The Steinitz Theorem and the Dimension of a Vector Space

Mariusz Żynel
Warsaw University
Białystok

Abstract

Summary. The main purpose of the paper is to define the dimension of an abstract vector space. The dimension of a finite-dimensional vector space is, by the most common definition, the number of vectors in a basis. Obviously, each basis contains the same number of vectors. We prove the Steinitz Theorem together with Exchange Lemma in the second section. The Steinitz Theorem says that each linearly-independent subset of a vector space has cardinality less than any subset that generates the space, moreover it can be extended to a basis. Further we review some of the standard facts involving the dimension of a vector space. Additionally, in the last section, we introduce two notions: the family of subspaces of a fixed dimension and the pencil of subspaces. Both of them can be applied in the algebraic representation of several geometries.

MML Identifier: VECTSP_9.

The terminology and notation used in this paper have been introduced in the following articles: [13], [23], [12], [8], [2], [6], [24], [4], [5], [22], [1], [7], [3], [17], [19], [9], [21], [15], [10], [20], [16], [18], [14], and [11].

1. Preliminaries

For simplicity we follow the rules: G_{1} is a field, V is a vector space over G_{1}, W is a subspace of V, x is arbitrary, and n is a natural number.

Let S be a non empty 1 -sorted structure. Observe that there exists a subset of S which is non empty.

One can prove the following proposition
(1) For every finite set X such that $n \leq \overline{\bar{X}}$ there exists a finite subset A of X such that $\overline{\bar{A}}=n$.

In the sequel f, g will be functions.
We now state a number of propositions:
(2) For every f such that f is one-to-one holds if $x \in \operatorname{rng} f$, then $\overline{\overline{f^{-1}\{x\}}}=$ 1.
(3) For every f such that $x \notin \operatorname{rng} f$ holds $\overline{\overline{f^{-1}\{x\}}}=0$.
(4) For all f, g such that $\operatorname{rng} f=\operatorname{rng} g$ and f is one-to-one and g is one-toone holds f and g are fiberwise equipotent.
(5) Let L be a linear combination of V, and let F, G be finite sequences of elements of the carrier of V, and let P be a permutation of dom F. If $G=F \cdot P$, then $\sum(L F)=\sum(L G)$.
(6) Let L be a linear combination of V and let F be a finite sequence of elements of the carrier of V. If support L misses rng F, then $\sum(L F)=0_{V}$.
(7) Let F be a finite sequence of elements of the carrier of V. Suppose F is one-to-one. Let L be a linear combination of V. If support $L \subseteq \operatorname{rng} F$, then $\sum(L F)=\sum L$.
(8) Let L be a linear combination of V and let F be a finite sequence of elements of the carrier of V. Then there exists a linear combination K of V such that support $K=\operatorname{rng} F \cap \operatorname{support} L$ and $L F=K F$.
(9) Let L be a linear combination of V, and let A be a subset of V, and let F be a finite sequence of elements of the carrier of V. Suppose rng $F \subseteq$ the carrier of $\operatorname{Lin}(A)$. Then there exists a linear combination K of A such that $\sum(L F)=\sum K$.
(10) Let L be a linear combination of V and let A be a subset of V. Suppose support $L \subseteq$ the carrier of $\operatorname{Lin}(A)$. Then there exists a linear combination K of A such that $\sum L=\sum K$.
Let L be a linear combination of V. Suppose support $L \subseteq$ the carrier of W. Let K be a linear combination of W. If $K=L \upharpoonright$ (the carrier of W), then support $L=$ support K and $\sum L=\sum K$.
(12) For every linear combination K of W there exists a linear combination L of V such that support $K=\operatorname{support} L$ and $\sum K=\sum L$.
Let L be a linear combination of V. Suppose support $L \subseteq$ the carrier of W. Then there exists a linear combination K of W such that support $K=$ support L and $\sum K=\sum L$.
For every basis I of V and for every vector v of V holds $v \in \operatorname{Lin}(I)$.
Let A be a subset of W. Suppose A is linearly independent. Then there exists a subset B of V such that B is linearly independent and $B=A$.
(16)
 carrier of W. Then there exists a subset B of W such that B is linearly independent and $B=A$.
(17) For every basis A of W there exists a basis B of V such that $A \subseteq B$.
(18) Let A be a subset of V. Suppose A is linearly independent. Let v be a vector of V. If $v \in A$, then for every subset B of V such that $B=A \backslash\{v\}$
holds $v \notin \operatorname{Lin}(B)$.
(19) Let I be a basis of V and let A be a non empty subset of V. Suppose A misses I. Let B be a subset of V. If $B=I \cup A$, then B is linearlydependent.
(20) For every subset A of V such that $A \subseteq$ the carrier of W holds $\operatorname{Lin}(A)$ is a subspace of W.
(21) For every subset A of V and for every subset B of W such that $A=B$ holds $\operatorname{Lin}(A)=\operatorname{Lin}(B)$.

2. The Steinitz Theorem

The following two propositions are true:
(22) Let A, B be finite subsets of V and let v be a vector of V. Suppose $v \in \operatorname{Lin}(A \cup B)$ and $v \notin \operatorname{Lin}(B)$. Then there exists a vector w of V such that $w \in A$ and $w \in \operatorname{Lin}(((A \cup B) \backslash\{w\}) \cup\{v\})$.
(23) Let A, B be finite subsets of V. Suppose the vector space structure of $V=\operatorname{Lin}(A)$ and B is linearly independent. Then $\overline{\bar{B}} \leq \overline{\bar{A}}$ and there exists a finite subset C of V such that $C \subseteq A$ and $\overline{\bar{C}}=\overline{\bar{A}}-\overline{\bar{B}}$ and the vector space structure of $V=\operatorname{Lin}(B \cup C)$.

3. Finite-Dimensional Vector Spaces

Let G_{1} be a field and let V be a vector space over G_{1}. Let us observe that V is finite dimensional if and only if:
(Def.1) There exists finite subset of V which is a basis of V.
Next we state several propositions:
(24) If V is finite dimensional, then every basis of V is finite.
(25) If V is finite dimensional, then for every subset A of V such that A is linearly independent holds A is finite.
(26) If V is finite dimensional, then for all bases A, B of V holds $\overline{\bar{A}}=\overline{\bar{B}}$.
(27) $\mathbf{0}_{V}$ is finite dimensional.
(28) If V is finite dimensional, then W is finite dimensional.

Let G_{1} be a field and let V be a vector space over G_{1}. Observe that there exists a subspace of V which is strict and finite dimensional.

Let G_{1} be a field and let V be a finite dimensional vector space over G_{1}. Note that every subspace of V is finite dimensional.

Let G_{1} be a field and let V be a finite dimensional vector space over G_{1}. One can check that there exists a subspace of V which is strict.

4. The Dimension of a Vector Space

Let G_{1} be a field and let V be a vector space over G_{1}. Let us assume that V is finite dimensional. The functor $\operatorname{dim}(V)$ yields a natural number and is defined by:
(Def.2) For every basis I of V holds $\operatorname{dim}(V)=\overline{\bar{I}}$.
We adopt the following rules: V denotes a finite dimensional vector space over G_{1}, W, W_{1}, W_{2} denote subspaces of V, and u, v denote vectors of V.

The following propositions are true:
(29) $\quad \operatorname{dim}(W) \leq \operatorname{dim}(V)$.
(30) For every subset A of V such that A is linearly independent holds $\overline{\bar{A}}=\operatorname{dim}(\operatorname{Lin}(A))$.
(31) $\operatorname{dim}(V)=\operatorname{dim}\left(\Omega_{V}\right)$.
(32) $\operatorname{dim}(V)=\operatorname{dim}(W)$ iff $\Omega_{V}=\Omega_{W}$.
(33) $\operatorname{dim}(V)=0$ iff $\Omega_{V}=\mathbf{0}_{V}$.
(34) $\operatorname{dim}(V)=1$ iff there exists v such that $v \neq 0_{V}$ and $\Omega_{V}=\operatorname{Lin}(\{v\})$.
(35) $\operatorname{dim}(V)=2$ iff there exist u, v such that $u \neq v$ and $\{u, v\}$ is linearly independent and $\Omega_{V}=\operatorname{Lin}(\{u, v\})$.
(36) $\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
(37) $\quad \operatorname{dim}\left(W_{1} \cap W_{2}\right) \geq\left(\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)\right)-\operatorname{dim}(V)$.
(38) If V is the direct sum of W_{1} and W_{2}, then $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+$ $\operatorname{dim}\left(W_{2}\right)$.

5. The Fixed-Dimensional Subspace Family and the Pencil of Subspaces

One can prove the following proposition
(39) $n \leq \operatorname{dim}(V)$ iff there exists a strict subspace W of V such that $\operatorname{dim}(W)=n$.
Let G_{1} be a field, let V be a finite dimensional vector space over G_{1}, and let n be a natural number. The functor $\operatorname{Sub}_{n}(V)$ yields a set and is defined as follows:
(Def.3) $\quad x \in \operatorname{Sub}_{n}(V)$ iff there exists a strict subspace W of V such that $W=x$ and $\operatorname{dim}(W)=n$.
We now state three propositions:
(40) If $n \leq \operatorname{dim}(V)$, then $\operatorname{Sub}_{n}(V)$ is non empty.
(41) If $\operatorname{dim}(V)<n$, then $\operatorname{Sub}_{n}(V)=\emptyset$.
(42) $\operatorname{Sub}_{n}(W) \subseteq \operatorname{Sub}_{n}(V)$.

Let G_{1} be a field, let V be a finite dimensional vector space over G_{1}, let W_{2} be a subspace of V, and let W_{1} be a strict subspace of W_{2}. Let us assume that $\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+2$. The functor $\mathbf{p}\left(W_{1}, W_{2}\right)$ yields a non empty set and is defined by:
(Def.4) $\quad x \in \mathbf{p}\left(W_{1}, W_{2}\right)$ iff there exists a strict subspace W of W_{2} such that $W=x$ and $\operatorname{dim}(W)=\operatorname{dim}\left(W_{1}\right)+1$ and W_{1} is a subspace of W.
We now state two propositions:
(43) Let W_{1} be a strict subspace of W_{2}. Suppose $\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+2$. Then $x \in \mathbf{p}\left(W_{1}, W_{2}\right)$ if and only if there exists a strict subspace W of V such that $W=x$ and $\operatorname{dim}(W)=\operatorname{dim}\left(W_{1}\right)+1$ and W_{1} is a subspace of W and W is a subspace of W_{2}.
(44) For every strict subspace W_{1} of W_{2} such that $\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+2$ holds $\mathbf{p}\left(W_{1}, W_{2}\right) \subseteq \operatorname{Sub}_{\operatorname{dim}\left(W_{1}\right)+1}(V)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[11] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[12] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[15] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[16] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[17] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[18] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[20] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 6, 1995

