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The terminology and notation used here are introduced in the following articles:
[18], [11], [5], [17], [6], [20], [14], [15], [13], [1], [16], [10], [19], [3], [4], [2], [12],
[9], [7], and [8].

In this paper F denotes a field and V1 denotes a strict vector space over F .
Let us consider F , V1. The functor � (V1 ) yields a strict bounded lattice and

is defined as follows:

(Def.1) � (V1 ) = 〈SubspacesV1,SubJoinV1,SubMeetV1〉.

Let us consider F , V1. Family of subspaces of V1 is defined as follows:

(Def.2) For arbitrary x such that x ∈ it holds x is a subspace of V1.

Let us consider F , V1. Note that there exists a family of subspaces of V1

which is non empty.
Let us consider F , V1. Then SubspacesV1 is a non empty family of subspaces

of V1. Let X be a non empty family of subspaces of V1. We see that the element
of X is a subspace of V1.

Let us consider F , V1 and let x be an element of SubspacesV1. The functor
x yielding a subset of the carrier of V1 is defined as follows:

(Def.3) There exists a subspace X of V1 such that x = X and x = the carrier
of X.

Let us consider F , V1. The functor V1 yielding a function from SubspacesV1

into 2the carrier of V1 is defined by:

(Def.4) For every element h of SubspacesV1 and for every subspace H of V1

such that h = H holds V1(h) = the carrier of H.

We now state two propositions:

(1) For every strict vector space V1 over F and for every non empty subset
H of SubspacesV1 holds V1

◦

H is non empty.
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(2) For every strict vector space V1 over F and for every strict subspace H

of V1 holds 0(V1) ∈ V1(H).

Let us consider F , V1 and let G be a non empty subset of SubspacesV1. The
functor

⋂
G yielding a strict subspace of V1 is defined by:

(Def.5) The carrier of
⋂

G =
⋂

(V1
◦

G).

Next we state several propositions:

(3) SubspacesV1 = the carrier of � (V1 ).

(4) The meet operation of � (V1 ) = SubMeet V1.

(5) The join operation of � (V1 ) = SubJoinV1.

(6) Let V1 be a strict vector space over F , and let p, q be elements of the
carrier of � (V1 ), and let H1, H2 be strict subspaces of V1. Suppose p = H1

and q = H2. Then p ⊑ q if and only if the carrier of H1 ⊆ the carrier of
H2.

(7) Let V1 be a strict vector space over F , and let p, q be elements of the
carrier of � (V1 ), and let H1, H2 be subspaces of V1. If p = H1 and q = H2,

then p ⊔ q = H1 + H2.

(8) Let V1 be a strict vector space over F , and let p, q be elements of the
carrier of � (V1 ), and let H1, H2 be subspaces of V1. If p = H1 and q = H2,

then p ⊓ q = H1 ∩ H2.

Let us observe that a non empty lattice structure is complete if it satisfies
the condition (Def.6).

(Def.6) Let X be a subset of the carrier of it. Then there exists an element a

of the carrier of it such that a ⊑ X and for every element b of the carrier
of it such that b ⊑ X holds b ⊑ a.

The following propositions are true:

(9) For every V1 holds � (V1 ) is complete.

(10) Let x be arbitrary, and let V1 be a strict vector space over F , and let
S be a subset of the carrier of V1. If S is non empty and linearly closed,
then if x ∈ Lin(S), then x ∈ S.

Let F be a field, let A, B be strict vector spaces over F , and let f be a
function from the carrier of A into the carrier of B. The functor FuncLatt(f)
yields a function from the carrier of � A into the carrier of � B and is defined by
the condition (Def.7).

(Def.7) Let S be a strict subspace of A and let B0 be a subset of the carrier of
B. If B0 = f◦(the carrier of S), then (FuncLatt(f))(S) = Lin(B0).

Let L1, L2 be lattices. A function from the carrier of L1 into the carrier of
L2 is called a lower homomorphism between L1 and L2 if:

(Def.8) For all elements a, b of the carrier of L1 holds it(a ⊓ b) = it(a) ⊓ it(b).

Let L1, L2 be lattices. A function from the carrier of L1 into the carrier of
L2 is called an upper homomorphism between L1 and L2 if:

(Def.9) For all elements a, b of the carrier of L1 holds it(a ⊔ b) = it(a) ⊔ it(b).
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One can prove the following propositions:

(11) Let L1, L2 be lattices and let f be a function from the carrier of L1

into the carrier of L2. Then f is a homomorphism from L1 to L2 if and
only if f is an upper homomorphism between L1 and L2 and a lower
homomorphism between L1 and L2.

(12) Let F be a field, and let A, B be strict vector spaces over F , and let f

be a function from the carrier of A into the carrier of B. If f is linear,
then FuncLatt(f) is an upper homomorphism between � A and � B .

(13) Let F be a field, and let A, B be strict vector spaces over F , and let
f be a function from the carrier of A into the carrier of B. Suppose f is
one-to-one and linear. Then FuncLatt(f) is a homomorphism from � A to

� B .

(14) Let A, B be strict vector spaces over F and let f be a function from
the carrier of A into the carrier of B. If f is linear and one-to-one, then
FuncLatt(f) is one-to-one.

(15) Let A be a strict vector space over F and let f be a function from
the carrier of A into the carrier of A. If f = id(the carrier of A), then
FuncLatt(f) = id(the carrier of � A) .
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