For all natural numbers i1, i2 holds i1 − i2 ¬ i1 −
′ i2.

(4) For all natural numbers n, i1, i2 such that i1 ¬ i2 holds n−
′ i2 ¬ n−′ i1.

1The work has been done while the second author was visiting Nagano in autumn 1996.

255
c© 1997 University of Białystok

ISSN 1426–2630



256 yatsuka nakamura and roman matuszewski

(5) For all n, i1, i2 such that i1 ¬ i2 holds i1 −
′ n ¬ i2 −

′ n.

(6) For all natural numbers i, i1 such that i ­ i1 or i−′ i1 ­ 1 or i− i1 ­ 1
holds i−′ i1 + i1 = i.

(7) For all natural numbers i1, i2 such that i1 ¬ i2 holds i1 −
′ 1 ¬ i2.

(8) For every i holds i−′ 2 = i−′ 1−′ 1.

(9) For all i1, i2 such that i1 + 1 ¬ i2 holds i1 < i2 and i1 −
′ 1 < i2 and

i1 −
′ 2 < i2 and i1 ¬ i2.

(10) Let given i1, i2. Suppose i1 + 2 ¬ i2 or i1 + 1 + 1 ¬ i2. Then i1 + 1 < i2
and (i1+1)−′1 < i2 and (i1+1)−′2 < i2 and i1+1 ¬ i2 and i1−

′1+1 < i2
and (i1−

′ 1 + 1)−′ 1 < i2 and i1 < i2 and i1−
′ 1 < i2 and i1−

′ 2 < i2 and
i1 ¬ i2.

(11) For all i1, i2 such that i1 ¬ i2 or i1 ¬ i2 −
′ 1 holds i1 < i2 + 1 and

i1 ¬ i2 + 1 and i1 < i2 + 1 + 1 and i1 ¬ i2 + 1 + 1 and i1 < i2 + 2 and
i1 ¬ i2 + 2.

(12) For all i1, i2 such that i1 < i2 or i1 + 1 ¬ i2 holds i1 ¬ i2 −
′ 1.

(13) For all i, i1, i2 such that i ­ i1 holds i ­ i1 −
′ i2.

(14) For all i, i1 such that 1 ¬ i and 1 ¬ i1 −
′ i holds i1 −

′ i < i1.

(15) For all finite sequences p, q and for every i such that len p < i but
i ¬ len p + len q or i ¬ len(p a q) holds (p a q)(i) = q(i− len p).

(16) Let x be arbitrary and f be a finite sequence of elements of D. Then
len(f a〈x〉) = len f +1 and len(〈x〉af) = len f +1 and (f a〈x〉)(len f +1) =
x and (〈x〉 a f)(1) = x.

(17) Let x be arbitrary and f be a finite sequence of elements of D. Suppose
1 ¬ len f. Then (f a 〈x〉)(1) = f(1) and (f a 〈x〉)(1) = π1f and (〈x〉 a

f)(len f + 1) = f(len f) and (〈x〉 a f)(len f + 1) = πlen ff.

(18) For every finite sequence f of elements of D such that len f = 1 holds
Rev(f) = f.

(19) For every finite sequence f of elements ofD and for every natural number
k holds len(f�k) = len f −′ k.

(20) Let f be a finite sequence of elements of D and k be a natural number.
If 1 ¬ k and k ¬ n and n ¬ len f, then (f�n)(k) = f(k).

(21) For every finite sequence f of elements of D and for all natural numbers
l1, l2 holds f�l1�l2 −

′ l1 = (f�l2)�l1 .

2. Middle Function for Finite Sequences

Let us consider D, let f be a finite sequence of elements of D, and let k1,
k2 be natural numbers. The functor mid(f, k1, k2) yields a finite sequence of
elements of D and is defined by:

(Def. 1)(i) mid(f, k1, k2) = f�k1−′1�(k2 −
′ k1 + 1) if k1 ¬ k2,

(ii) mid(f, k1, k2) = Rev(f�k2−′1�(k1 −
′ k2 + 1)), otherwise.
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The following propositions are true:

(22) Let f be a finite sequence of elements of D and k1, k2 be natural
numbers. If 1 ¬ k1 and k1 ¬ len f and 1 ¬ k2 and k2 ¬ len f, then
Rev(mid(f, k1, k2)) = mid(Rev(f), len f −′ k2 + 1, len f −′ k1 + 1).

(23) Let n, m be natural numbers and f be a finite sequence of elements of
D. If 1 ¬ m and m + n ¬ len f, then f�n(m) = f(m + n) and f�n(m) =
f(n + m).

(24) Let i be a natural number and f be a finite sequence of elements of D.
If 1 ¬ i and i ¬ len f, then (Rev(f))(i) = f((len f − i) + 1).

(25) For every finite sequence f of elements ofD and for every natural number
k such that 1 ¬ k holds mid(f, 1, k) = f�k.

(26) For every finite sequence f of elements ofD and for every natural number
k such that k ¬ len f holds mid(f, k, len f) = f�k−′1.

(27) Let f be a finite sequence of elements ofD and k1, k2 be natural numbers.
Suppose 1 ¬ k1 and k1 ¬ len f and 1 ¬ k2 and k2 ¬ len f. Then

(i) (mid(f, k1, k2))(1) = f(k1),

(ii) if k1 ¬ k2, then lenmid(f, k1, k2) = k2 −
′ k1 + 1 and for every

natural number i such that 1 ¬ i and i ¬ lenmid(f, k1, k2) holds
(mid(f, k1, k2))(i) = f((i + k1)−

′ 1), and

(iii) if k1 > k2, then lenmid(f, k1, k2) = k1 −
′ k2 + 1 and for every

natural number i such that 1 ¬ i and i ¬ lenmid(f, k1, k2) holds
(mid(f, k1, k2))(i) = f(k1 −

′ i + 1).

(28) For every finite sequence f of elements of D and for all natural numbers
k1, k2 such that 1 ¬ len f holds rngmid(f, k1, k2) ⊆ rng f.

(29) For every finite sequence f of elements of D such that 1 ¬ len f holds
mid(f, 1, len f) = f.

(30) For every finite sequence f of elements of D such that 1 ¬ len f holds
mid(f, len f, 1) = Rev(f).

(31) Let f be a finite sequence of elements of D and k1, k2, i be natu-
ral numbers. Suppose 1 ¬ k1 and k1 ¬ k2 and k2 ¬ len f and 1 ¬ i
and i ¬ k2 −

′ k1 + 1 or i ¬ (k2 − k1) + 1 or i ¬ (k2 + 1) − k1. Then
(mid(f, k1, k2))(i) = f((i+k1)−

′ 1) and (mid(f, k1, k2))(i) = f(i−′ 1+k1)
and (mid(f, k1, k2))(i) = f((i + k1) − 1) and (mid(f, k1, k2))(i) = f((i −
1) + k1).

(32) Let f be a finite sequence of elements of D and k, i be natural numbers.
If 1 ¬ i and i ¬ k and k ¬ len f, then (mid(f, 1, k))(i) = f(i).

(33) Let f be a finite sequence of elements ofD and k1, k2 be natural numbers.
If 1 ¬ k1 and k1 ¬ k2 and k2 ¬ len f, then lenmid(f, k1, k2) ¬ len f.

(34) For every finite sequence f of elements of En
T such that 2 ¬ len f holds

f(1) ∈ L̃(f) and π1f ∈ L̃(f) and f(len f) ∈ L̃(f) and πlen ff ∈ L̃(f).

(35) For every finite sequence f of elements of En
T and for every natural num-

ber i holds L(f, i) ⊆ L̃(f).
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(36) For every finite sequence f of elements of En
T such that len f ­ 2 holds

f(1) ∈ L̃(f) and π1f ∈ L̃(f) and f(len f) ∈ L̃(f) and πlen ff ∈ L̃(f).

(37) For all points p1, p2, q1, q2 of E
2
T such that (p1)1 = (p2)1 or (p1)2 = (p2)2

but q1 ∈ L(p1, p2) but q2 ∈ L(p1, p2) holds (q1)1 = (q2)1 or (q1)2 = (q2)2.

(38) For all points p1, p2, q1, q2 of E
2
T such that (p1)1 = (p2)1 or (p1)2 = (p2)2

but L(q1, q2) ⊆ L(p1, p2) holds (q1)1 = (q2)1 or (q1)2 = (q2)2.

(39) Let f be a finite sequence of elements of E2
T and n be a natural number.

If 2 ¬ n and f is a special sequence, then f�n is a special sequence.

(40) Let f be a finite sequence of elements of E2
T and n be a natural number.

Suppose n ¬ len f and 2 ¬ len f −′ n and f is a special sequence. Then
f�n is a special sequence.

(41) Let f be a finite sequence of elements of E2
T and k1, k2 be natural num-

bers. Suppose f is a special sequence and 1 ¬ k1 and k1 ¬ len f and 1 ¬ k2

and k2 ¬ len f and k1 6= k2. Then mid(f, k1, k2) is a special sequence.

3. A Concept of Index for Finite Sequences in E2
T

Let f be a finite sequence of elements of E2
T and let p be a point of E2

T. Let
us assume that f is a special sequence and there exists a natural number i such
that 1 ¬ i and i + 1 ¬ len f and p ∈ L(f, i). The functor Index(p, f) yielding a
natural number is defined as follows:

(Def. 2) 1 ¬ Index(p, f) and Index(p, f) + 1 ¬ len f and p ∈ L(f, Index(p, f))
and p 6= f(Index(p, f) + 1) or Index(p, f) = len f and p = f(len f).

One can prove the following propositions:

(42) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f). Then 1 ¬ Index(p, f) and
Index(p, f)+1 ¬ len f and p ∈ L(f, Index(p, f)) and p 6= f(Index(p, f)+1)
or Index(p, f) = len f and p = f(len f).

(43) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose f is a special sequence and there exists a natural number i such
that 1 ¬ i and i + 1 ¬ len f and p ∈ L(f, i). Then 1 ¬ Index(p, f) and
Index(p, f) ¬ len f.

(44) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose f is a special sequence and there exists a natural number i such
that 1 ¬ i and i + 1 ¬ len f and p ∈ L(f, i) and p 6= f(len f). Then
Index(p, f) < len f.

(45) Let f be a finite sequence of elements of E2
T, p be a point of E

2
T, and

given i1. Suppose that
(i) f is a special sequence,
(ii) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len f and

p ∈ L(f, i), and
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(iii) 1 ¬ i1 and i1 +1 ¬ len f and p ∈ L(f, i1) and p 6= f(i1 +1) or i1 = len f
and p = f(len f).
Then i1 = Index(p, f).

(46) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose f is a special sequence and there exists a natural number i such
that 1 ¬ i and i + 1 ¬ len f and p ∈ L(f, i) and p = f(len f). Then
Index(p, f) = len f.

(47) Let f be a finite sequence of elements of E2
T, p be a point of E2

T, and
given i1. If f is a special sequence and 1 ¬ i1 and i1 ¬ len f and p = f(i1),
then Index(p, f) = i1.

(48) Let f be a finite sequence of elements of E2
T, p be a point of E2

T, and
given i1. Suppose f is a special sequence and 1 ¬ i1 and i1 + 1 ¬ len f
and p ∈ L(f, i1). Then i1 = Index(p, f) or i1 + 1 = Index(p, f).

Let g be a finite sequence of elements of E2
T and let p1, p2 be points of E

2
T.

We say that g is a special sequence joining p1, p2 if and only if:

(Def. 3) g is a special sequence and g(1) = p1 and g(len g) = p2.

One can prove the following propositions:

(49) Let g be a finite sequence of elements of E2
T and p1, p2 be points of E

2
T.

Suppose 1 ¬ len g and g is a special sequence joining p1, p2. Then Rev(g)
is a special sequence joining p2, p1.

(50) Let f , g be finite sequences of elements of E2
T, p be a point of E

2
T, and

given j. Suppose that
(i) f is a special sequence,
(ii) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len f and

p ∈ L(f, i),
(iii) p 6= f(len f),
(iv) g = 〈p〉 amid(f, Index(p, f) + 1, len f),
(v) 1 ¬ j, and
(vi) j + 1 ¬ len g.
Then L(g, j) ⊆ L(f, (Index(p, f) + j)−′ 1).

(51) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.
Suppose that
(i) f is a special sequence,
(ii) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len f and

p ∈ L(f, i),
(iii) p 6= f(len f), and
(iv) g = 〈p〉 amid(f, Index(p, f) + 1, len f).
Then g is a special sequence joining p, πlen ff.

(52) Let f , g be finite sequences of elements of E2
T, p be a point of E

2
T, and

given j. Suppose that
(i) f is a special sequence,
(ii) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len f and

p ∈ L(f, i),
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(iii) 1 ¬ j,
(iv) j + 1 ¬ len g,
(v) if p 6= f(Index(p, f)), then g = (mid(f, 1, Index(p, f))) a 〈p〉, and
(vi) if p = f(Index(p, f)), then g = mid(f, 1, Index(p, f)).
Then L(g, j) ⊆ L(f, j).

(53) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.
Suppose that
(i) f is a special sequence,
(ii) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len f and

p ∈ L(f, i),
(iii) p 6= f(1),
(iv) if p 6= f(Index(p, f)), then g = (mid(f, 1, Index(p, f))) a 〈p〉, and
(v) if p = f(Index(p, f)), then g = mid(f, 1, Index(p, f)).
Then g is a special sequence joining π1f, p.

4. Left and Right Cutting Functions for Finite Sequences in E2
T

Let f be a finite sequence of elements of E2
T and let p be a point of E2

T. The
functor � p, f yielding a finite sequence of elements of E2

T is defined as follows:

(Def. 4) � p, f = 〈p〉 amid(f, Index(p, f) + 1, len f).

The functor � f, p yields a finite sequence of elements of E2
T and is defined as

follows:

(Def. 5)(i) � f, p = (mid(f, 1, Index(p, f))) a 〈p〉 if p 6= f(Index(p, f)),
(ii) � f, p = mid(f, 1, Index(p, f)), otherwise.

Next we state four propositions:

(54) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and p 6= f(len f). Then
(� p, f)(1) = p and for every i such that 1 < i and i ¬ (len f−Index(p, f))+
1 holds (� p, f)(i) = f((Index(p, f) + i)− 1).

(55) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and p 6= f(1). Then
(� f, p)(len � f, p) = p and for every i such that 1 < i and i ¬ Index(p, f)
holds (� f, p)(i) = f(i).

(56) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If

f is a special sequence and p ∈ L̃(f) and p 6= f(len f), then len � p, f =
(len f − Index(p, f)) + 1.

(57) Let f be a finite sequence of elements of E2
T and p be a point of E2

T such

that f is a special sequence and p ∈ L̃(f). Then
(i) if p 6= f(Index(p, f)), then len � f, p = Index(p, f) + 1, and
(ii) if p = f(Index(p, f)), then len � f, p = Index(p, f).



reconstructions of special sequences 261

Let p1, p2, q1, q2 be points of E
2
T. The predicate LE(q1, q2, p1, p2) is defined

by the conditions (Def. 6).

(Def. 6)(i) q1 ∈ L(p1, p2),
(ii) q2 ∈ L(p1, p2), and
(iii) for all real numbers r1, r2 such that 0 ¬ r1 and r1 ¬ 1 and q1 =

(1− r1) · p1 + r1 · p2 and 0 ¬ r2 and r2 ¬ 1 and q2 = (1− r2) · p1 + r2 · p2

holds r1 ¬ r2.

Let p1, p2, q1, q2 be points of E
2
T. The predicate LT(q1, q2, p1, p2) is defined

as follows:

(Def. 7) LE(q1, q2, p1, p2) and q1 6= q2.

Next we state several propositions:

(58) For all points p1, p2, q1, q2 of E
2
T such that LT(q1, q2, p1, p2) holds

LE(q1, q2, p1, p2).

(59) For all points p1, p2, q1, q2 of E
2
T such that LE(q1, q2, p1, p2) and

LE(q2, q1, p1, p2) holds q1 = q2.

(60) For all points p1, p2, q1, q2 of E
2
T such that q1 ∈ L(p1, p2) and

q2 ∈ L(p1, p2) and p1 6= p2 holds LE(q1, q2, p1, p2) or LT(q2, q1, p1, p2) but
LE(q1, q2, p1, p2) but LT(q2, q1, p1, p2).

(61) Let f be a finite sequence of elements of E2
T and p, q, p1, p2 be points of

E2
T. If f is a special sequence and p ∈ L̃(f) and q ∈ L̃(f) and Index(p, f) <

Index(q, f), then q ∈ L̃(� p, f).

(62) For all points p, q, p1, p2 of E
2
T such that LE(p, q, p1, p2) holds q ∈ L(p, p2)

and p ∈ L(p1, q).

(63) Let f be a finite sequence of elements of E2
T and p, q, p1, p2 be points of

E2
T. Suppose f is a special sequence and p ∈ L̃(f) and q ∈ L̃(f) and p 6=

q and Index(p, f) = Index(q, f) and LE(p, q, πIndex(p,f)f, πIndex(p,f)+1f).

Then q ∈ L̃(� p, f).

5. Cutting Both Sides of a Finite Sequence and a Discussion of
Speciality of Sequences in E2

T

Let f be a finite sequence of elements of E2
T and let p, q be points of E

2
T. The

functor �� p, f, q yielding a finite sequence of elements of E2
T is defined by:

(Def. 8)(i) �� p, f, q = � � p, f, q if p ∈ L̃(f) and q ∈ L̃(f)
and Index(p, f) < Index(q, f) or Index(p, f) = Index(q, f) and
LE(p, q, πIndex(p,f)f, πIndex(p,f)+1f),

(ii) �� p, f, q = Rev(� � q, f, p), otherwise.

The following propositions are true:

(64) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and p 6= f(len f). Then
� p, f is a special sequence joining p, πlen ff.
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(65) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and p 6= f(len f). Then
� p, f is a special sequence.

(66) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and p 6= f(1). Then � f, p is
a special sequence joining π1f, p.

(67) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and p 6= f(1). Then � f, p is
a special sequence.

(68) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and q ∈ L̃(f) and p 6= q.
Then �� p, f, q is a special sequence joining p, q.

(69) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T.

Suppose f is a special sequence and p ∈ L̃(f) and q ∈ L̃(f) and p 6= q.
Then �� p, f, q is a special sequence.

(70) Let f , g be finite sequences of elements of E2
T. Suppose f(len f) = g(1)

and f is a special sequence and g is a special sequence and L̃(f)∩ L̃(g) =
{g(1)}. Then f amid(g, 2, len g) is a special sequence.

(71) Let f , g be finite sequences of elements of E2
T. Suppose f(len f) = g(1)

and f is a special sequence and g is a special sequence and L̃(f)∩ L̃(g) =
{g(1)}. Then f amid(g, 2, len g) is a special sequence joining π1f, πlen gg.

(72) For every finite sequence f of elements of E2
T and for every natural num-

ber n holds L̃(f�n) ⊆ L̃(f).

(73) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If

p ∈ L̃(f) and p 6= f(len f) and f is a special sequence, then L̃(� p, f) ⊆

L̃(f).

(74) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.

Suppose f(len f) = g(1) and p ∈ L̃(f) and f is a special sequence and g

is a special sequence and L̃(f) ∩ L̃(g) = {g(1)} and p 6= f(len f). Then
(� p, f) amid(g, 2, len g) is a special sequence joining p, πlen gg.

(75) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.

Suppose f(len f) = g(1) and p ∈ L̃(f) and f is a special sequence and g

is a special sequence and L̃(f) ∩ L̃(g) = {g(1)} and p 6= f(len f). Then
(� p, f) amid(g, 2, len g) is a special sequence.

(76) Let f , g be finite sequences of elements of E2
T. Suppose f(len f) = g(1)

and f is a special sequence and g is a special sequence and L̃(f)∩ L̃(g) =
{g(1)}. Then (mid(f, 1, len f −′ 1)) a g is a special sequence.

(77) Let f , g be finite sequences of elements of E2
T. Suppose f(len f) = g(1)

and f is a special sequence and g is a special sequence and L̃(f)∩ L̃(g) =
{g(1)}. Then (mid(f, 1, len f −′ 1)) a g is a special sequence joining π1f,
πlen gg.
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(78) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If

p ∈ L̃(f) and p 6= f(1) and f is a special sequence, then L̃(� f, p) ⊆ L̃(f).

(79) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.

Suppose f(len f) = g(1) and p ∈ L̃(g) and f is a special sequence and

g is a special sequence and L̃(f) ∩ L̃(g) = {g(1)} and p 6= g(1). Then
(mid(f, 1, len f −′ 1)) a � g, p is a special sequence joining π1f, p.

(80) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.

Suppose f(len f) = g(1) and p ∈ L̃(g) and f is a special sequence and

g is a special sequence and L̃(f) ∩ L̃(g) = {g(1)} and p 6= g(1). Then
(mid(f, 1, len f −′ 1)) a � g, p is a special sequence.
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Summary. This article is a continuation of [1].It is divided into five sec-
tions. The first one contains a few useful lemmas. In the second part there is
a definition of conjugate sequences and proofs of some basic properties of such
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1. Preliminaries

We adopt the following convention: n, m denote natural numbers, r, p, g
denote elements of C, and s, s′, s1 denote complex sequences.
The following propositions are true:

(1) If g 6= 0C and r 6= 0C, then |g−1 − r−1| = |g−r|
|g|·|r| .

(2) For every n there exists a real number r such that 0 < r and for every
m such that m ¬ n holds |s(m)| < r.
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2. Conjugate sequences

Let us consider s. The functor s∗ yields a complex sequence and is defined
by:

(Def. 1) For every n holds s∗(n) = s(n)∗.

We now state several propositions:

(3) If s is non-zero, then s∗ is non-zero.

(4) (r s)∗ = r∗ s∗.

(5) (s s′)∗ = s∗ s′∗.

(6) If s is non-zero, then (s∗)−1 = (s−1)∗.

(7) If s is non-zero, then (s′

s
)∗ = s′∗

s∗
.

3. Bounded complex sequences

Let us consider s. We say that s is bounded if and only if:

(Def. 2) There exists a real number r such that for every n holds |s(n)| < r.

Let us observe that there exists a complex sequence which is bounded.
Next we state the proposition

(8) s is bounded iff there exists a real number r such that 0 < r and for
every n holds |s(n)| < r.

4. Convergent complex sequences

Let us consider s. We say that s is convergent if and only if:

(Def. 3) There exists g such that for every real number p such that 0 < p there
exists n such that for every m such that n ¬ m holds |s(m)− g| < p.

Let us consider s. Let us assume that s is convergent. The functor lim s
yields an element of C and is defined as follows:

(Def. 4) For every real number p such that 0 < p there exists n such that for
every m such that n ¬ m holds |s(m)− lim s| < p.

One can prove the following two propositions:

(9) If there exists g such that for every natural number n holds s(n) = g,
then s is convergent.

(10) For every g such that for every natural number n holds s(n) = g holds
lim s = g.

Let us observe that there exists a complex sequence which is convergent.
Let s be a convergent complex sequence. Observe that |s| is convergent.
One can prove the following proposition
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(11) If s is convergent, then lim |s| = | lim s|.

Let s be a convergent complex sequence. Observe that s∗ is convergent.
We now state the proposition

(12) If s is convergent, then lim(s∗) = (lim s)∗.

5. Main theorems

The following propositions are true:

(13) If s is convergent and s′ is convergent, then s + s′ is convergent.

(14) If s is convergent and s′ is convergent, then lim(s + s′) = lim s + lim s′.

(15) If s is convergent and s′ is convergent, then lim |s + s′| = | lim s + lim s′|.

(16) If s is convergent and s′ is convergent, then lim((s + s′)∗) = (lim s)∗ +
(lim s′)∗.

(17) If s is convergent, then r s is convergent.

(18) If s is convergent, then lim(r s) = r · lim s.

(19) If s is convergent, then lim |r s| = |r| · | lim s|.

(20) If s is convergent, then lim((r s)∗) = r∗ · (lim s)∗.

(21) If s is convergent, then −s is convergent.

(22) If s is convergent, then lim(−s) = −lim s.

(23) If s is convergent, then lim |−s| = | lim s|.

(24) If s is convergent, then lim((−s)∗) = −(lim s)∗.

(25) If s is convergent and s′ is convergent, then s− s′ is convergent.

(26) If s is convergent and s′ is convergent, then lim(s− s′) = lim s− lim s′.

(27) If s is convergent and s′ is convergent, then lim |s− s′| = | lim s− lim s′|.

(28) If s is convergent and s′ is convergent, then lim((s − s′)∗) = (lim s)∗ −
(lim s′)∗.

Let us mention that every complex sequence which is convergent is also
bounded.
Let us note that every complex sequence which is non bounded is also non

convergent.
One can prove the following propositions:

(29) If s is a convergent complex sequence and s′ is a convergent complex
sequence, then s s′ is convergent.

(30) If s is a convergent complex sequence and s′ is a convergent complex
sequence, then lim(s s′) = lim s · lim s′.

(31) If s is convergent and s′ is convergent, then lim |s s′| = | lim s| · | lim s′|.

(32) If s is convergent and s′ is convergent, then lim((s s′)∗) = (lim s)∗ ·
(lim s′)∗.

(33) If s is convergent, then if lim s 6= 0C, then there exists n such that for

every m such that n ¬ m holds | lim s|
2 < |s(m)|.
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(34) If s is convergent and lim s 6= 0C and s is non-zero, then s−1 is convergent.

(35) If s is convergent and lim s 6= 0C and s is non-zero, then lim(s−1) =
(lim s)−1.

(36) If s is convergent and lim s 6= 0C and s is non-zero, then lim |s−1| =
| lim s|−1.

(37) If s is convergent and lim s 6= 0C and s is non-zero, then lim((s−1)∗) =
((lim s)∗)−1.

(38) If s′ is convergent and s is convergent and lim s 6= 0C and s is non-zero,

then s′

s
is convergent.

(39) If s′ is convergent and s is convergent and lim s 6= 0C and s is non-zero,

then lim(s′

s
) = lim s′

lim s
.

(40) If s′ is convergent and s is convergent and lim s 6= 0C and s is non-zero,

then lim |s
′

s
| = | lim s′|

| lim s| .

(41) If s′ is convergent and s is convergent and lim s 6= 0C and s is non-zero,

then lim((s′

s
)∗) = (lim s′)∗

(lim s)∗ .

(42) If s is convergent and s1 is bounded and lim s = 0C, then s s1 is conver-
gent.

(43) If s is convergent and s1 is bounded and lim s = 0C, then lim(s s1) = 0C.

(44) If s is convergent and s1 is bounded and lim s = 0C, then lim |s s1| = 0.

(45) If s is convergent and s1 is bounded and lim s = 0C, then lim((s s1)
∗) =

0C.
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1. Preliminaries

Let L be a non empty relational structure. One can check that idL is mono-
tone.
Let S, T be non empty relational structures and let f be a map from S into

T . Let us observe that f is antitone if and only if:

(Def. 1) For all elements x, y of S such that x ¬ y holds f(x) ­ f(y).

Next we state several propositions:

(1) Let S, T be relational structures, K, L be non empty relational structu-
res, f be a map from S into T , and g be a map from K into L. Suppose
that
(i) the relational structure of S = the relational structure of K,

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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(ii) the relational structure of T = the relational structure of L,

(iii) f = g, and

(iv) f is monotone.

Then g is monotone.

(2) Let S, T be relational structures, K, L be non empty relational structu-
res, f be a map from S into T , and g be a map from K into L. Suppose
that

(i) the relational structure of S = the relational structure of K,

(ii) the relational structure of T = the relational structure of L,

(iii) f = g, and

(iv) f is antitone.

Then g is antitone.

(3) Let A, B be 1-sorted structures, F be a family of subsets of A, and G
be a family of subsets of B. Suppose the carrier of A = the carrier of B
and F = G and F is a cover of A. Then G is a cover of B.

(4) For every antisymmetric reflexive relational structure L with l.u.b.’s and
for every element x of L holds ↑x = {x} t ΩL.

(5) For every antisymmetric reflexive relational structure L with g.l.b.’s and
for every element x of L holds ↓x = {x} u ΩL.

(6) For every antisymmetric reflexive relational structure L with g.l.b.’s and
for every element y of L holds (y u�)◦↑y = {y}.

(7) For every antisymmetric reflexive relational structure L with g.l.b.’s and
for every element x of L holds (x u�)−1({x}) = ↑x.

(8) For every non empty 1-sorted structure T holds every non empty net
structure N over T is eventually in rng (the mapping of N).

Let L be a non empty reflexive relational structure, let D be a non empty
directed subset of L, and let n be a function from D into the carrier of L. One
can verify that 〈D, (the internal relation of L) |2 D,n〉 is directed.
Let L be a non empty reflexive transitive relational structure, let D be a

non empty directed subset of L, and let n be a function from D into the carrier
of L. One can check that 〈D, (the internal relation of L) |2 D,n〉 is transitive.
The following propositions are true:

(9) For every non empty reflexive transitive relational structure L such that
for every element x of L and for every netN in L such thatN is eventually-
directed holds x u supN = sup{x} u rng netmap(N,L) holds L satisfies
MC.

(10) Let L be a non empty relational structure, a be an element of L, and N
be a net in L. Then a uN is a net in L.

Let L be a non empty relational structure, let x be an element of L, and let
N be a net in L. Then x uN is a strict net in L.

Let L be a non empty relational structure, let x be an element of L, and let
N be a non empty reflexive net structure over L. Observe that xuN is reflexive.



on the topological properties of . . . 271

Let L be a non empty relational structure, let x be an element of L, and
let N be a non empty antisymmetric net structure over L. Note that x u N is
antisymmetric.
Let L be a non empty relational structure, let x be an element of L, and let

N be a non empty transitive net structure over L. Note that xuN is transitive.
Let L be a non empty relational structure, let J be a set, and let f be a

function from J into the carrier of L. Observe that FinSups(f) is transitive.

2. The Operations Defined on Nets

Let L be a non empty relational structure and let N be a net structure over
L. The functor inf N yielding an element of L is defined as follows:

(Def. 2) inf N = Inf(the mapping of N).

Let L be a relational structure and let N be a net structure over L. We say
that sup N exists if and only if:

(Def. 3) Sup rng (the mapping of N) exists in L.

We say that inf N exists if and only if:

(Def. 4) Inf rng (the mapping of N) exists in L.

Let L be a relational structure. The functor 〈L; id〉 yields a strict net struc-
ture over L and is defined by:

(Def. 5) The relational structure of 〈L; id〉 = the relational structure of L and
the mapping of 〈L; id〉 = idL.

Let L be a non empty relational structure. Observe that 〈L; id〉 is non empty.
Let L be a reflexive relational structure. One can check that 〈L; id〉 is refle-

xive.
Let L be an antisymmetric relational structure. Note that 〈L; id〉 is antisym-

metric.
Let L be a transitive relational structure. Observe that 〈L; id〉 is transitive.
Let L be a relational structure with l.u.b.’s. One can verify that 〈L; id〉 is

directed.
Let L be a directed relational structure. Note that 〈L; id〉 is directed.
Let L be a non empty relational structure. One can verify that 〈L; id〉 is

monotone and eventually-directed.
Let L be a relational structure. The functor 〈Lop; id〉 yields a strict net

structure over L and is defined by the conditions (Def. 6).

(Def. 6)(i) The carrier of 〈Lop; id〉 = the carrier of L,
(ii) the internal relation of 〈Lop; id〉 = (the internal relation of L)`, and
(iii) the mapping of 〈Lop; id〉 = idL.

Next we state the proposition

(11) For every relational structure L holds the relational structure of L` =
the relational structure of 〈Lop; id〉.
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Let L be a non empty relational structure. One can check that 〈Lop; id〉 is
non empty.
Let L be a reflexive relational structure. Observe that 〈Lop; id〉 is reflexive.
Let L be an antisymmetric relational structure. Observe that 〈Lop; id〉 is

antisymmetric.
Let L be a transitive relational structure. Note that 〈Lop; id〉 is transitive.
Let L be a relational structure with g.l.b.’s. Note that 〈Lop; id〉 is directed.
Let L be a non empty relational structure. Note that 〈Lop; id〉 is antitone

and eventually-filtered.
Let L be a non empty 1-sorted structure, let N be a non empty net structure

over L, and let i be an element of N . The functor N�i yields a strict net structure
over L and is defined by the conditions (Def. 7).

(Def. 7)(i) For every set x holds x ∈ the carrier of N�i iff there exists an element
y of N such that y = x and i ¬ y,

(ii) the internal relation of N�i = (the internal relation of N) |2 (the carrier
of N�i), and

(iii) the mapping of N�i = (the mapping of N)�(the carrier of N�i).

We now state three propositions:

(12) Let L be a non empty 1-sorted structure,N be a non empty net structure
over L, and i be an element of N . Then the carrier of N�i = {y, y ranges
over elements of N : i ¬ y}.

(13) Let L be a non empty 1-sorted structure,N be a non empty net structure
over L, and i be an element of N . Then the carrier of N�i ⊆ the carrier
of N .

(14) Let L be a non empty 1-sorted structure,N be a non empty net structure
over L, and i be an element of N . Then N�i is a full structure of a subnet
of N .

Let L be a non empty 1-sorted structure, let N be a non empty reflexive net
structure over L, and let i be an element of N . Note that N�i is non empty and
reflexive.
Let L be a non empty 1-sorted structure, let N be a non empty directed net

structure over L, and let i be an element of N . Note that N�i is non empty.
Let L be a non empty 1-sorted structure, let N be a non empty reflexive

antisymmetric net structure over L, and let i be an element of N . Observe that
N�i is antisymmetric.
Let L be a non empty 1-sorted structure, let N be a non empty directed

antisymmetric net structure over L, and let i be an element of N . Note that
N�i is antisymmetric.
Let L be a non empty 1-sorted structure, let N be a non empty reflexive

transitive net structure over L, and let i be an element of N . One can verify
that N�i is transitive.
Let L be a non empty 1-sorted structure, let N be a net in L, and let i be

an element of N . Note that N�i is transitive and directed.
Next we state three propositions:
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(15) Let L be a non empty 1-sorted structure, N be a non empty reflexive
net structure over L, i, x be elements of N , and x1 be an element of N�i.
If x = x1, then N(x) = (N�i)(x1).

(16) Let L be a non empty 1-sorted structure, N be a non empty directed
net structure over L, i, x be elements of N , and x1 be an element of N�i.
If x = x1, then N(x) = (N�i)(x1).

(17) Let L be a non empty 1-sorted structure, N be a net in L, and i be an
element of N . Then N�i is a subnet of N .

Let T be a non empty 1-sorted structure and let N be a net in T . Observe
that there exists a subnet of N which is strict.
Let L be a non empty 1-sorted structure, let N be a net in L, and let i be

an element of N . Then N�i is a strict subnet of N .
Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let

f be a map from S into T , and let N be a net structure over S. The functor
f ·N yielding a strict net structure over T is defined by the conditions (Def. 8).

(Def. 8)(i) The relational structure of f ·N = the relational structure of N , and
(ii) the mapping of f ·N = f · the mapping of N .

Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let
f be a map from S into T , and let N be a non empty net structure over S. One
can verify that f ·N is non empty.
Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let f

be a map from S into T , and let N be a reflexive net structure over S. Observe
that f ·N is reflexive.
Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let

f be a map from S into T , and let N be an antisymmetric net structure over
S. Observe that f ·N is antisymmetric.
Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let

f be a map from S into T , and let N be a transitive net structure over S. Note
that f ·N is transitive.
Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let

f be a map from S into T , and let N be a directed net structure over S. Note
that f ·N is directed.
One can prove the following proposition

(18) Let L be a non empty relational structure, N be a non empty net struc-
ture over L, and x be an element of L. Then (x u�) ·N = x uN.

3. The Properties of Topological Spaces

The following two propositions are true:

(19) Let S, T be topological structures, F be a family of subsets of S, and G
be a family of subsets of T . Suppose the topological structure of S = the
topological structure of T and F = G and F is open. Then G is open.
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(20) Let S, T be topological structures, F be a family of subsets of S, and G
be a family of subsets of T . Suppose the topological structure of S = the
topological structure of T and F = G and F is closed. Then G is closed.

Let a be a set. Note that {a}top is discrete.
We consider FR-structures as extensions of topological structure and rela-

tional structure as systems

〈 a carrier, a internal relation, a topology 〉,
where the carrier is a set, the internal relation is a binary relation on the carrier,
and the topology is a family of subsets of the carrier.

Let A be a non empty set, let R be a relation between A and A, and let T
be a family of subsets of A. Note that 〈A,R, T 〉 is non empty.
Let x be a set, let R be a binary relation on {x}, and let T be a family of

subsets of {x}. Note that 〈{x}, R, T 〉 is trivial.
Let X be a set, let O be an order in X, and let T be a family of subsets of

X. Observe that 〈X,O, T 〉 is reflexive transitive and antisymmetric.
Let us observe that there exists a FR-structure which is trivial, reflexive,

non empty, discrete, strict, and finite.

A TopLattice is a reflexive transitive antisymmetric topological space-like
FR-structure with g.l.b.’s and l.u.b.’s.

Let us observe that there exists a non empty TopLattice which is strict,
trivial, discrete, finite, compact, and Hausdorff.

Let T be a Hausdorff non empty topological space. One can check that every
non empty subspace of T is Hausdorff.

One can prove the following propositions:

(21) For every non empty topological space T and for every point p of T holds
every element of the open neighbourhoods of p is a neighbourhood of p.

(22) Let T be a non empty topological space, p be a point of T , and A, B be
elements of the open neighbourhoods of p. Then A ∩ B is an element of
the open neighbourhoods of p.

(23) Let T be a non empty topological space, p be a point of T , and A, B be
elements of the open neighbourhoods of p. Then A ∪ B is an element of
the open neighbourhoods of p.

(24) Let T be a non empty topological space, p be an element of the carrier
of T , and N be a net in T . Suppose p ∈ LimN. Let S be a subset of the
carrier of T . If S = rng (the mapping of N), then p ∈ S.

(25) Let T be a Hausdorff non empty TopLattice, N be a convergent net in
T , and f be a map from T into T . If f is continuous, then f(limN) ∈
Lim(f ·N).

(26) Let T be a Hausdorff non empty TopLattice, N be a convergent net in
T , and x be an element of T . If x u � is continuous, then x u limN ∈
Lim(x uN).

(27) Let S be a Hausdorff non empty TopLattice and x be an element of S.
If for every element a of S holds a u� is continuous, then ↑x is closed.
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(28) Let S be a compact Hausdorff non empty TopLattice and x be an element
of S. If for every element b of S holds bu� is continuous, then ↓x is closed.

4. The Cluster Points of Nets

Let T be a TopLattice, let N be a non empty net structure over T , and let
p be a point of T . We say that p is a cluster point of N if and only if:

(Def. 9) For every neighbourhood O of p holds N is often in O.

Next we state several propositions:

(29) Let L be a non empty TopLattice, N be a net in L, and c be a point of
L. If c ∈ LimN, then c is a cluster point of N .

(30) Let T be a compact Hausdorff non empty TopLattice and N be a net in
T . Then there exists a point c of T such that c is a cluster point of N .

(31) Let L be a non empty TopLattice, N be a net in L, M be a subnet of
N , and c be a point of L. If c is a cluster point of M , then c is a cluster
point of N .

(32) Let T be a non empty TopLattice, N be a net in T , and x be a point of
T . Suppose x is a cluster point of N . Then there exists a subnet M of N
such that x ∈ LimM.

(33) Let L be a compact Hausdorff non empty TopLattice and N be a net in
L. Suppose that for all points c, d of L such that c is a cluster point of N
and d is a cluster point of N holds c = d. Let s be a point of L. If s is a
cluster point of N , then s ∈ LimN.

(34) Let S be a non empty TopLattice, c be a point of S, N be a net in S,
and A be a subset of S. Suppose c is a cluster point of N and A is closed
and rng (the mapping of N) ⊆ A. Then c ∈ A.

(35) Let S be a compact Hausdorff non empty TopLattice, c be a point of
S, and N be a net in S. Suppose for every element x of S holds x u �

is continuous and N is eventually-directed and c is a cluster point of N .
Then c = supN.

(36) Let S be a compact Hausdorff non empty TopLattice, c be a point of
S, and N be a net in S. Suppose for every element x of S holds x u� is
continuous and N is eventually-filtered and c is a cluster point of N . Then
c = inf N.
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5. On The Topological Properties of Meet-Continuous Lattices

Next we state several propositions:

(37) Let S be a Hausdorff non empty TopLattice. Suppose that
(i) for every net N in S such that N is eventually-directed holds sup N
exists and supN ∈ LimN, and

(ii) for every element x of S holds x u� is continuous.
Then S is meet-continuous.

(38) Let S be a compact Hausdorff non empty TopLattice. Suppose that for
every element x of S holds xu� is continuous. Let N be a net in S. If N
is eventually-directed, then sup N exists and supN ∈ LimN.

(39) Let S be a compact Hausdorff non empty TopLattice. Suppose that for
every element x of S holds xu� is continuous. Let N be a net in S. If N
is eventually-filtered, then inf N exists and inf N ∈ LimN.

(40) Let S be a compact Hausdorff non empty TopLattice. If for every element
x of S holds x u� is continuous, then S is bounded.

(41) Let S be a compact Hausdorff non empty TopLattice. Suppose that for
every element x of S holds xu� is continuous. Then S is meet-continuous.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,
6(1):93–107, 1997.

[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[10] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257–261, 1990.

[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-
pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[13] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-
ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[15] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109,
1991.

[16] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized
Mathematics, 3(2):143–149, 1992.

[17] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized
Mathematics, 6(1):145–152, 1997.



on the topological properties of . . . 277

[18] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Formalized
Mathematics, 6(1):153–158, 1997.

[19] Artur Korniłowicz. Meet – continuous lattices. Formalized Mathematics, 6(1):159–167,
1997.

[20] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
[21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[22] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[26] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225,
1997.

[27] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics,
1(1):187–190, 1990.

[28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[29] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[30] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[32] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[33] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

[34] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized
Mathematics, 1(1):231–237, 1990.

[35] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices
and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received December 20, 1996



278 artur korniłowicz



FORMALIZED MATHEMATICS

Volume 6, Number 2, 1997

University of Białystok

Institution of Many Sorted Algebras.

Part I: Signature Reduct of an Algebra

Grzegorz Bancerek
Warsaw University
Białystok

Summary. In the paper the notation necessary to construct the institution
of many sorted algebras is introduced.

MML Identifier: INSTALG1.

The papers [23], [27], [16], [1], [28], [14], [9], [13], [2], [26], [17], [3], [4], [10], [6],
[11], [20], [24], [25], [15], [12], [21], [19], [5], [22], [7], [18], and [8] provide the
terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let I be a set, f be a function, and F , G be many sorted functions
indexed by I. If rng f ⊆ I, then (G ◦ F ) · f = (G · f) ◦ (F · f).

(2) Let S be a non empty non void many sorted signature, o be an operation
symbol of S, V be a non-empty many sorted set indexed by the carrier of
S, and x be a set. Then x is an argument sequence of Sym(o, V ) if and
only if x is an element of Args(o,Free(V )).

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let o be an operation symbol
of S. Note that every element of Args(o,Free(V )) is decorated tree yielding.
Next we state two propositions:

(3) Let S be a non empty non void many sorted signature and A1, A2

be algebras over S. Suppose the sorts of A1 are transformable to the
sorts of A2. Let o be an operation symbol of S. If Args(o,A1) 6= ∅, then
Args(o,A2) 6= ∅.
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(4) Let S be a non empty non void many sorted signature, o be an operation
symbol of S, V be a non-empty many sorted set indexed by the carrier of S,
and x be an element of Args(o,Free(V )). Then (Den(o,Free(V )))(x) = 〈〈o,
the carrier of S〉〉-tree(x).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. One can check that the algebra of A is non-empty.
Next we state three propositions:

(5) Let S be a non empty non void many sorted signature and A, B be
algebras over S. Suppose the algebra of A = the algebra of B. Let o be an
operation symbol of S. Then Den(o,A) = Den(o,B).

(6) Let S be a non empty non void many sorted signature and A1, A2, B1,
B2 be algebras over S. Suppose the algebra of A1 = the algebra of B1 and
the algebra of A2 = the algebra of B2. Let f be a many sorted function
from A1 into A2 and g be a many sorted function from B1 into B2. Suppose
f = g. Let o be an operation symbol of S. Suppose Args(o,A1) 6= ∅ and
Args(o,A2) 6= ∅. Let x be an element of Args(o,A1) and y be an element
of Args(o,B1). If x = y, then f#x = g#y.

(7) Let S be a non empty non void many sorted signature and A1, A2, B1,
B2 be algebras over S. Suppose that
(i) the algebra of A1 = the algebra of B1,
(ii) the algebra of A2 = the algebra of B2, and
(iii) the sorts of A1 are transformable to the sorts of A2.
Let h be a many sorted function from A1 into A2. Suppose h is a homo-
morphism of A1 into A2. Then there exists a many sorted function h′ from
B1 into B2 such that h′ = h and h′ is a homomorphism of B1 into B2.

Let S be a many sorted signature. We say that S is feasible if and only if:

(Def. 1) If the carrier of S = ∅, then the operation symbols of S = ∅.

The following proposition is true

(8) Let S be a many sorted signature. Then S is feasible if and only if
dom (the result sort of S) = the operation symbols of S.

One can verify the following observations:

∗ every many sorted signature which is non empty is also feasible,

∗ every many sorted signature which is void is also feasible,

∗ every many sorted signature which is empty and feasible is also void,
and

∗ every many sorted signature which is non void and feasible is also non
empty.

Let us note that there exists a many sorted signature which is non void and
non empty.
One can prove the following propositions:

(9) Let S be a feasible many sorted signature. Then idthe carrier of S and
idthe operation symbols of S form morphism between S and S.
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(10) Let S1, S2 be many sorted signatures and f , g be functions. Suppose f
and g form morphism between S1 and S2. Then
(i) f is a function from the carrier of S1 into the carrier of S2, and
(ii) g is a function from the operation symbols of S1 into the operation
symbols of S2.

2. Subsignatures

Let S be a feasible many sorted signature. A many sorted signature is said
to be a subsignature of S if:

(Def. 2) idthe carrier of it and idthe operation symbols of it form morphism between it
and S.

We now state the proposition

(11) Let S be a feasible many sorted signature and T be a subsignature of
S. Then the carrier of T ⊆ the carrier of S and the operation symbols of
T ⊆ the operation symbols of S.

Let S be a feasible many sorted signature. Note that every subsignature of
S is feasible.
Next we state several propositions:

(12) Let S be a feasible many sorted signature and T be a subsignature of S.
Then the result sort of T ⊆ the result sort of S and the arity of T ⊆ the
arity of S.

(13) Let S be a feasible many sorted signature and T be a subsignature of S.
Then
(i) the arity of T = (the arity of S)�(the operation symbols of T ), and
(ii) the result sort of T = (the result sort of S)�(the operation symbols of

T ).

(14) Let S, T be feasible many sorted signatures. Suppose that
(i) the carrier of T ⊆ the carrier of S,
(ii) the arity of T ⊆ the arity of S, and
(iii) the result sort of T ⊆ the result sort of S.
Then T is a subsignature of S.

(15) Let S, T be feasible many sorted signatures. Suppose that
(i) the carrier of T ⊆ the carrier of S,
(ii) the arity of T = (the arity of S)�(the operation symbols of T ), and
(iii) the result sort of T = (the result sort of S)�(the operation symbols of

T ).
Then T is a subsignature of S.

(16) Every feasible many sorted signature S is a subsignature of S.

(17) For every feasible many sorted signature S1 and for every subsignature
S2 of S1 holds every subsignature of S2 is a subsignature of S1.
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(18) Let S1 be a feasible many sorted signature and S2 be a subsignature of
S1. Suppose S1 is a subsignature of S2. Then the many sorted signature
of S1 = the many sorted signature of S2.

Let S be a non empty many sorted signature. Observe that there exists a
subsignature of S which is non empty.
Let S be a non void feasible many sorted signature. One can verify that

there exists a subsignature of S which is non void.
One can prove the following three propositions:

(19) Let S be a feasible many sorted signature, S′ be a subsignature of S, T
be a many sorted signature, and f , g be functions. Suppose f and g form
morphism between S and T . Then f�the carrier of S′ and g�the operation
symbols of S′ form morphism between S′ and T .

(20) Let S be a many sorted signature, T be a feasible many sorted signature,
T ′ be a subsignature of T , and f , g be functions. Suppose f and g form
morphism between S and T ′. Then f and g form morphism between S
and T .

(21) Let S be a many sorted signature, T be a feasible many sorted signature,
T ′ be a subsignature of T , and f , g be functions. Suppose f and g form
morphism between S and T and rng f ⊆ the carrier of T ′ and rng g ⊆ the
operation symbols of T ′. Then f and g form morphism between S and T ′.

3. Signature reducts

Let S1, S2 be non empty many sorted signatures, let A be an algebra over S2,
and let f , g be functions. Let us assume that f and g form morphism between
S1 and S2. The functor A�(f,g)S1 yields a strict algebra over S1 and is defined
by the conditions (Def. 3).

(Def. 3)(i) The sorts of A�(f,g)S1 = (the sorts of A) · f, and
(ii) the characteristics of A�(f,g)S1 = (the characteristics of A) · g.

Let S2, S1 be non empty many sorted signatures and let A be an algebra over
S2. The functor A�S1 yields a strict algebra over S1 and is defined as follows:

(Def. 4) A�S1 = A�(idthe carrier of S1
,idthe operation symbols of S1

)S1.

We now state two propositions:

(22) Let S1, S2 be non empty many sorted signatures and A, B be algebras
over S2. Suppose the algebra of A = the algebra of B. Let f , g be functions.
If f and g form morphism between S1 and S2, then A�(f,g)S1 = B�(f,g)S1.

(23) Let S1, S2 be non empty many sorted signatures, A be a non-empty
algebra over S2, and f , g be functions. If f and g form morphism between
S1 and S2, then A�(f,g)S1 is non-empty.

Let S2 be a non empty many sorted signature, let S1 be a non empty subsi-
gnature of S2, and let A be a non-empty algebra over S2. Observe that A�S1 is
non-empty.



institution of many sorted algebras. . . . 283

The following propositions are true:

(24) Let S1, S2 be non void non empty many sorted signatures and f , g be
functions. Suppose f and g form morphism between S1 and S2. Let A
be an algebra over S2, o1 be an operation symbol of S1, and o2 be an
operation symbol of S2. If o2 = g(o1), then Den(o1, A�(f,g)S1) = Den(o2,
A).

(25) Let S1, S2 be non void non empty many sorted signatures and f , g be
functions. Suppose f and g form morphism between S1 and S2. Let A be an
algebra over S2, o1 be an operation symbol of S1, and o2 be an operation
symbol of S2. If o2 = g(o1), then Args(o2, A) = Args(o1, A�(f,g)S1) and
Result(o1, A�(f,g)S1) = Result(o2, A).

(26) Let S be a non empty many sorted signature and A be an algebra over
S. Then A�(idthe carrier of S ,idthe operation symbols of S)S = the algebra of A.

(27) For every non empty many sorted signature S and for every algebra A
over S holds A�S = the algebra of A.

(28) Let S1, S2, S3 be non empty many sorted signatures and f1, g1 be func-
tions. Suppose f1 and g1 form morphism between S1 and S2. Let f2, g2

be functions. Suppose f2 and g2 form morphism between S2 and S3. Let
A be an algebra over S3. Then A�(f2·f1,g2·g1)S1 = A�(f2,g2)S2�(f1,g1)S1.

(29) Let S1 be a non empty feasible many sorted signature, S2 be a non empty
subsignature of S1, S3 be a non empty subsignature of S2, and A be an
algebra over S1. Then A�S3 = A�S2�S3.

(30) Let S1, S2 be non empty many sorted signatures, f be a function from
the carrier of S1 into the carrier of S2, and g be a function. Suppose f
and g form morphism between S1 and S2. Let A1, A2 be algebras over S2

and h be a many sorted function from the sorts of A1 into the sorts of A2.
Then h · f is a many sorted function from the sorts of A1�(f,g)S1 into the
sorts of A2�(f,g)S1.

(31) Let S1 be a non empty many sorted signature, S2 be a non empty subsi-
gnature of S1, A1, A2 be algebras over S1, and h be a many sorted function
from the sorts of A1 into the sorts of A2. Then h�the carrier of S2 is a
many sorted function from the sorts of A1�S2 into the sorts of A2�S2.

(32) Let S1, S2 be non empty many sorted signatures and f , g be functions.
Suppose f and g form morphism between S1 and S2. Let A be an algebra
over S2. Then idthe sorts of A · f = idthe sorts of A�(f,g)S1.

(33) Let S1 be a non empty many sorted signature, S2 be a non empty subsi-
gnature of S1, and A be an algebra over S1 Then idthe sorts of A�the carrier
of S2 = idthe sorts of A�S2.

(34) Let S1, S2 be non void non empty many sorted signatures and f , g be
functions. Suppose f and g form morphism between S1 and S2. Let A, B
be algebras over S2, h2 be a many sorted function from A into B, and h1 be
a many sorted function from A�(f,g)S1 into B�(f,g)S1. Suppose h1 = h2 · f.
Let o1 be an operation symbol of S1 and o2 be an operation symbol of S2.
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Suppose o2 = g(o1) and Args(o2, A) 6= ∅ and Args(o2, B) 6= ∅. Let x2 be
an element of Args(o2, A) and x1 be an element of Args(o1, A�(f,g)S1). If
x2 = x1, then h1#x1 = h2#x2.

(35) Let S, S′ be non empty non void many sorted signatures and A1, A2 be
algebras over S. Suppose the sorts of A1 are transformable to the sorts
of A2. Let h be a many sorted function from A1 into A2. Suppose h is
a homomorphism of A1 into A2. Let f be a function from the carrier of
S′ into the carrier of S and g be a function. Suppose f and g form mor-
phism between S′ and S. Then there exists a many sorted function h′ from
A1�(f,g)S

′ into A2�(f,g)S
′ such that h′ = h · f and h′ is a homomorphism

of A1�(f,g)S
′ into A2�(f,g)S

′.

(36) Let S be a non void feasible many sorted signature, S′ be a non void
subsignature of S, and A1, A2 be algebras over S. Suppose the sorts of
A1 are transformable to the sorts of A2. Let h be a many sorted function
from A1 into A2. Suppose h is a homomorphism of A1 into A2. Then
there exists a many sorted function h′ from A1�S

′ into A2�S
′ such that

h′ = h�the carrier of S′ and h′ is a homomorphism of A1�S
′ into A2�S

′.

(37) Let S, S′ be non empty non void many sorted signatures, A be a non-
empty algebra over S, f be a function from the carrier of S′ into the carrier
of S, and g be a function. Suppose f and g form morphism between S′ and
S. Let B be a non-empty algebra over S′. Suppose B = A�(f,g)S

′. Let s1,

s2 be sort symbols of S
′ and t be a function. Suppose t is an elementary

translation in B from s1 into s2. Then t is an elementary translation in A
from f(s1) into f(s2).

(38) Let S, S′ be non empty non void many sorted signatures, f be a function
from the carrier of S′ into the carrier of S, and g be a function. Suppose
f and g form morphism between S′ and S. Let s1, s2 be sort symbols of
S′. If TranslRel(S′) reduces s1 to s2, then TranslRel(S) reduces f(s1) to
f(s2).

(39) Let S, S′ be non void non empty many sorted signatures, A be a non-
empty algebra over S, f be a function from the carrier of S′ into the carrier
of S, and g be a function. Suppose f and g form morphism between S′

and S. Let B be a non-empty algebra over S′. Suppose B = A�(f,g)S
′. Let

s1, s2 be sort symbols of S
′. Suppose TranslRel(S′) reduces s1 to s2. Then

every translation in B from s1 into s2 is a translation in A from f(s1) into
f(s2).

4. Translating homomorphisms

The scheme GenFuncEx concerns a non empty non void many sorted signa-
ture A, a non-empty algebra B over A, a non-empty many sorted set C indexed
by the carrier of A, and a binary functor F yielding a set, and states that:
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There exists a many sorted function h from Free(C) into B such
that
(i) h is a homomorphism of Free(C) into B, and
(ii) for every sort symbol s of A and for every element x of
C(s) holds h(s)(the root tree of 〈〈x, s〉〉) = F(x, s)

provided the parameters meet the following requirement:
• For every sort symbol s of A and for every element x of C(s) holds
F(x, s) ∈ (the sorts of B)(s).

One can prove the following proposition

(40) Let I be a set, A, B be many sorted sets indexed by I, C be a many
sorted subset of A, F be a many sorted function from A into B, and i
be a set. Suppose i ∈ I. Let f , g be functions. Suppose f = F (i) and
g = (F � C)(i). Let x be a set. If x ∈ C(i), then g(x) = f(x).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of S. Note that FreeGenerator(X)
is non-empty.
Let S1, S2 be non empty non void many sorted signatures, let X be a non-

empty many sorted set indexed by the carrier of S2, let f be a function from the
carrier of S1 into the carrier of S2, and let g be a function. Let us assume that f
and g form morphism between S1 and S2. The functor hom(f, g,X, S1, S2) yields
a many sorted function from Free(X · f) into Free(X)�(f,g)S1 and is defined by
the conditions (Def. 5).

(Def. 5)(i) hom(f, g,X, S1, S2) is a homomorphism of Free(X · f) into
Free(X)�(f,g)S1, and

(ii) for every sort symbol s of S1 and for every element x of (X · f)(s)
holds (hom(f, g,X, S1, S2))(s)(the root tree of 〈〈x, s〉〉) = the root tree of
〈〈x, f(s)〉〉.

We now state several propositions:

(41) Let S1, S2 be non void non empty many sorted signatures, X be a non-
empty many sorted set indexed by the carrier of S2, f be a function from
the carrier of S1 into the carrier of S2, and g be a function. Suppose f and
g form morphism between S1 and S2. Let o be an operation symbol of S1,
p be an element of Args(o,Free(X ·f)), and q be a finite sequence. Suppose
q = hom(f, g,X, S1, S2)#p. Then (hom(f, g,X, S1, S2))(the result sort of
o)(〈〈o, the carrier of S1〉〉-tree(p)) = 〈〈g(o), the carrier of S2〉〉-tree(q).

(42) Let S1, S2 be non void non empty many sorted signatures, X be a non-
empty many sorted set indexed by the carrier of S2, f be a function from
the carrier of S1 into the carrier of S2, and g be a function. Suppose f and
g form morphism between S1 and S2. Let t be a term of S1 over X · f.
Then (hom(f, g,X, S1, S2))(the sort of t)(t) is a compound term of S2 over
X if and only if t is a compound term of S1 over X · f.

(43) Let S1, S2 be non void non empty many sorted signatures, X be a
non-empty many sorted set indexed by the carrier of S2, f be a func-
tion from the carrier of S1 into the carrier of S2, and g be an one-to-
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one function. Suppose f and g form morphism between S1 and S2. Then
hom(f, g,X, S1, S2) is a monomorphism of Free(X ·f) into Free(X)�(f,g)S1.

(44) Let S be a non void non empty many sorted signature and
X be a non-empty many sorted set indexed by the carrier
of S. Then hom(idthe carrier of S, idthe operation symbols of S,X, S, S) =
idthe sorts of Free(X).

(45) Let S1, S2, S3 be non void non empty many sorted signatures, X be a
non-empty many sorted set indexed by the carrier of S3, f1 be a function
from the carrier of S1 into the carrier of S2, and g1 be a function. Suppose
f1 and g1 form morphism between S1 and S2. Let f2 be a function from the
carrier of S2 into the carrier of S3 and g2 be a function. Suppose f2 and g2

form morphism between S2 and S3. Then hom(f2 · f1, g2 · g1,X, S1, S3) =
(hom(f2, g2,X, S2, S3) · f1) ◦ hom(f1, g1,X · f2, S1, S2).
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1. Preliminaries

One can prove the following propositions:

(1) For all sets X, A, B such that A ∈ FinX and B ⊆ A holds B ∈ FinX.

(2) For every set X and for every family F of subsets of X such that F ⊆
FinX holds

⋂
F ∈ FinX.

Let X be a non empty set. Let us observe that X is trivial if and only if:

(Def. 1) For all elements x, y of X holds x = y.

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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2. Families of complements

We now state a number of propositions:

(3) For every set X and for every family F of subsets of X and for every
subset P of X holds P c ∈ F c iff P ∈ F.

(4) For every set X and for every family F of subsets of X holds F ≈ F c.

(5) For all sets X, Y such that X ≈ Y and X is countable holds Y is
countable.

(6) For every set X and for every family F of subsets of X holds (F c)c = F.

(7) For every set X and for every family F of subsets of X and for every
subset P of X holds P c ∈ F c iff P ∈ F.

(8) For every set X and for all families F , G of subsets of X such that
F c ⊆ Gc holds F ⊆ G.

(9) For every set X and for all families F , G of subsets of X holds F c ⊆ G
iff F ⊆ Gc.

(10) For every set X and for all families F , G of subsets of X such that
F c = Gc holds F = G.

(11) For every set X and for all families F , G of subsets of X holds (F ∪G)c =
F c ∪Gc.

(12) For every set X and for every family F of subsets of X such that F =
{X} holds F c = {∅}.

Let X be a set and let F be an empty family of subsets of X. Observe that
F c is empty.
The following propositions are true:

(13) Let X be a 1-sorted structure, F be a family of subsets of X, and P be
a subset of the carrier of X. Then P ∈ F c if and only if −P ∈ F.

(14) Let X be a 1-sorted structure, F be a family of subsets of X, and P be
a subset of the carrier of X. Then −P ∈ F c if and only if P ∈ F.

(15) For every 1-sorted structure X and for every family F of subsets of X
holds Intersect(F c) = −

⋃
F.

(16) For every 1-sorted structure X and for every family F of subsets of X
holds

⋃
(F c) = −Intersect(F ).

3. Topological preliminaries

One can prove the following four propositions:

(17) Let T be a non empty topological space and A, B be subsets of the
carrier of T . Suppose B ⊆ A and A is closed and for every subset C of the
carrier of T such that B ⊆ C and C is closed holds A ⊆ C. Then A = B.
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(18) Let T be a topological structure, B be a basis of T , and V be a subset of
T . If V is open, then V =

⋃
{G,G ranges over subsets of T : G ∈ B ∧ G ⊆

V }.

(19) Let T be a topological structure, B be a basis of T , and S be a subset
of T . If S ∈ B, then S is open.

(20) Let T be a non empty topological space, B be a basis of T , and V be a
subset of T . Then IntV =

⋃
{G,G ranges over subsets of T : G ∈ B ∧ G ⊆

V }.

4. Baire Spaces

Let T be a non empty topological structure and let x be a point of T . A
family of subsets of T is called a basis of x if it satisfies the conditions (Def. 2).

(Def. 2)(i) It ⊆ the topology of T ,
(ii) x ∈ Intersect(it), and
(iii) for every subset S of T such that S is open and x ∈ S there exists a
subset V of T such that V ∈ it and V ⊆ S.

Next we state three propositions:

(21) Let T be a non empty topological structure, x be a point of T , B be a
basis of x, and V be a subset of T . If V ∈ B, then V is open and x ∈ V.

(22) Let T be a non empty topological structure, x be a point of T , B be a
basis of x, and V be a subset of the carrier of T . If x ∈ V and V is open,
then there exists a subset W of T such that W ∈ B and W ⊆ V.

(23) Let T be a non empty topological structure and P be a family of subsets
of T . Suppose P ⊆ the topology of T and for every point x of T there
exists a basis B of x such that B ⊆ P. Then P is a basis of T .

Let T be a non empty topological space. We say that T is Baire if and only
if the condition (Def. 3) is satisfied.

(Def. 3) Let F be a family of subsets of T . Suppose F is countable and for
every subset S of T such that S ∈ F holds S is everywhere dense. Then
Intersect(F ) is dense.

We now state the proposition

(24) Let T be a non empty topological space. Then T is Baire if and only if
for every family F of subsets of T such that F is countable and for every
subset S of T such that S ∈ F holds S is nowhere dense holds

⋃
F is

boundary.

5. Sober Spaces

Let T be a topological structure and let S be a subset of T . We say that S
is irreducible if and only if the conditions (Def. 4) are satisfied.
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(Def. 4)(i) S is non empty and closed, and
(ii) for all subsets S1, S2 of T such that S1 is closed and S2 is closed and

S = S1 ∪ S2 holds S1 = S or S2 = S.

Let T be a topological structure. Observe that every subset of T which is
irreducible is also non empty.
Let T be a non empty topological space, let S be a subset of the carrier of

T , and let p be a point of T . We say that p is dense point of S if and only if:

(Def. 5) p ∈ S and S ⊆ {p}.

We now state two propositions:

(25) Let T be a non empty topological space and S be a subset of the carrier
of T . Suppose S is closed. Let p be a point of T . If p is dense point of S,
then S = {p}.

(26) For every non empty topological space T and for every point p of T holds

{p} is irreducible.

Let T be a non empty topological space. Observe that there exists a subset
of T which is irreducible.
Let T be a non empty topological space. We say that T is sober if and only

if the condition (Def. 6) is satisfied.

(Def. 6) Let S be an irreducible subset of T . Then there exists a point p of T
such that p is dense point of S and for every point q of T such that q is
dense point of S holds p = q.

We now state four propositions:

(27) For every non empty topological space T and for every point p of T holds

p is dense point of {p}.

(28) For every non empty topological space T and for every point p of T holds
p is dense point of {p}.

(29) Let T be a non empty topological space and G, F be subsets of T . If G
is open and F is closed, then F \G is closed.

(30) For every Hausdorff non empty topological space T holds every irredu-
cible subset of T is trivial.

Let T be a Hausdorff non empty topological space. Observe that every subset
of T which is irreducible is also trivial.
We now state the proposition

(31) Every Hausdorff non empty topological space is sober.

Let us note that every non empty topological space which is Hausdorff is
also sober.
One can verify that there exists a non empty topological space which is

sober.
The following two propositions are true:

(32) Let T be a non empty topological space. Then T is T0 if and only if for

all points p, q of T such that {p} = {q} holds p = q.

(33) Every sober non empty topological space is T0.
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Let us note that every non empty topological space which is sober is also
T0.
Let X be a set. The functor CofinTopX yields a strict topological structure

and is defined as follows:

(Def. 7) The carrier of CofinTopX = X and (the topology of CofinTopX)c =
{X} ∪ FinX.

Let X be a non empty set. Note that CofinTopX is non empty.
Let X be a set. Note that CofinTopX is topological space-like.
Next we state two propositions:

(34) For every non empty set X and for every subset P of CofinTopX holds
P is closed iff P = X or P is finite.

(35) For every non empty topological space T such that T is a T1 space and

for every point p of T holds {p} = {p}.

Let X be a non empty set. Note that CofinTopX is a T1 space.
Let X be an infinite set. One can check that CofinTopX is non sober.
Let us observe that there exists a non empty topological space which is a T1

space and non sober.

6. More on regular spaces

One can prove the following two propositions:

(36) Let T be a non empty topological space. Then T is a T3 space if and
only if for every point p of T and for every subset P of the carrier of T
such that p ∈ IntP there exists a subset Q of T such that Q is closed and
Q ⊆ P and p ∈ IntQ.

(37) Let T be a non empty topological space. Suppose T is a T3 space. Then
T is locally-compact if and only if for every point x of T there exists a
subset Y of T such that x ∈ IntY and Y is compact.
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1. Preliminaries

In this article we present several logical schemes. The scheme SubrelstrEx
concerns a non empty relational structure A, a set B, and a unary predicate P,
and states that:

There exists a non empty full strict relational substructure S of
A such that for every element x of A holds x is an element of S
if and only if P[x]

provided the following conditions are met:
• P[B],
• B ∈ the carrier of A.
The scheme RelstrEq deals with non empty relational structures A, B, a

unary predicate P, and a binary predicate Q, and states that:
The relational structure of A = the relational structure of B

provided the following conditions are met:
• For every set x holds x is an element of A iff P[x],
• For every set x holds x is an element of B iff P[x],
• For all elements a, b of A holds a ¬ b iff Q[a, b],
• For all elements a, b of B holds a ¬ b iff Q[a, b].

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.
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The scheme SubrelstrEq1 deals with a non empty relational structure A,
non empty full relational substructures B, C of A, and a unary predicate P, and
states that:

The relational structure of B = the relational structure of C
provided the following conditions are satisfied:

• For every set x holds x is an element of B iff P[x],

• For every set x holds x is an element of C iff P[x].

The scheme SubrelstrEq2 concerns a non empty relational structure A, non
empty full relational substructures B, C of A, and a unary predicate P, and
states that:

The relational structure of B = the relational structure of C
provided the parameters have the following properties:

• For every element x of A holds x is an element of B iff P[x],

• For every element x of A holds x is an element of C iff P[x].

The following four propositions are true:

(1) For all binary relations R, Q holds R ⊆ Q iff R` ⊆ Q` and R` ⊆ Q iff
R ⊆ Q`.

(2) For every binary relation R and for every setX holds (R|2X)` = R`|2X.

(3) Let L, S be relational structures. Then
(i) S is a relational substructure of L iff Sop is a relational substructure of

Lop, and

(ii) Sop is a relational substructure of L iff S is a relational substructure of
Lop.

(4) Let L, S be relational structures. Then

(i) S is a full relational substructure of L iff Sop is a full relational sub-
structure of Lop, and

(ii) Sop is a full relational substructure of L iff S is a full relational sub-
structure of Lop.

Let L be a relational structure and let S be a full relational substructure of
L. Then Sop is a strict full relational substructure of Lop.

Let X be a set and let L be a non empty relational structure. Observe that
X 7−→ L is nonempty.

Let S be a relational structure and let T be a non empty reflexive relatio-
nal structure. One can verify that there exists a map from S into T which is
monotone.

Let L be a non empty relational structure. One can check that every map
from L into L which is projection is also monotone and idempotent.

Let S, T be non empty reflexive relational structures and let f be a monotone
map from S into T . One can verify that f◦ is monotone.

Let L be a 1-sorted structure. Note that idL is one-to-one.

Let L be a non empty reflexive relational structure. One can check that idL
is sups-preserving and infs-preserving.

The following proposition is true
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(5) Let L be a relational structure and S be a subset of L. Then idS is a
map from sub(S) into L and for every map f from sub(S) into L such
that f = idS holds f is monotone.

Let L be a non empty reflexive relational structure. Note that there exists
a map from L into L which is sups-preserving, infs-preserving, closure, kernel,
and one-to-one.
One can prove the following proposition

(6) Let L be a non empty reflexive relational structure, c be a closure map
from L into L, and x be an element of L. Then c(x) ­ x.

Let S, T be 1-sorted structures, let f be a function from the carrier of S
into the carrier of T , and let R be a 1-sorted structure. Let us assume that the
carrier of R ⊆ the carrier of S. The functor f�R yields a map from R into T
and is defined by:

(Def. 1) f�R = f�the carrier of R.

One can prove the following propositions:

(7) Let S, T be relational structures, R be a relational substructure of S,
and f be a function from the carrier of S into the carrier of T . Then
f�R = f�the carrier of R and for every set x such that x ∈ the carrier of
R holds (f�R)(x) = f(x).

(8) Let S, T be relational structures and f be a map from S into T . Suppose
f is one-to-one. Let R be a relational substructure of S. Then f�R is one-
to-one.

Let S, T be non empty reflexive relational structures, let f be a monotone
map from S into T , and let R be a relational substructure of S. Note that f�R
is monotone.
One can prove the following proposition

(9) Let S, T be non empty relational structures, R be a non empty relational
substructure of S, f be a map from S into T , and g be a map from T into
S. Suppose f is one-to-one and g = f−1. Then g� Im(f�R) is a map from
Im(f�R) into R and g� Im(f�R) = (f�R)−1.

2. The lattice of closure operators

Let S be a relational structure and let T be a non empty reflexive relational
structure. Note that MonMaps(S, T ) is non empty.
Next we state the proposition

(10) Let S be a relational structure, T be a non empty reflexive relational
structure, and x be a set. Then x is an element of MonMaps(S, T ) if and
only if x is a monotone map from S into T .

Let L be a non empty reflexive relational structure. The functor ClOpers(L)
yields a non empty full strict relational substructure of MonMaps(L,L) and is
defined by:
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(Def. 2) For every map f from L into L holds f is an element of ClOpers(L) iff
f is closure.

The following propositions are true:

(11) Let L be a non empty reflexive relational structure and x be a set. Then
x is an element of ClOpers(L) if and only if x is a closure map from L into
L.

(12) Let X be a set, L be a non empty relational structure, f , g be functions
from X into the carrier of L, and x, y be elements of LX . If x = f and
y = g, then x ¬ y iff f ¬ g.

(13) Let L be a complete lattice, c1, c2 be maps from L into L, and x, y be
elements of ClOpers(L). If x = c1 and y = c2, then x ¬ y iff c1 ¬ c2.

(14) Let L be a reflexive relational structure and S1, S2 be full relational
substructures of L. Suppose the carrier of S1 ⊆ the carrier of S2. Then S1

is a relational substructure of S2.

(15) Let L be a complete lattice and c1, c2 be closure maps from L into L.
Then c1 ¬ c2 if and only if Im c2 is a relational substructure of Im c1.

3. The lattice of closure systems

Let L be a relational structure. The functor Sub(L) yields a strict non empty
relational structure and is defined by the conditions (Def. 3).

(Def. 3)(i) For every set x holds x is an element of Sub(L) iff x is a strict relational
substructure of L, and

(ii) for all elements a, b of Sub(L) holds a ¬ b iff there exists a relational
structure R such that b = R and a is a relational substructure of R.

One can prove the following proposition

(16) Let L, R be relational structures and x, y be elements of Sub(L). Suppose
y = R. Then x ¬ y if and only if x is a relational substructure of R.

Let L be a relational structure. One can verify that Sub(L) is reflexive an-
tisymmetric and transitive.

Let L be a relational structure. Observe that Sub(L) is complete.

Let L be a complete lattice. Note that every relational substructure of L
which is infs-inheriting is also non empty and every relational substructure of L
which is sups-inheriting is also non empty.

Let L be a relational structure. A system of L is a full relational substructure
of L.

Let L be a non empty relational structure and let S be a system of L. We
introduce S is closure as a synonym of S is infs-inheriting.

Let L be a non empty relational structure. Observe that sub(ΩL) is infs-
inheriting and sups-inheriting.
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Let L be a non empty relational structure. The functor ClosureSystems(L)
yields a full strict non empty relational substructure of Sub(L) and is defined
by the condition (Def. 4).

(Def. 4) Let R be a strict relational substructure of L. Then R is an element of
ClosureSystems(L) if and only if R is infs-inheriting and full.

Next we state two propositions:

(17) Let L be a non empty relational structure and x be a set. Then x is an
element of ClosureSystems(L) if and only if x is a strict closure system of
L.

(18) Let L be a non empty relational structure, R be a relational structure,
and x, y be elements of ClosureSystems(L). Suppose y = R. Then x ¬ y
if and only if x is a relational substructure of R.

4. Isomorphism between closure operators and closure systems

Let L be a non empty poset and let h be a closure map from L into L. Note
that Imh is infs-inheriting.
Let L be a non empty poset. The functor ClImageMap(L) yields a map from

ClOpers(L) into (ClosureSystems(L))op and is defined as follows:

(Def. 5) For every closure map c from L into L holds (ClImageMap(L))(c) = Im c.

Let L be a non empty relational structure and let S be a relational substruc-
ture of L. The closure operation of S is a map from L into L and is defined
by:

(Def. 6) For every element x of L holds (the closure operation of S)(x) = d−eL(↑x∩
the carrier of S).

Let L be a complete lattice and let S be a closure system of L. One can
verify that the closure operation of S is closure.
Next we state two propositions:

(19) Let L be a complete lattice and S be a closure system of L. Then Im (the
closure operation of S) = the relational structure of S.

(20) For every complete lattice L and for every closure map c from L into L
holds the closure operation of Im c = c.

Let L be a complete lattice. One can check that ClImageMap(L) is one-to-
one.
One can prove the following propositions:

(21) For every complete lattice L holds (ClImageMap(L))−1 is a map from
(ClosureSystems(L))op into ClOpers(L).

(22) Let L be a complete lattice and S be a strict closure system of L. Then
(ClImageMap(L))−1(S) = the closure operation of S.

Let L be a complete lattice. One can verify that ClImageMap(L) is isomor-
phic.
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The following proposition is true

(23) For every complete lattice L holds ClOpers(L) and (ClosureSystems(L))op

are isomorphic.

5. Isomorphism between closure operators preserving directed
sups and subalgebras

We now state three propositions:

(24) Let L be a relational structure, S be a full relational substructure of L,
and X be a subset of S. Then
(i) if X is a directed subset of L, then X is directed, and
(ii) if X is a filtered subset of L, then X is filtered.

(25) Let L be a complete lattice and S be a closure system of L. Then the clo-
sure operation of S is directed-sups-preserving if and only if S is directed-
sups-inheriting.

(26) Let L be a complete lattice and h be a closure map from L into L. Then
h is directed-sups-preserving if and only if Imh is directed-sups-inheriting.

Let L be a complete lattice and let S be a directed-sups-inheriting closure
system of L. Observe that the closure operation of S is directed-sups-preserving.
Let L be a complete lattice and let h be a directed-sups-preserving closure

map from L into L. Observe that Imh is directed-sups-inheriting.
Let L be a non empty reflexive relational structure. The functor ClOpers∗(L)

yields a non empty full strict relational substructure of ClOpers(L) and is defined
by the condition (Def. 7).

(Def. 7) Let f be a closure map from L into L. Then f is an element of
ClOpers∗(L) if and only if f is directed-sups-preserving.

Next we state the proposition

(27) Let L be a non empty reflexive relational structure and x be a set. Then
x is an element of ClOpers∗(L) if and only if x is a directed-sups-preserving
closure map from L into L.

Let L be a non empty relational structure. The functor Subalgebras(L) yields
a full strict non empty relational substructure of ClosureSystems(L) and is de-
fined by the condition (Def. 8).

(Def. 8) Let R be a strict closure system of L. Then R is an element of
Subalgebras(L) if and only if R is directed-sups-inheriting.

The following two propositions are true:

(28) Let L be a non empty relational structure and x be a set. Then x is
an element of Subalgebras(L) if and only if x is a strict directed-sups-
inheriting closure system of L.

(29) For every complete lattice L holds Im(ClImageMap(L)�ClOpers∗(L)) =
(Subalgebras(L))op.
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Let L be a complete lattice. Note that (ClImageMap(L)�ClOpers∗(L))◦ is
isomorphic.
The following proposition is true

(30) For every complete lattice L holds ClOpers∗(L) and (Subalgebras(L))op

are isomorphic.
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The papers [22], [27], [15], [2], [23], [21], [28], [11], [12], [14], [9], [10], [19], [3],
[26], [1], [4], [24], [18], [25], [17], [20], [6], [16], [5], [7], [8], and [13] provide the
notation and terminology for this paper.

1. Preliminaries

Let I be a set and let A, f be functions. The functor f�IA yielding a many
sorted function indexed by I is defined by:

(Def. 1) For every set i such that i ∈ I holds (f�IA)(i) = f�A(i).

One can prove the following propositions:

(1) For every set I and for every many sorted set A indexed by I holds
idUnionA�IA = idA.

(2) Let I be a set, A, B be many sorted sets indexed by I, and f , g be
functions. If rngκ(f�IA)(κ) ⊆ B, then (g · f)�IA = (g�IB) ◦ (f�IA).

(3) Let f be a function, I be a set, and A, B be many sorted sets indexed
by I. Suppose that for every set i such that i ∈ I holds A(i) ⊆ dom f and
f◦A(i) ⊆ B(i). Then f�IA is a many sorted function from A into B.

(4) Let A be a set, i be a natural number, and p be a finite sequence. Then
p ∈ Ai if and only if len p = i and rng p ⊆ A.

(5) Let A be a set, i be a natural number, and p be a finite sequence of
elements of A. Then p ∈ Ai if and only if len p = i.

(6) For every set A and for every natural number i holds Ai ⊆ A∗.

(7) For every set A and for every natural number i holds i 6= 0 and A = ∅
iff Ai = ∅.
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(8) For all sets A, x holds x ∈ A1 iff there exists a set a such that a ∈ A
and x = 〈a〉.

(9) For all sets A, a such that 〈a〉 ∈ A1 holds a ∈ A.

(10) For all sets A, x holds x ∈ A2 iff there exist sets a, b such that a ∈ A
and b ∈ A and x = 〈a, b〉.

(11) For all sets A, a, b such that 〈a, b〉 ∈ A2 holds a ∈ A and b ∈ A.

(12) For all sets A, x holds x ∈ A3 iff there exist sets a, b, c such that a ∈ A
and b ∈ A and c ∈ A and x = 〈a, b, c〉.

(13) For all sets A, a, b, c such that 〈a, b, c〉 ∈ A3 holds a ∈ A and b ∈ A and
c ∈ A.

Let A be a function. We say that A is mutually-disjoint if and only if:

(Def. 2) For all sets x, y such that x 6= y holds A(x) misses A(y).

Let S be a non empty many sorted signature and let A be an algebra over
S. We say that A is empty if and only if:

(Def. 3) The sorts of A are empty yielding.

We say that A is disjoint if and only if:

(Def. 4) The sorts of A are mutually-disjoint.

Let S be a non empty many sorted signature. Note that every algebra over
S which is non-empty is also non empty.
Let S be a non empty non void many sorted signature and let X be a non-

empty many sorted set indexed by the carrier of S. One can check that Free(X)
is disjoint.
Let S be a non empty non void many sorted signature. Observe that there

exists an algebra over S which is strict, non-empty, and disjoint.
Let S be a non empty non void many sorted signature and let A be a non

empty algebra over S. One can verify that the sorts of A is non empty yielding.
One can verify that there exists a function which is non empty yielding.

2. Signature of a category

Let A be a set. The functor CatSign(A) yielding a strict many sorted signa-
ture is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of CatSign(A) = [: {0}, A2 :],
(ii) the operation symbols of CatSign(A) = [: {1}, A1 :] ∪ [: {2}, A3 :],
(iii) for every set a such that a ∈ A holds (the arity of CatSign(A))(〈〈1,
〈a〉〉〉) = ε and (the result sort of CatSign(A))(〈〈1, 〈a〉〉〉) = 〈〈0, 〈a, a〉〉〉, and

(iv) for all sets a, b, c such that a ∈ A and b ∈ A and c ∈ A holds (the arity
of CatSign(A))(〈〈2, 〈a, b, c〉〉〉) = 〈〈〈0, 〈b, c〉〉〉, 〈〈0, 〈a, b〉〉〉〉 and (the result sort
of CatSign(A))(〈〈2, 〈a, b, c〉〉〉) = 〈〈0, 〈a, c〉〉〉.

Let A be a set. Observe that CatSign(A) is feasible.
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Let A be a non empty set. Observe that CatSign(A) is non empty and non
void.
Instead of a feasible many sorted signature we will use a signature.
Let S be a signature. We say that S is categorial if and only if:

(Def. 6) There exists a set A such that CatSign(A) is a subsignature of S and
the carrier of S = [: {0}, A2 :].

Let us note that every non empty signature which is categorial is also non
void.
One can check that there exists a signature which is categorial, non empty,

and strict.
A cat-signature is a categorial signature.
Let A be a set. A signature is said to be a cat-signature of A if:

(Def. 7) CatSign(A) is a subsignature of it and the carrier of it = [: {0}, A2 :].

One can prove the following proposition

(14) For all sets A1, A2 and for every cat-signature S of A1 such that S is a
cat-signature of A2 holds A1 = A2.

Let A be a set. Note that every cat-signature of A is categorial.
Let A be a non empty set. Note that every cat-signature of A is non empty.
Let A be a set. Observe that there exists a cat-signature of A which is strict.
Let A be a set. Then CatSign(A) is a strict cat-signature of A.
Let S be a many sorted signature. The functor underlayS is defined by the

condition (Def. 8).

(Def. 8) Let x be a set. Then x ∈ underlayS if and only if there exists a set a
and there exists a function f such that 〈〈a, f〉〉 ∈ (the carrier of S) ∪ (the
operation symbols of S) and x ∈ rng f.

One can prove the following proposition

(15) For every set A holds underlayCatSign(A) = A.

Let S be a many sorted signature. We say that S is δ-concrete if and only if
the condition (Def. 9) is satisfied.

(Def. 9) There exists a function f from N into N such that
(i) for every set s such that s ∈ the carrier of S there exists a natural
number i and there exists a finite sequence p such that s = 〈〈i, p〉〉 and
len p = f(i) and [: {i}, (underlayS)f(i) :] ⊆ the carrier of S, and

(ii) for every set o such that o ∈ the operation symbols of S there exists a
natural number i and there exists a finite sequence p such that o = 〈〈i, p〉〉
and len p = f(i) and [: {i}, (underlay S)f(i) :] ⊆ the operation symbols of
S.

Let A be a set. One can check that CatSign(A) is δ-concrete.
Observe that there exists a cat-signature which is δ-concrete, non empty,

and strict. Let A be a set. One can check that there exists a cat-signature of A
which is δ-concrete and strict.
The following propositions are true:



306 grzegorz bancerek

(16) Let S be a δ-concrete many sorted signature and x be a set. Suppose
x ∈ the carrier of S or x ∈ the operation symbols of S. Then there exists
a natural number i and there exists a finite sequence p such that x = 〈〈i,
p〉〉 and rng p ⊆ underlayS.

(17) Let S be a δ-concrete many sorted signature, i be a set, and p1, p2 be
finite sequences. Suppose that

(i) 〈〈i, p1〉〉 ∈ the carrier of S and 〈〈i, p2〉〉 ∈ the carrier of S, or
(ii) 〈〈i, p1〉〉 ∈ the operation symbols of S and 〈〈i, p2〉〉 ∈ the operation sym-
bols of S.

Then len p1 = len p2.

(18) Let S be a δ-concrete many sorted signature, i be a set, and p1, p2 be
finite sequences such that len p2 = len p1 and rng p2 ⊆ underlayS. Then

(i) if 〈〈i, p1〉〉 ∈ the carrier of S, then 〈〈i, p2〉〉 ∈ the carrier of S, and
(ii) if 〈〈i, p1〉〉 ∈ the operation symbols of S, then 〈〈i, p2〉〉 ∈ the operation
symbols of S.

(19) Every δ-concrete categorial non empty signature S is a cat-signature of
underlayS.

3. Symbols of categorial signatures

Let S be a non empty cat-signature and let s be a sort symbol of S. Note
that s2 is relation-like and function-like.

Let S be a non empty δ-concrete many sorted signature and let s be a sort
symbol of S. Observe that s2 is relation-like and function-like.

Let S be a non void δ-concrete many sorted signature and let o be an ele-
ment of the operation symbols of S. One can verify that o2 is relation-like and
function-like.

Let S be a non empty cat-signature and let s be a sort symbol of S. One
can verify that s2 is finite sequence-like.

Let S be a non empty δ-concrete many sorted signature and let s be a sort
symbol of S. Observe that s2 is finite sequence-like.

Let S be a non void δ-concrete many sorted signature and let o be an element
of the operation symbols of S. Observe that o2 is finite sequence-like.

Let a be a set. The functor idsyma is defined as follows:

(Def. 10) idsym a = 〈〈1, 〈a〉〉〉.

Let b be a set. The functor homsym(a, b) is defined as follows:

(Def. 11) homsym(a, b) = 〈〈0, 〈a, b〉〉〉.

Let c be a set. The functor compsym(a, b, c) is defined as follows:

(Def. 12) compsym(a, b, c) = 〈〈2, 〈a, b, c〉〉〉.

Next we state the proposition
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(20) Let A be a non empty set, S be a cat-signature of A, and a be an element
of A. Then
(i) idsym a ∈ the operation symbols of S, and
(ii) for every element b of A holds homsym(a, b) ∈ the carrier of S and for
every element c of A holds compsym(a, b, c) ∈ the operation symbols of S.

Let A be a non empty set and let a be an element of A. Then idsym a is an
operation symbol of CatSign(A). Let b be an element of A. Then homsym(a, b)
is a sort symbol of CatSign(A). Let c be an element of A. Then compsym(a, b, c)
is an operation symbol of CatSign(A).
We now state several propositions:

(21) For all sets a, b such that idsym a = idsym b holds a = b.

(22) For all sets a1, b1, a2, b2 such that homsym(a1, a2) = homsym(b1, b2)
holds a1 = b1 and a2 = b2.

(23) For all sets a1, b1, a2, b2, a3, b3 such that compsym(a1, a2, a3) =
compsym(b1, b2, b3) holds a1 = b1 and a2 = b2 and a3 = b3.

(24) Let A be a non empty set, S be a cat-signature of A and s be a sort sym-
bol of S. Then there exist elements a, b of A such that s = homsym(a, b).

(25) For every non empty set A and for every operation symbol o of
CatSign(A) holds o1 = 1 and len(o2) = 1 or o1 = 2 and len(o2) = 3.

(26) Let A be a non empty set and o be an operation symbol of CatSign(A).
If o1 = 1 or len(o2) = 1, then there exists an element a of A such that
o = idsym a.

(27) Let A be a non empty set and o be an operation symbol of CatSign(A).
If o1 = 2 or len(o2) = 3, then there exist elements a, b, c of A such that
o = compsym(a, b, c).

(28) For every non empty set A and for every element a of A holds
Arity(idsym a) = ε and the result sort of idsyma = homsym(a, a).

(29) For every non empty set A and for all elements a, b, c of A holds
Arity(compsym(a, b, c)) = 〈homsym(b, c),homsym(a, b)〉 and the result
sort of compsym(a, b, c) = homsym(a, c).

4. Signature homomorphism generated by a functor

Let C1, C2 be categories and let F be a functor from C1 to C2. The functor
ΥF yields a function from the carrier of CatSign(the objects of C1) into the
carrier of CatSign(the objects of C2) and is defined as follows:

(Def. 13) For every sort symbol s of CatSign(the objects of C1) holds ΥF (s) = 〈〈0,
ObjF · s2〉〉.

The functor ΨF yields a function from the operation symbols of CatSign(the
objects of C1) into the operation symbols of CatSign(the objects of C2) and is
defined as follows:
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(Def. 14) For every operation symbol o of CatSign(the objects of C1) holds
ΨF (o) = 〈〈o1, ObjF · o2〉〉.

The following propositions are true:

(30) For all categories C1, C2 and for every functor F from C1 to C2 and for
all objects a, b of C1 holds ΥF (homsym(a, b)) = homsym(F (a), F (b)).

(31) For all categories C1, C2 and for every functor F from C1 to C2 and for
every object a of C1 holds ΨF (idsym a) = idsymF (a).

(32) Let C1, C2 be categories, F be a functor from C1 to C2, and a, b, c be
objects of C1. Then ΨF (compsym(a, b, c)) = compsym(F (a), F (b), F (c)).

(33) Let C1, C2 be categories and F be a functor from C1 to C2. Then ΥF and
ΨF form morphism between CatSign(the objects of C1) and CatSign(the
objects of C2).

5. Algebra of morphisms

Next we state the proposition

(34) For every non empty set C and for every algebra A over CatSign(C) and
for every element a of C holds Args(idsym a,A) = {ε}.

The scheme CatAlgEx deals with non empty sets A, B, a binary functor F
yielding a set, a 5-ary functor G yielding a set, and a unary functor H yielding
a set, and states that:

There exists a strict algebra A over CatSign(A) such that
(i) for all elements a, b of A holds (the sorts of

A)(homsym(a, b)) = F(a, b),
(ii) for every element a of A holds (Den(idsym a,A))(ε) =
H(a), and
(iii) for all elements a, b, c of A and for all elements
f , g of B such that f ∈ F(a, b) and g ∈ F(b, c) holds
(Den(compsym(a, b, c), A))(〈g, f〉) = G(a, b, c, g, f)

provided the parameters have the following properties:
• For all elements a, b of A holds F(a, b) ⊆ B,
• For every element a of A holds H(a) ∈ F(a, a),
• For all elements a, b, c of A and for all elements f , g of B such
that f ∈ F(a, b) and g ∈ F(b, c) holds G(a, b, c, g, f) ∈ F(a, c).

Let C be a category. The functor MSAlg(C) yielding a strict algebra over
CatSign(the objects of C) is defined by the conditions (Def. 15).

(Def. 15)(i) For all objects a, b of C holds (the sorts of MSAlg(C))(homsym(a, b)) =
hom(a, b),

(ii) for every object a of C holds (Den(idsym a,MSAlg(C)))(ε) = ida, and
(iii) for all objects a, b, c of C and for all morphisms f , g of C such
that dom f = a and cod f = b and dom g = b and cod g = c holds
(Den(compsym(a, b, c),MSAlg(C)))(〈g, f〉) = g · f.
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The following propositions are true:

(35) For every category A and for all objects a, b of A holds (the sorts of
MSAlg(A))(homsym(a, b)) = hom(a, b).

(36) For every category A and for every object a of A holds
Result(idsym a,MSAlg(A)) = hom(a, a).

(37) For every category A and for all objects a, b, c of A
holds Args(compsym(a, b, c),MSAlg(A)) =

∏
〈hom(b, c),hom(a, b)〉 and

Result(compsym(a, b, c),MSAlg(A)) = hom(a, c).

Let C be a category. Note that MSAlg(C) is disjoint and feasible.

One can prove the following propositions:

(38) Let C1, C2 be categories and F be a functor from C1 to C2. Then
F �the carrier of CatSign(the objects of C1)the sorts of MSAlg(C1) is a many sor-
ted function from MSAlg(C1) into MSAlg(C2)�(ΥF ,ΨF )CatSign(the ob-
jects of C1).

(39) Let C be a category, a, b, c be objects of C, and x be a set. Then
x ∈ Args(compsym(a, b, c),MSAlg(C)) if and only if there exist morphisms
g, f of C such that x = 〈g, f〉 and dom f = a and cod f = b and dom g = b
and cod g = c.

(40) Let C1, C2 be categories, F be a functor from C1 to C2, a, b, c be ob-
jects of C1, and f , g be morphisms of C1. Suppose f ∈ hom(a, b) and
g ∈ hom(b, c). Let x be an element of Args(compsym(a, b, c),MSAlg(C1)).
Suppose x = 〈g, f〉. Let H be a many sorted function from MSAlg(C1)
into MSAlg(C2)�(ΥF ,ΨF )CatSign(the objects of C1). Suppose H =
F �the carrier of CatSign(the objects of C1)the sorts of MSAlg(C1). ThenH#x =
〈F (g), F (f)〉.

(41) For every category C and for every object a of C holds (Den(idsym a,
MSAlg(C)))(∅) = ida.

(42) Let C be a category, a, b, c be objects of C, and f , g be morphisms
of C. If f ∈ hom(a, b) and g ∈ hom(b, c), then (Den(compsym(a, b, c),
MSAlg(C)))(〈g, f〉) = g · f.

(43) Let C be a category, a, b, c, d be objects of C, and f , g, h
be morphisms of C. Suppose f ∈ hom(a, b) and g ∈ hom(b, c)
and h ∈ hom(c, d). Then (Den(compsym(a, c, d),MSAlg(C)))(〈h,
(Den(compsym(a, b, c),MSAlg(C)))(〈g, f〉)〉) = (Den(compsym(a, b, d),
MSAlg(C)))(〈(Den(compsym(b, c, d),MSAlg(C)))(〈h, g〉), f〉).

(44) Let C be a category, a, b be objects of C, and f be a morphism of C. If
f ∈ hom(a, b), then (Den(compsym(a, b, b),MSAlg(C)))(〈idb, f〉) = f and
(Den(compsym(a, a, b),MSAlg(C)))(〈f, ida〉) = f.

(45) Let C1, C2 be categories and F be a functor from C1 to C2.
Then there exists a many sorted function H from MSAlg(C1) into
MSAlg(C2)�(ΥF ,ΨF )CatSign(the objects of C1) such that

(i) H = F �the carrier of CatSign(the objects of C1)the sorts of MSAlg(C1), and
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(ii) H is a homomorphism of MSAlg(C1) into MSAlg(C2)�(ΥF ,ΨF )CatSign(the
objects of C1).
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Summary. In the article we continue the formalization in Mizar of [15,
98–105]. We work with structures of the form

L = 〈C, ¬, τ 〉,

where C is the carrier of the structure, ¬ - an ordering relation on C and τ a
family of subsets of C. When 〈C, ¬〉 is a complete lattice we say that L is Scott,
if τ is the Scott topology of 〈C, ¬〉. We define the Scott convergence (lim inf co-
nvergence). Following [15] we prove that in the case of a continuous lattice 〈C, ¬〉

the Scott convergence is topological, i.e. enjoys the properties: (CONSTANTS),
(SUBNETS), (DIVERGENCE), (ITERATED LIMITS). We formalize the the-
orem, that if the Scott convergence has the (ITERATED LIMITS) property, the
〈C, ¬〉 is continuous.

MML Identifier: WAYBEL11.

The terminology and notation used in this paper are introduced in the following
articles: [29], [35], [37], [25], [12], [14], [36], [10], [11], [9], [3], [8], [33], [23], [27],
[38], [28], [26], [41], [17], [30], [2], [24], [1], [22], [34], [4], [5], [6], [16], [40], [13],
[18], [19], [20], [7], [39], [32], [21], and [31].

1. Preliminaries

The scheme Irrel deals with non empty sets A, B, a unary functor F yielding
a set, a binary functor F yielding a set, and a unary predicate P, and states
that:

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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{F(u), u ranges over elements of A : P[u]} = {F(i, v), i ranges
over elements of B, v ranges over elements of A : P[v]}

provided the following condition is met:
• For every element i of B and for every element u of A holds
F(u) = F(i, u).

One can prove the following three propositions:

(1) Let L be a complete non empty lattice and X, Y be subsets of the carrier
of L. If Y is coarser than X, then d−eLX ¬ d−eLY.

(2) Let L be a complete non empty lattice and X, Y be subsets of the carrier
of L. If X is finer than Y then

⊔
L X ¬

⊔
L Y.

(3) Let T be a relational structure, A be an upper subset of T , and B be a
directed subset of T . Then A ∩B is directed.

Let T be a reflexive non empty relational structure. Observe that there exists
a subset of T which is non empty, directed, and finite.
Next we state the proposition

(4) For every non empty poset T with l.u.b.’s and for every non empty
directed finite subset D of T holds supD ∈ D.

Let us observe that there exists a relational structure which is trivial, refle-
xive, transitive, non empty, antisymmetric, finite, and strict and has l.u.b.’s.
Let us observe that there exists a 1-sorted structure which is finite, non

empty, and strict.
Let T be a finite 1-sorted structure. Note that every subset of T is finite.
Let R be a relational structure. Note that ∅R is lower and upper.
Let R be a trivial non empty relational structure. Note that every subset of

R is upper.
One can prove the following propositions:

(5) Let T be a non empty relational structure, x be an element of T , and A
be an upper subset of T . If x /∈ A, then A misses ↓x.

(6) Let T be a non empty relational structure, x be an element of T , and A
be a lower subset of T . If x ∈ A, then ↓x ⊆ A.

2. Scott Topology

Let T be a non empty reflexive relational structure and let S be a subset of
T . We say that S is inaccessible by directed joins if and only if:

(Def. 1) For every non empty directed subset D of T such that supD ∈ S holds
D meets S.

We introduce S is inaccessible as a synonym of S is inaccessible by directed
joins. We say that S is closed under directed sups if and only if:

(Def. 2) For every non empty directed subset D of T such that D ⊆ S holds
supD ∈ S.
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We introduce S is directly closed as a synonym of S is closed under directed sups.
We say that S is property(S) if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let D be a non empty directed subset of T . Suppose supD ∈ S. Then
there exists an element y of T such that y ∈ D and for every element x of
T such that x ∈ D and x ­ y holds x ∈ S.

We introduce S has the property (S) as a synonym of S is property(S).

Let T be a non empty reflexive relational structure. One can check that ∅T
is property(S) and directly closed.

Let T be a non empty reflexive relational structure. Observe that there exists
a subset of T which is property(S) and directly closed.

Let T be a non empty reflexive relational structure and let S be a property(S)
subset of T . One can verify that −S is directly closed.

Let T be a reflexive non empty FR-structure. We say that T is Scott if and
only if:

(Def. 4) For every subset S of T holds S is open iff S is inaccessible and upper.

Let T be a reflexive transitive antisymmetric non empty finite relational
structure with l.u.b.’s. Note that every subset of T is inaccessible.

Let T be a reflexive transitive antisymmetric non empty finite FR-structure
with l.u.b.’s. Let us observe that T is Scott if and only if:

(Def. 5) For every subset S of T holds S is open iff S is upper.

Let us mention that there exists a non empty strict TopLattice which is
trivial, complete, and Scott.

Let T be a non empty reflexive relational structure. Observe that ΩT is
directly closed and inaccessible.

Let T be a non empty reflexive relational structure. Note that there exists
a subset of T which is directly closed, lower, inaccessible, and upper.

Let T be a complete non empty TopLattice and let S be an inaccessible
subset of T . Note that −S is directly closed.

Let T be a non empty reflexive relational structure and let S be a directly
closed subset of T . One can check that −S is inaccessible.

One can prove the following propositions:

(7) Let T be a complete Scott non empty TopLattice and S be a subset of
T . Then S is closed if and only if S is directly closed and lower.

(8) For every complete non empty TopLattice T and for every element x of
T holds ↓x is directly closed.

(9) For every complete Scott non empty TopLattice T and for every element

x of T holds {x} = ↓x.

(10) Every complete Scott non empty TopLattice is a T0-space.

(11) For every complete Scott non empty TopLattice T and for every element
x of T holds ↓x is closed.

(12) For every complete Scott non empty TopLattice T and for every element
x of T holds −↓x is open.
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(13) Let T be a complete Scott non empty TopLattice, x be an element of T ,
and A be an upper subset of T . If x /∈ A, then −↓x is a neighbourhood of
A.

(14) Let T be a complete Scott non empty TopLattice and S be an upper
subset of T . Then there exists a family F of subsets of T such that S =

⋂
F

and for every subset X of T such that X ∈ F holds X is a neighbourhood
of S.

(15) Let T be a Scott non empty TopLattice and S be a subset of T . Then S
is open if and only if S is upper and property(S).

Let T be a complete non empty TopLattice. Observe that every subset of T
which is lower is also property(S).
One can prove the following proposition

(16) Let T be a non empty transitive reflexive FR-structure. Suppose the
topology of T = {S, S ranges over subsets of T : S has the property (S)}.
Then T is topological space-like.

3. Scott Convergence

In the sequel R will be a non empty relational structure, N will be a net in
R, and i, j will be elements of the carrier of N .
Let us consider R, N . The functor lim inf N yielding an element of R is

defined by:

(Def. 6) lim inf N =
⊔

R{d
−eR{N(i) : i ­ j} : j ranges over elements of the carrier

of N}.

Let R be a reflexive non empty relational structure, let N be a net in R,
and let p be an element of the carrier of R. We say that p is S-limit of N if and
only if:

(Def. 7) p ¬ lim inf N.

Let R be a reflexive non empty relational structure. The Scott convergence
of R yields a convergence class of R and is defined by the condition (Def. 8).

(Def. 8) Let N be a strict net in R. Suppose N ∈ NetUniv(R). Let p be an
element of the carrier of R. Then 〈〈N, p〉〉 ∈ the Scott convergence of R if
and only if p is S-limit of N .

The following two propositions are true:

(17) Let R be a non empty complete lattice, N be a net in R, and p, q be
elements of the carrier of R. If p is S-limit of N and N is eventually in ↓q,
then p ¬ q.

(18) Let R be a non empty complete lattice, N be a net in R, and p, q be
elements of the carrier of R. If N is eventually in ↑q, then lim inf N ­ q.

Let R be a reflexive non empty relational structure and let N be a non empty
net structure over R. Let us observe that N is monotone if and only if:
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(Def. 9) For all elements i, j of the carrier ofN such that i ¬ j holdsN(i) ¬ N(j).

Let R be a non empty relational structure, let S be a non empty set, and let
f be a function from S into the carrier of R. The functor NetStr(S, f) yielding
a strict non empty net structure over R is defined by the conditions (Def. 10).

(Def. 10)(i) The carrier of NetStr(S, f) = S,
(ii) the mapping of NetStr(S, f) = f, and
(iii) for all elements i, j of NetStr(S, f) holds i ¬ j iff (NetStr(S, f))(i) ¬

(NetStr(S, f))(j).

The following two propositions are true:

(19) Let L be a non empty 1-sorted structure and N be a non empty net
structure over L. Then rng (the mapping of N) = {N(i) : i ranges over
elements of the carrier of N}.

(20) Let R be a non empty relational structure, S be a non empty set, and
f be a function from S into the carrier of R. If rng f is directed, then
NetStr(S, f) is directed.

Let R be a non empty relational structure, let S be a non empty set, and let
f be a function from S into the carrier of R. Note that NetStr(S, f) is monotone.
Let R be a transitive non empty relational structure, let S be a non empty

set, and let f be a function from S into the carrier of R. Note that NetStr(S, f)
is transitive.
Let R be a reflexive non empty relational structure, let S be a non empty set,

and let f be a function from S into the carrier of R. Observe that NetStr(S, f)
is reflexive.
We now state the proposition

(21) Let R be a non empty transitive relational structure, S be a non empty
set, and f be a function from S into the carrier of R. If S ⊆ the carrier of
R and NetStr(S, f) is directed, then NetStr(S, f) ∈ NetUniv(R).

Let R be a non empty lattice. One can check that there exists a net in R
which is monotone, reflexive, and strict.
The following propositions are true:

(22) For every non empty complete lattice R and for every monotone reflexive
net N in R holds lim inf N = supN.

(23) For every complete non empty lattice R and for every constant net N in
R holds the value of N = lim inf N.

(24) For every complete non empty lattice R and for every constant net N in
R holds the value of N is S-limit of N .

Let S be a non empty 1-sorted structure and let e be an element of the carrier
of S. The functor NetStr(e) yielding a strict net structure over S is defined as
follows:

(Def. 11) The carrier of NetStr(e) = {e} and the internal relation of NetStr(e) =
{〈〈e, e〉〉} and the mapping of NetStr(e) = id{e}.

Let S be a non empty 1-sorted structure and let e be an element of the
carrier of S. Observe that NetStr(e) is non empty.
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One can prove the following propositions:

(25) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and x be an element of NetStr(e). Then x = e.

(26) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and x be an element of NetStr(e). Then (NetStr(e))(x) = e.

Let S be a non empty 1-sorted structure and let e be an element of the carrier
of S. Observe that NetStr(e) is reflexive transitive directed and antisymmetric.
We now state several propositions:

(27) Let S be a non empty 1-sorted structure, e be an element of the carrier
of S, and X be a set. Then NetStr(e) is eventually in X if and only if
e ∈ X.

(28) Let S be a reflexive antisymmetric non empty relational structure and e
be an element of the carrier of S. Then e = lim inf NetStr(e).

(29) For every non empty reflexive relational structure S and for every ele-
ment e of the carrier of S holds NetStr(e) ∈ NetUniv(S).

(30) Let R be a non empty complete lattice, Z be a net in R, and D be a
subset of R. SupposeD = {d−eR{Z(k), k ranges over elements of the carrier
of Z: k ­ j} : j ranges over elements of the carrier of Z}. Then D is non
empty and directed.

(31) Let L be a non empty complete lattice and S be a subset of L. Then
S ∈ the topology of ConvergenceSpace(the Scott convergence of L) if and
only if S is inaccessible and upper.

(32) Let T be a non empty complete Scott TopLattice. Then the topological
structure of T = ConvergenceSpace(the Scott convergence of T ).

(33) Let T be a non empty complete TopLattice. Suppose the topological
structure of T = ConvergenceSpace(the Scott convergence of T ). Let S be
a subset of T . Then S is open if and only if S is inaccessible and upper.

(34) Let T be a non empty complete TopLattice. Suppose the topological
structure of T = ConvergenceSpace(the Scott convergence of T ). Then T
is Scott.

Let R be a complete non empty lattice. Note that the Scott convergence of
R has (CONSTANTS) property.
Let R be a complete non empty lattice. Observe that the Scott convergence

of R has (SUBNETS) property.

The following proposition is true

(35) Let S be a non empty 1-sorted structure, N be a net in S, X be a set,
and M be a subnet of N . If M = N−1(X), then for every element i of the
carrier of M holds M(i) ∈ X.

Let L be a non empty complete lattice. The functor sigmaL yielding a family
of subsets of L is defined as follows:

(Def. 12) sigmaL = the topology of ConvergenceSpace(the Scott convergence of
L).
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One can prove the following propositions:

(36) For every continuous complete Scott TopLattice L and for every element
x of L holds ↑↑x is open.

(37) For every non empty complete TopLattice T such that the topology of
T = sigmaT holds T is Scott.

Let R be a continuous non empty complete lattice. Observe that the Scott
convergence of R is topological.
We now state a number of propositions:

(38) Let T be a continuous non empty complete Scott TopLattice, x be an
element of the carrier of T , and N be a net in T . If N ∈ NetUniv(T ), then
x is S-limit of N iff x ∈ LimN.

(39) Let L be a complete non empty poset. Suppose the Scott convergence of
L has (ITERATED LIMITS) property. Then L is continuous.

(40) Let T be a complete Scott non empty TopLattice. Then T is continuous
if and only if Convergence(T ) = the Scott convergence of T .

(41)2 For every complete Scott non empty TopLattice T and for every upper
subset S of T such that S is open holds S is open.

(42) Let L be a non empty relational structure, S be an upper subset of L,
and x be an element of L. If x ∈ S, then ↑x ⊆ S.

(43) Let L be a non empty complete continuous Scott TopLattice, p be an
element of L, and S be a subset of L. If S is open and p ∈ S, then there
exists an element q of L such that q � p and q ∈ S.

(44) Let L be a non empty complete continuous Scott TopLattice and p be
an element of L. Then {↑↑q, q ranges over elements of L: q � p} is a basis
of p.

(45) For every complete continuous Scott non empty TopLattice T holds {↑↑x :
x ranges over elements of T} is a basis of T .

(46)3 Let T be a complete continuous Scott non empty TopLattice and S be
an upper subset of T . Then S is open if and only if S is open.

(47) For every complete continuous Scott non empty TopLattice T and for
every element p of T holds Int↑p = ↑↑p.

(48) Let T be a complete continuous Scott non empty TopLattice and S be
a subset of T . Then IntS =

⋃
{↑↑x, x ranges over elements of T : ↑↑x ⊆ S}.
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Summary. In this paper Exercise 3.43 from Chapter 1 of [14] is solved.

MML Identifier: WAYBEL12.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [27], [2], [28], [10], [11], [8], [13], [25], [9], [1], [4], [21],
[26], [29], [12], [17], [22], [3], [5], [16], [6], [30], [18], [19], [7], [15], [20], and [24].

1. Preliminaries

Let T be a topological structure and let A be a subset of the carrier of T .
Then IntA is a subset of T .
Let T be a topological structure and let P be a subset of the carrier of T .

Let us observe that P is closed if and only if:

(Def. 1) −P is open.

Let T be a non empty topological space and let F be a family of subsets of
T . We say that F is dense if and only if:

(Def. 2) For every subset X of T such that X ∈ F holds X is dense.

The following proposition is true

(1) Let L be a non empty 1-sorted structure, A be a subset of L, and x be
an element of L. Then x ∈ −A if and only if x /∈ A.

Let us observe that there exists a 1-sorted structure which is empty.
Let S be an empty 1-sorted structure. Note that the carrier of S is empty.

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.
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Let S be an empty 1-sorted structure. Note that every subset of S is empty.
One can check that every set which is finite is also countable.
Let us note that there exists a set which is empty.
Let S be a 1-sorted structure. One can verify that there exists a subset of S

which is empty.
One can verify that there exists a set which is non empty and finite.
Let L be a non empty relational structure. Observe that there exists a subset

of L which is non empty and finite.
Let us note that N is infinite.
Let us note that there exists a set which is infinite and countable.
Let S be a 1-sorted structure. One can verify that there exists a family of

subsets of S which is empty.
One can prove the following propositions:

(2) For all sets X, Y such that X ¬ Y and Y is countable holds X is
countable.

(3) For every infinite countable set A holds N ≈ A.

(4) For every non empty countable set A there exists a function f from N

into A such that rng f = A.

(5) For every 1-sorted structure S and for all subsets X, Y of S holds −(X∪
Y ) = (−X) ∩ −Y.

(6) For every 1-sorted structure S and for all subsets X, Y of S holds −X ∩
Y = −X ∪−Y.

(7) Let L be a non empty transitive relational structure and A, B be subsets
of L. If A is finer than B, then ↓A ⊆ ↓B.

(8) Let L be a non empty transitive relational structure and A, B be subsets
of L. If A is coarser than B, then ↑A ⊆ ↑B.

(9) Let L be a non empty poset and D be a non empty finite filtered subset
of L. If inf D exists in L, then infD ∈ D.

(10) Let L be a lower-bounded antisymmetric non empty relational structure
and X be a non empty lower subset of L. Then ⊥L ∈ X.

(11) Let L be a lower-bounded antisymmetric non empty relational structure
and X be a non empty subset of L. Then ⊥L ∈ ↓X.

(12) Let L be an upper-bounded antisymmetric non empty relational struc-
ture and X be a non empty upper subset of L. Then >L ∈ X.

(13) Let L be an upper-bounded antisymmetric non empty relational struc-
ture and X be a non empty subset of L. Then >L ∈ ↑X.

(14) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s
and X be a subset of L. Then X u {⊥L} ⊆ {⊥L}.

(15) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s
and X be a non empty subset of L. Then X u {⊥L} = {⊥L}.

(16) Let L be an upper-bounded antisymmetric relational structure with
l.u.b.’s and X be a subset of L. Then X t {>L} ⊆ {>L}.
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(17) Let L be an upper-bounded antisymmetric relational structure with
l.u.b.’s and X be a non empty subset of L. Then X t {>L} = {>L}.

(18) For every upper-bounded semilattice L and for every subsetX of L holds
{>L} uX = X.

(19) For every lower-bounded poset L with l.u.b.’s and for every subset X of
L holds {⊥L} tX = X.

(20) Let L be a non empty reflexive relational structure and A, B be subsets
of L. If A ⊆ B, then A is finer than B and coarser than B.

(21) Let L be an antisymmetric transitive relational structure with g.l.b.’s,
V be a subset of L, and x, y be elements of L. If x ¬ y, then {y} u V is
coarser than {x} u V.

(22) Let L be an antisymmetric transitive relational structure with l.u.b.’s,
V be a subset of L, and x, y be elements of L. If x ¬ y, then {x} t V is
finer than {y} t V.

(23) Let L be a non empty relational structure and V , S, T be subsets of L.
If S is coarser than T and V is upper and T ⊆ V, then S ⊆ V.

(24) Let L be a non empty relational structure and V , S, T be subsets of L.
If S is finer than T and V is lower and T ⊆ V, then S ⊆ V.

(25) For every semilattice L and for every upper filtered subset F of L holds
F u F = F.

(26) For every sup-semilattice L and for every lower directed subset I of L
holds I t I = I.

(27) For every upper-bounded semilattice L and for every subset V of L holds
{x, x ranges over elements of L: V u {x} ⊆ V } is non empty.

(28) Let L be an antisymmetric transitive relational structure with g.l.b.’s and
V be a subset of L. Then {x, x ranges over elements of L: V u {x} ⊆ V }
is a filtered subset of L.

(29) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and V be an upper subset of L. Then {x, x ranges over elements of L:
V u {x} ⊆ V } is an upper subset of L.

(30) For every poset L with g.l.b.’s and for every subset X of L such that X
is open and lower holds X is filtered.

Let L be a poset with g.l.b.’s. Observe that every subset of L which is open
and lower is also filtered.

Let L be a continuous antisymmetric non empty reflexive relational struc-
ture. One can verify that every subset of L which is lower is also open.

Let L be a continuous semilattice and let x be an element of L. Note that
−↓x is open.
We now state two propositions:

(31) Let L be a semilattice and C be a non empty subset of L. Suppose that
for all elements x, y of L such that x ∈ C and y ∈ C holds x ¬ y or y ¬ x.
Let Y be a non empty finite subset of C. Then d−eLY ∈ Y.
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(32) Let L be a sup-semilattice and C be a non empty subset of L. Suppose
that for all elements x, y of L such that x ∈ C and y ∈ C holds x ¬ y or
y ¬ x. Let Y be a non empty finite subset of C. Then

⊔
L Y ∈ Y.

Let L be a semilattice and let F be a filter of L. A subset of L is called a
generator set of F if:

(Def. 3) F = ↑fininfs(it).

Let L be a semilattice and let F be a filter of L. One can verify that there
exists a generator set of F which is non empty.
The following propositions are true:

(33) Let L be a semilattice, A be a subset of L, and B be a non empty subset
of L. If A is coarser than B, then fininfs(A) is coarser than fininfs(B).

(34) Let L be a semilattice, F be a filter of L, G be a generator set of F ,
and A be a non empty subset of L. Suppose G is coarser than A and A is
coarser than F . Then A is a generator set of F .

(35) Let L be a semilattice, A be a subset of L, and f , g be functions from
N into the carrier of L. Suppose rng f = A and for every element n of N

holds g(n) = d−eL{f(m),m ranges over natural numbers: m ¬ n}. Then A
is coarser than rng g.

(36) Let L be a semilattice, F be a filter of L, G be a generator set of F , and
f , g be functions from N into the carrier of L. Suppose rng f = G and
for every element n of N holds g(n) = d−eL{f(m),m ranges over natural
numbers: m ¬ n}. Then rng g is a generator set of F .

2. On the Baire Category Theorem

The following propositions are true:

(37) Let L be a lower-bounded continuous lattice, V be an open upper subset
of L, F be a filter of L, and v be an element of L. Suppose V uF ⊆ V and
v ∈ V and there exists a non empty generator set of F which is countable.
Then there exists an open filter O of L such that O ⊆ V and v ∈ O and
F ⊆ O.

(38) Let L be a lower-bounded continuous lattice, V be an open upper subset
of L, N be a non empty countable subset of L, and v be an element of L.
Suppose V u N ⊆ V and v ∈ V. Then there exists an open filter O of L
such that {v} uN ⊆ O and O ⊆ V and v ∈ O.

(39) Let L be a lower-bounded continuous lattice, V be an open upper subset
of L, N be a non empty countable subset of L, and x, y be elements of L.
Suppose V uN ⊆ V and y ∈ V and x /∈ V. Then there exists an irreducible
element p of L such that x ¬ p and p /∈ ↑({y} uN).

(40) Let L be a lower-bounded continuous lattice, x be an element of L, and
N be a non empty countable subset of L. Suppose that for all elements n,
y of L such that y 6¬ x and n ∈ N holds y u n 6¬ x. Let y be an element
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of L. Suppose y 6¬ x. Then there exists an irreducible element p of L such
that x ¬ p and p /∈ ↑({y} uN).

Let L be a non empty relational structure and let u be an element of L. We
say that u is dense if and only if:

(Def. 4) For every element v of L such that v 6= ⊥L holds u u v 6= ⊥L.

Let L be an upper-bounded semilattice. Note that >L is dense.
Let L be an upper-bounded semilattice. Note that there exists an element

of L which is dense.
The following proposition is true

(41) For every non trivial bounded semilattice L and for every element x of
L such that x is dense holds x 6= ⊥L.

Let L be a non empty relational structure and let D be a subset of L. We
say that D is dense if and only if:

(Def. 5) For every element d of L such that d ∈ D holds d is dense.

We now state the proposition

(42) For every upper-bounded semilattice L holds {>L} is dense.

Let L be an upper-bounded semilattice. Note that there exists a subset of
L which is non empty, finite, countable, and dense.
Next we state several propositions:

(43) Let L be a lower-bounded continuous lattice,D be a non empty countable
dense subset of L, and u be an element of L. Suppose u 6= ⊥L. Then there
exists an irreducible element p of L such that p 6= >L and p /∈ ↑({u}uD).

(44) Let T be a non empty topological space, A be an element of 〈the topology
of T , ⊆〉, and B be a subset of T . If A = B and −B is irreducible, then A
is irreducible.

(45) Let T be a non empty topological space, A be an element of 〈the
topology of T , ⊆〉, and B be a subset of T . Suppose A = B and
A 6= >〈the topology of T , ⊆〉. Then A is irreducible if and only if −B is irre-
ducible.

(46) Let T be a non empty topological space, A be an element of 〈the topology
of T , ⊆〉, and B be a subset of T . If A = B, then A is dense iff B is
everywhere dense.

(47) Let T be a non empty topological space. Suppose T is locally-compact.
Let D be a countable family of subsets of T . Suppose D is non empty,
dense, and open. Let O be a non empty subset of T . Suppose O is open.
Then there exists an irreducible subset A of T such that for every subset
V of T if V ∈ D, then A ∩O ∩ V 6= ∅.

Let T be a non empty topological space. Let us observe that T is Baire if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Let F be a family of subsets of T . Suppose F is countable and for
every subset S of T such that S ∈ F holds S is open and dense. Then
Intersect(F ) is dense.
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Next we state the proposition

(48) For every non empty topological space T such that T is sober and locally-
compact holds T is Baire.
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