On the Lattice of Subspaces of a Vector Space

Andrzej Iwaniuk
Warsaw University
Białystok

MML Identifier: VECTSP_8.

The terminology and notation used here are introduced in the following articles: [18], [11], [5], [17], [6], [20], [14], [15], [13], [1], [16], [10], [19], [3], [4], [2], [12], [9], [7], and [8].

In this paper F denotes a field and V_{1} denotes a strict vector space over F.
Let us consider F, V_{1}. The functor $\mathbb{L}_{\left(V_{1}\right)}$ yields a strict bounded lattice and is defined as follows:
(Def.1) $\mathbb{R}_{\left(V_{1}\right)}=\left\langle\right.$ Subspaces V_{1}, SubJoin V_{1}, SubMeet $\left.V_{1}\right\rangle$.
Let us consider F, V_{1}. Family of subspaces of V_{1} is defined as follows:
(Def.2) For arbitrary x such that $x \in$ it holds x is a subspace of V_{1}.
Let us consider F, V_{1}. Note that there exists a family of subspaces of V_{1} which is non empty.

Let us consider F, V_{1}. Then Subspaces V_{1} is a non empty family of subspaces of V_{1}. Let X be a non empty family of subspaces of V_{1}. We see that the element of X is a subspace of V_{1}.

Let us consider F, V_{1} and let x be an element of Subspaces V_{1}. The functor \bar{x} yielding a subset of the carrier of V_{1} is defined as follows:
(Def.3) There exists a subspace X of V_{1} such that $x=X$ and $\bar{x}=$ the carrier of X.
Let us consider F, V_{1}. The functor $\overline{V_{1}}$ yielding a function from Subspaces V_{1} into $2^{\text {the carrier of } V_{1}}$ is defined by:
(Def.4) For every element h of Subspaces V_{1} and for every subspace H of V_{1} such that $h=H$ holds $\overline{V_{1}}(h)=$ the carrier of H.
We now state two propositions:
(1) For every strict vector space V_{1} over F and for every non empty subset H of Subspaces V_{1} holds ${\overline{V_{1}}}^{\circ} H$ is non empty.
(2) For every strict vector space V_{1} over F and for every strict subspace H of V_{1} holds $0_{\left(V_{1}\right)} \in \overline{V_{1}}(H)$.
Let us consider F, V_{1} and let G be a non empty subset of Subspaces V_{1}. The functor $\cap G$ yielding a strict subspace of V_{1} is defined by:
(Def.5) The carrier of $\cap G=\cap\left({\overline{V_{1}}}^{\circ} G\right)$.
Next we state several propositions:
(3) \quad Subspaces $V_{1}=$ the carrier of $\mathbb{L}_{\left(V_{1}\right)}$.
(4) The meet operation of $\mathbb{L}_{\left(V_{1}\right)}=$ SubMeet V_{1}.
(5) The join operation of $\mathbb{L}_{\left(V_{1}\right)}=$ SubJoin V_{1}.
(6) Let V_{1} be a strict vector space over F, and let p, q be elements of the carrier of $\mathbb{L}_{\left(V_{1}\right)}$, and let H_{1}, H_{2} be strict subspaces of V_{1}. Suppose $p=H_{1}$ and $q=H_{2}$. Then $p \sqsubseteq q$ if and only if the carrier of $H_{1} \subseteq$ the carrier of H_{2}.
(7) Let V_{1} be a strict vector space over F, and let p, q be elements of the carrier of $\mathbb{L}_{\left(V_{1}\right)}$, and let H_{1}, H_{2} be subspaces of V_{1}. If $p=H_{1}$ and $q=H_{2}$, then $p \sqcup q=H_{1}+H_{2}$.
(8) Let V_{1} be a strict vector space over F, and let p, q be elements of the carrier of $\mathbb{Q}_{\left(V_{1}\right)}$, and let H_{1}, H_{2} be subspaces of V_{1}. If $p=H_{1}$ and $q=H_{2}$, then $p \sqcap q=H_{1} \cap H_{2}$.
Let us observe that a non empty lattice structure is complete if it satisfies the condition (Def.6).
(Def.6) Let X be a subset of the carrier of it. Then there exists an element a of the carrier of it such that $a \sqsubseteq X$ and for every element b of the carrier of it such that $b \sqsubseteq X$ holds $b \sqsubseteq a$.
The following propositions are true:
(9) For every V_{1} holds $\mathbb{Q}_{\left(V_{1}\right)}$ is complete.
(10) Let x be arbitrary, and let V_{1} be a strict vector space over F, and let S be a subset of the carrier of V_{1}. If S is non empty and linearly closed, then if $x \in \operatorname{Lin}(S)$, then $x \in S$.
Let F be a field, let A, B be strict vector spaces over F, and let f be a function from the carrier of A into the carrier of B. The functor FuncLatt (f) yields a function from the carrier of \mathbb{L}_{A} into the carrier of \mathbb{L}_{B} and is defined by the condition (Def.7).
(Def.7) Let S be a strict subspace of A and let B_{0} be a subset of the carrier of B. If $B_{0}=f^{\circ}($ the carrier of $S)$, then $($ FuncLatt $(f))(S)=\operatorname{Lin}\left(B_{0}\right)$.
Let L_{1}, L_{2} be lattices. A function from the carrier of L_{1} into the carrier of L_{2} is called a lower homomorphism between L_{1} and L_{2} if:
(Def.8) For all elements a, b of the carrier of L_{1} holds $\operatorname{it}(a \sqcap b)=\operatorname{it}(a) \sqcap \operatorname{it}(b)$.
Let L_{1}, L_{2} be lattices. A function from the carrier of L_{1} into the carrier of L_{2} is called an upper homomorphism between L_{1} and L_{2} if:
(Def.9) For all elements a, b of the carrier of L_{1} holds $\operatorname{it}(a \sqcup b)=\operatorname{it}(a) \sqcup \operatorname{it}(b)$.

One can prove the following propositions:
(11) Let L_{1}, L_{2} be lattices and let f be a function from the carrier of L_{1} into the carrier of L_{2}. Then f is a homomorphism from L_{1} to L_{2} if and only if f is an upper homomorphism between L_{1} and L_{2} and a lower homomorphism between L_{1} and L_{2}.
(12) Let F be a field, and let A, B be strict vector spaces over F, and let f be a function from the carrier of A into the carrier of B. If f is linear, then FuncLatt (f) is an upper homomorphism between \mathbb{L}_{A} and \mathbb{L}_{B}.
(13) Let F be a field, and let A, B be strict vector spaces over F, and let f be a function from the carrier of A into the carrier of B. Suppose f is one-to-one and linear. Then FuncLatt (f) is a homomorphism from \mathbb{L}_{A} to \mathbb{L}_{B}.
(14) Let A, B be strict vector spaces over F and let f be a function from the carrier of A into the carrier of B. If f is linear and one-to-one, then FuncLatt (f) is one-to-one.
(15) Let A be a strict vector space over F and let f be a function from the carrier of A into the carrier of A. If $f=\operatorname{id}_{(\text {the carrier of } A)}$, then FuncLatt $(f)=\operatorname{id}_{\left(\text {the carrier of } \mathbb{L}_{A}\right)}$.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35-40, 1993.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
[8] Michał Muzalewski. Opposite rings, modules and their morphisms. Formalized Mathematics, 3(1):57-65, 1992.
[9] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579585, 1991.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[13] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[14] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395-399, 1990.
[15] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[18] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[20] Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received May 23, 1995

