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Summary. The main purpose of the paper is to define the dimen-
sion of an abstract vector space. The dimension of a finite-dimensional
vector space is, by the most common definition, the number of vectors in
a basis. Obviously, each basis contains the same number of vectors. We
prove the Steinitz Theorem together with Exchange Lemma in the second
section. The Steinitz Theorem says that each linearly-independent subset
of a vector space has cardinality less than any subset that generates the
space, moreover it can be extended to a basis. Further we review some of
the standard facts involving the dimension of a vector space. Addition-
ally, in the last section, we introduce two notions: the family of subspaces
of a fixed dimension and the pencil of subspaces. Both of them can be
applied in the algebraic representation of several geometries.

MML Identifier: VECTSP 9.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [23], [12], [8], [2], [6], [24], [4], [5], [22], [1], [7], [3], [17],
[19], [9], [21], [15], [10], [20], [16], [18], [14], and [11].

1. Preliminaries

For simplicity we follow the rules: G1 is a field, V is a vector space over G1,
W is a subspace of V , x is arbitrary, and n is a natural number.

Let S be a non empty 1-sorted structure. Observe that there exists a subset
of S which is non empty.

One can prove the following proposition

(1) For every finite set X such that n ≤ X there exists a finite subset A of

X such that A = n.
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In the sequel f , g will be functions.
We now state a number of propositions:

(2) For every f such that f is one-to-one holds if x ∈ rng f, then f −1 {x} =
1.

(3) For every f such that x /∈ rng f holds f −1 {x} = 0.

(4) For all f , g such that rng f = rng g and f is one-to-one and g is one-to-
one holds f and g are fiberwise equipotent.

(5) Let L be a linear combination of V , and let F , G be finite sequences
of elements of the carrier of V , and let P be a permutation of domF. If
G = F · P, then

∑
(L F ) =

∑
(L G).

(6) Let L be a linear combination of V and let F be a finite sequence of
elements of the carrier of V . If supportL misses rng F, then

∑
(L F ) = 0V .

(7) Let F be a finite sequence of elements of the carrier of V . Suppose F
is one-to-one. Let L be a linear combination of V . If supportL ⊆ rng F,
then

∑
(L F ) =

∑
L.

(8) Let L be a linear combination of V and let F be a finite sequence of
elements of the carrier of V . Then there exists a linear combination K of
V such that supportK = rng F ∩ supportL and L F = K F.

(9) Let L be a linear combination of V , and let A be a subset of V , and let F
be a finite sequence of elements of the carrier of V . Suppose rng F ⊆ the
carrier of Lin(A). Then there exists a linear combination K of A such
that

∑
(L F ) =

∑
K.

(10) Let L be a linear combination of V and let A be a subset of V . Suppose
supportL ⊆ the carrier of Lin(A). Then there exists a linear combination
K of A such that

∑
L =

∑
K.

(11) Let L be a linear combination of V . Suppose supportL ⊆ the carrier of
W . Let K be a linear combination of W . If K = L

�
(the carrier of W ),

then supportL = supportK and
∑

L =
∑

K.

(12) For every linear combination K of W there exists a linear combination
L of V such that supportK = supportL and

∑
K =

∑
L.

(13) Let L be a linear combination of V . Suppose supportL ⊆ the carrier of
W . Then there exists a linear combination K of W such that supportK =
supportL and

∑
K =

∑
L.

(14) For every basis I of V and for every vector v of V holds v ∈ Lin(I).

(15) Let A be a subset of W . Suppose A is linearly independent. Then there
exists a subset B of V such that B is linearly independent and B = A.

(16) Let A be a subset of V . Suppose A is linearly independent and A ⊆ the
carrier of W . Then there exists a subset B of W such that B is linearly
independent and B = A.

(17) For every basis A of W there exists a basis B of V such that A ⊆ B.

(18) Let A be a subset of V . Suppose A is linearly independent. Let v be a
vector of V . If v ∈ A, then for every subset B of V such that B = A\{v}
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holds v /∈ Lin(B).

(19) Let I be a basis of V and let A be a non empty subset of V . Suppose
A misses I. Let B be a subset of V . If B = I ∪ A, then B is linearly-
dependent.

(20) For every subset A of V such that A ⊆ the carrier of W holds Lin(A)
is a subspace of W .

(21) For every subset A of V and for every subset B of W such that A = B
holds Lin(A) = Lin(B).

2. The Steinitz Theorem

The following two propositions are true:

(22) Let A, B be finite subsets of V and let v be a vector of V . Suppose
v ∈ Lin(A ∪ B) and v /∈ Lin(B). Then there exists a vector w of V such
that w ∈ A and w ∈ Lin(((A ∪ B) \ {w}) ∪ {v}).

(23) Let A, B be finite subsets of V . Suppose the vector space structure of

V = Lin(A) and B is linearly independent. Then B ≤ A and there exists

a finite subset C of V such that C ⊆ A and C = A − B and the vector
space structure of V = Lin(B ∪ C).

3. Finite-Dimensional Vector Spaces

Let G1 be a field and let V be a vector space over G1. Let us observe that
V is finite dimensional if and only if:

(Def.1) There exists finite subset of V which is a basis of V .

Next we state several propositions:

(24) If V is finite dimensional, then every basis of V is finite.

(25) If V is finite dimensional, then for every subset A of V such that A is
linearly independent holds A is finite.

(26) If V is finite dimensional, then for all bases A, B of V holds A = B.

(27) 0V is finite dimensional.

(28) If V is finite dimensional, then W is finite dimensional.

Let G1 be a field and let V be a vector space over G1. Observe that there
exists a subspace of V which is strict and finite dimensional.

Let G1 be a field and let V be a finite dimensional vector space over G1.
Note that every subspace of V is finite dimensional.

Let G1 be a field and let V be a finite dimensional vector space over G1. One
can check that there exists a subspace of V which is strict.
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4. The Dimension of a Vector Space

Let G1 be a field and let V be a vector space over G1. Let us assume that
V is finite dimensional. The functor dim(V ) yields a natural number and is
defined by:

(Def.2) For every basis I of V holds dim(V ) = I .

We adopt the following rules: V denotes a finite dimensional vector space
over G1, W , W1, W2 denote subspaces of V , and u, v denote vectors of V .

The following propositions are true:

(29) dim(W ) ≤ dim(V ).

(30) For every subset A of V such that A is linearly independent holds

A = dim(Lin(A)).

(31) dim(V ) = dim(ΩV ).

(32) dim(V ) = dim(W ) iff ΩV = ΩW .

(33) dim(V ) = 0 iff ΩV = 0V .

(34) dim(V ) = 1 iff there exists v such that v 6= 0V and ΩV = Lin({v}).

(35) dim(V ) = 2 iff there exist u, v such that u 6= v and {u, v} is linearly
independent and ΩV = Lin({u, v}).

(36) dim(W1 + W2) + dim(W1 ∩ W2) = dim(W1) + dim(W2).

(37) dim(W1 ∩ W2) ≥ (dim(W1) + dim(W2)) − dim(V ).

(38) If V is the direct sum of W1 and W2, then dim(V ) = dim(W1) +
dim(W2).

5. The Fixed-Dimensional Subspace Family and the Pencil of

Subspaces

One can prove the following proposition

(39) n ≤ dim(V ) iff there exists a strict subspace W of V such that
dim(W ) = n.

Let G1 be a field, let V be a finite dimensional vector space over G1, and
let n be a natural number. The functor Subn(V ) yields a set and is defined as
follows:

(Def.3) x ∈ Subn(V ) iff there exists a strict subspace W of V such that W = x
and dim(W ) = n.

We now state three propositions:

(40) If n ≤ dim(V ), then Subn(V ) is non empty.

(41) If dim(V ) < n, then Subn(V ) = ∅.

(42) Subn(W ) ⊆ Subn(V ).
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Let G1 be a field, let V be a finite dimensional vector space over G1, let W2

be a subspace of V , and let W1 be a strict subspace of W2. Let us assume that
dim(W2) = dim(W1) + 2. The functor p(W1,W2) yields a non empty set and is
defined by:

(Def.4) x ∈ p(W1,W2) iff there exists a strict subspace W of W2 such that
W = x and dim(W ) = dim(W1) + 1 and W1 is a subspace of W .

We now state two propositions:

(43) Let W1 be a strict subspace of W2. Suppose dim(W2) = dim(W1) + 2.
Then x ∈ p(W1,W2) if and only if there exists a strict subspace W of V
such that W = x and dim(W ) = dim(W1)+1 and W1 is a subspace of W
and W is a subspace of W2.

(44) For every strict subspace W1 of W2 such that dim(W2) = dim(W1) + 2
holds p(W1,W2) ⊆ Subdim(W1)+1(V ).
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