Replacement of Subtrees in a Tree

Oleg Okhotnikov
Ural University
Ekaterinburg

Abstract

Summary. This paper is based on previous works [1], [3] in which the operation replacement of subtree in a tree has been defined. We extend this notion for arbitrary non empty antichain.

MML Identifier: TREES_A.

The notation and terminology used in this paper are introduced in the following papers: [8], [9], [6], [10], [5], [7], [4], [1], [3], and [2].

We follow the rules: T, T_{1} will denote trees, P will denote an antichain of prefixes of T, and p, q, r will denote finite sequences of elements of \mathbb{N}.

We now state the proposition
(1) For all finite sequences p, q, r, s such that $p^{\wedge} q=s^{\wedge} r$ holds p and s are comparable.
Let us consider T, T_{1} and let us consider P. Let us assume that $P \neq \emptyset$. The functor $T\left(P / T_{1}\right)$ yields a tree and is defined as follows:
(Def.1) $\quad q \in T\left(P / T_{1}\right)$ iff $q \in T$ and for every p such that $p \in P$ holds $p \nprec q$ or there exist p, r such that $p \in P$ and $r \in T_{1}$ and $q=p^{\wedge} r$.
One can prove the following propositions:
(2) Suppose $P \neq \emptyset$. Then $T\left(P / T_{1}\right)=\left\{t_{1}: t_{1}\right.$ ranges over elements of T, $\left.\wedge_{p} p \in P \Rightarrow p \nprec t_{1}\right\} \cup\left\{p^{\wedge} s: p\right.$ ranges over elements of T, s ranges over elements of $\left.T_{1}, p \in P\right\}$.
(3) $\quad\left\{t_{1}: t_{1}\right.$ ranges over elements of $\left.T, \wedge_{p} p \in P \Rightarrow p \npreceq t_{1}\right\} \subseteq\left\{t_{1}: t_{1}\right.$ ranges over elements of $\left.T, \bigwedge_{p} p \in P \Rightarrow p \nprec t_{1}\right\}$.
(4) $P \subseteq\left\{t_{1}: t_{1}\right.$ ranges over elements of $\left.T, \bigwedge_{p} p \in P \Rightarrow p \nprec t_{1}\right\}$.
(5) $\quad\left\{t_{1}: t_{1}\right.$ ranges over elements of $\left.T, \wedge_{p} p \in P \Rightarrow p \nprec t_{1}\right\} \backslash\left\{t_{1}: t_{1}\right.$ ranges over elements of $\left.T, \bigwedge_{p} p \in P \Rightarrow p \npreceq t_{1}\right\}=P$.
(6) For all T, T_{1}, P holds $P \subseteq\left\{p^{\wedge} s: p\right.$ ranges over elements of T, s ranges over elements of $\left.T_{1}, p \in P\right\}$.
(7)

Suppose $P \neq \emptyset$. Then $T\left(P / T_{1}\right)=\left\{t_{1}: t_{1}\right.$ ranges over elements of T, $\left.\wedge_{p} p \in P \Rightarrow p \npreceq t_{1}\right\} \cup\left\{p^{\wedge} s: p\right.$ ranges over elements of T, s ranges over elements of $\left.T_{1}, p \in P\right\}$.
(8) If $p \in P$ and $q \in T_{1}$, then $p^{\wedge} q \in T\left(P / T_{1}\right)$.
(9) If $p \in P$, then $T_{1}=T\left(P / T_{1}\right) \upharpoonright p$.

Let us consider T. Observe that there exists an antichain of prefixes of T which is non empty.

Let us consider T and let t be an element of T. Then $\{t\}$ is a non empty antichain of prefixes of T.

In the sequel t will be an element of T.
We now state the proposition

$$
\begin{equation*}
T\left(\{t\} / T_{1}\right)=T\left(t / T_{1}\right) \tag{10}
\end{equation*}
$$

In the sequel T, T_{1} denote decorated trees, P denotes an antichain of prefixes of $\operatorname{dom} T$, and t denotes an element of $\operatorname{dom} T$.

Let us consider T, P, T_{1}. Let us assume that $P \neq \emptyset$. The functor $T\left(P / T_{1}\right)$ yields a decorated tree and is defined by the conditions (Def.2).
(Def.2) (i) $\quad \operatorname{dom}\left(T\left(P / T_{1}\right)\right)=(\operatorname{dom} T)\left(P / \operatorname{dom} T_{1}\right)$, and
(ii) for every q such that $q \in(\operatorname{dom} T)\left(P / \operatorname{dom} T_{1}\right)$ holds for every p such that $p \in P$ holds $p \npreceq q$ and $T\left(P / T_{1}\right)(q)=T(q)$ or there exist p, r such that $p \in P$ and $r \in \operatorname{dom} T_{1}$ and $q=p^{\wedge} r$ and $T\left(P / T_{1}\right)(q)=T_{1}(r)$.
We now state several propositions:

$$
\begin{equation*}
\text { If } P \neq \emptyset \text {, then } \operatorname{dom}\left(T\left(P / T_{1}\right)\right)=(\operatorname{dom} T)\left(P / \operatorname{dom} T_{1}\right) \tag{11}
\end{equation*}
$$

If $p \in \operatorname{dom} T$, then $\operatorname{dom}\left(T\left(p / T_{1}\right)\right)=(\operatorname{dom} T)\left(p / \operatorname{dom} T_{1}\right)$.
Suppose $P \neq \emptyset$. Given q. Suppose $q \in \operatorname{dom}\left(T\left(P / T_{1}\right)\right)$. Then for every p such that $p \in P$ holds $p \npreceq q$ and $T\left(P / T_{1}\right)(q)=T(q)$ or there exist p, r such that $p \in P$ and $r \in \operatorname{dom} T_{1}$ and $q=p^{\wedge} r$ and $T\left(P / T_{1}\right)(q)=T_{1}(r)$.
Suppose $p \in \operatorname{dom} T$. Given q. Suppose $q \in \operatorname{dom}\left(T\left(p / T_{1}\right)\right)$. Then $p \npreceq q$ and $T\left(p / T_{1}\right)(q)=T(q)$ or there exists r such that $r \in \operatorname{dom} T_{1}$ and $q=p^{\wedge} r$ and $T\left(p / T_{1}\right)(q)=T_{1}(r)$.
suppose $P \neq \emptyset$. Given q. Suppose $q \in \operatorname{dom}\left(T\left(P / T_{1}\right)\right)$ and $q \in\left\{t_{1}: t_{1}\right.$ ranges over elements of dom $\left.T, \wedge_{p} p \in P \Rightarrow p \npreceq t_{1}\right\}$. Then $T\left(P / T_{1}\right)(q)=$ $T(q)$.
(16) If $p \in \operatorname{dom} T$, then for every q such that $q \in \operatorname{dom}\left(T\left(p / T_{1}\right)\right)$ and $q \in\left\{t_{1}\right.$: t_{1} ranges over elements of $\left.\operatorname{dom} T, p \npreceq t_{1}\right\}$ holds $T\left(p / T_{1}\right)(q)=T(q)$.
Suppose $P \neq \emptyset$. Given q. Suppose $q \in \operatorname{dom}\left(T\left(P / T_{1}\right)\right)$ and $q \in\left\{p^{\wedge} s: p\right.$ ranges over elements of dom T, s ranges over elements of $\left.\operatorname{dom} T_{1}, p \in P\right\}$. Then there exists an element p^{\prime} of $\operatorname{dom} T$ and there exists an element r of $\operatorname{dom} T_{1}$ such that $q=p^{\prime} \wedge r$ and $p^{\prime} \in P$ and $T\left(P / T_{1}\right)(q)=T_{1}(r)$.
Suppose $p \in \operatorname{dom} T$. Given q. Suppose $q \in \operatorname{dom}\left(T\left(p / T_{1}\right)\right)$ and $q \in$ $\left\{p^{\wedge} s: s\right.$ ranges over elements of $\left.\operatorname{dom} T_{1}, s=s\right\}$. Then there exists an element r of $\operatorname{dom} T_{1}$ such that $q=p^{\wedge} r$ and $T\left(p / T_{1}\right)(q)=T_{1}(r)$.

$$
\begin{equation*}
T\left(\{t\} / T_{1}\right)=T\left(t / T_{1}\right) \tag{19}
\end{equation*}
$$

In the sequel D will denote a non empty set, T, T_{1} will denote trees decorated with elements of D, and P will denote an antichain of prefixes of dom T.

Let us consider D, T, P, T_{1}. Let us assume that $P \neq \emptyset$. The functor $T\left(P / T_{1}\right)$ yields a tree decorated with elements of D and is defined by:
(Def.3) $\quad T\left(P / T_{1}\right)=T\left(P / T_{1}\right)$.

Acknowledgments

The author wishes to thank to G. Bancerek for his assistance during the preparation of this paper.

References

[1] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[2] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[3] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

