Replacement of Subtrees in a Tree

Oleg Okhotnikov Ural University Ekaterinburg

Summary. This paper is based on previous works [1], [3] in which the operation replacement of subtree in a tree has been defined. We extend this notion for arbitrary non empty antichain.

MML Identifier: TREES_A.

The notation and terminology used in this paper are introduced in the following papers: [8], [9], [6], [10], [5], [7], [4], [1], [3], and [2].

We follow the rules: T, T_1 will denote trees, P will denote an antichain of prefixes of T, and p, q, r will denote finite sequences of elements of \mathbb{N} .

We now state the proposition

(1) For all finite sequences p, q, r, s such that $p \cap q = s \cap r$ holds p and s are comparable.

Let us consider T, T_1 and let us consider P. Let us assume that $P \neq \emptyset$. The functor $T(P/T_1)$ yields a tree and is defined as follows:

(Def.1) $q \in T(P/T_1)$ iff $q \in T$ and for every p such that $p \in P$ holds $p \not\prec q$ or there exist p, r such that $p \in P$ and $r \in T_1$ and $q = p \cap r$.

One can prove the following propositions:

- (2) Suppose $P \neq \emptyset$. Then $T(P/T_1) = \{t_1 : t_1 \text{ ranges over elements of } T$, $\bigwedge_p p \in P \Rightarrow p \not\prec t_1\} \cup \{p \cap s : p \text{ ranges over elements of } T$, s ranges over elements of $T_1, p \in P\}$.
- (3) { $t_1: t_1$ ranges over elements of T, $\bigwedge_p p \in P \Rightarrow p \not\leq t_1$ } \subseteq { $t_1: t_1$ ranges over elements of T, $\bigwedge_p p \in P \Rightarrow p \not< t_1$ }.
- (4) $P \subseteq \{t_1 : t_1 \text{ ranges over elements of } T, \land_p p \in P \Rightarrow p \not\prec t_1\}.$
- (5) $\{t_1: t_1 \text{ ranges over elements of } T, \bigwedge_p p \in P \Rightarrow p \not\leq t_1\} \setminus \{t_1: t_1 \text{ ranges over elements of } T, \bigwedge_p p \in P \Rightarrow p \not\leq t_1\} = P.$
- (6) For all T, T_1, P holds $P \subseteq \{p \cap s : p \text{ ranges over elements of } T, s \text{ ranges over elements of } T_1, p \in P\}.$

C 1996 Warsaw University - Białystok ISSN 1426-2630

- (7) Suppose $P \neq \emptyset$. Then $T(P/T_1) = \{t_1 : t_1 \text{ ranges over elements of } T$, $\bigwedge_p p \in P \Rightarrow p \not\leq t_1\} \cup \{p \cap s : p \text{ ranges over elements of } T, s \text{ ranges over elements of } T_1, p \in P\}.$
- (8) If $p \in P$ and $q \in T_1$, then $p \cap q \in T(P/T_1)$.
- (9) If $p \in P$, then $T_1 = T(P/T_1) \upharpoonright p$.

Let us consider T. Observe that there exists an antichain of prefixes of T which is non empty.

Let us consider T and let t be an element of T. Then $\{t\}$ is a non empty antichain of prefixes of T.

In the sequel t will be an element of T.

We now state the proposition

(10) $T(\{t\}/T_1) = T(t/T_1).$

In the sequel T, T_1 denote decorated trees, P denotes an antichain of prefixes of dom T, and t denotes an element of dom T.

Let us consider T, P, T_1 . Let us assume that $P \neq \emptyset$. The functor $T(P/T_1)$ yields a decorated tree and is defined by the conditions (Def.2).

- (Def.2) (i) $dom(T(P/T_1)) = (dom T)(P/dom T_1)$, and
 - (ii) for every q such that $q \in (\operatorname{dom} T)(P/\operatorname{dom} T_1)$ holds for every p such that $p \in P$ holds $p \not\leq q$ and $T(P/T_1)(q) = T(q)$ or there exist p, r such that $p \in P$ and $r \in \operatorname{dom} T_1$ and $q = p \cap r$ and $T(P/T_1)(q) = T_1(r)$.

We now state several propositions:

- (11) If $P \neq \emptyset$, then dom $(T(P/T_1)) = (\operatorname{dom} T)(P/\operatorname{dom} T_1)$.
- (12) If $p \in \operatorname{dom} T$, then $\operatorname{dom}(T(p/T_1)) = (\operatorname{dom} T)(p/\operatorname{dom} T_1)$.
- (13) Suppose $P \neq \emptyset$. Given q. Suppose $q \in \text{dom}(T(P/T_1))$. Then for every p such that $p \in P$ holds $p \not\preceq q$ and $T(P/T_1)(q) = T(q)$ or there exist p, r such that $p \in P$ and $r \in \text{dom } T_1$ and $q = p \cap r$ and $T(P/T_1)(q) = T_1(r)$.
- (14) Suppose $p \in \text{dom } T$. Given q. Suppose $q \in \text{dom}(T(p/T_1))$. Then $p \not\leq q$ and $T(p/T_1)(q) = T(q)$ or there exists r such that $r \in \text{dom } T_1$ and $q = p^r$ and $T(p/T_1)(q) = T_1(r)$.
- (15) Suppose $P \neq \emptyset$. Given q. Suppose $q \in \text{dom}(T(P/T_1))$ and $q \in \{t_1 : t_1 \text{ ranges over elements of dom } T, \bigwedge_p p \in P \Rightarrow p \not\preceq t_1\}$. Then $T(P/T_1)(q) = T(q)$.
- (16) If $p \in \text{dom } T$, then for every q such that $q \in \text{dom}(T(p/T_1))$ and $q \in \{t_1 : t_1 \text{ ranges over elements of dom } T, p \not\leq t_1\}$ holds $T(p/T_1)(q) = T(q)$.
- (17) Suppose $P \neq \emptyset$. Given q. Suppose $q \in \text{dom}(T(P/T_1))$ and $q \in \{p \cap s : p \text{ ranges over elements of dom } T, s \text{ ranges over elements of dom } T_1, p \in P\}$. Then there exists an element p' of dom T and there exists an element r of dom T_1 such that $q = p' \cap r$ and $p' \in P$ and $T(P/T_1)(q) = T_1(r)$.
- (18) Suppose $p \in \text{dom } T$. Given q. Suppose $q \in \text{dom}(T(p/T_1))$ and $q \in \{p \land s : s \text{ ranges over elements of dom } T_1, s = s\}$. Then there exists an element r of dom T_1 such that $q = p \land r$ and $T(p/T_1)(q) = T_1(r)$.
- (19) $T(\{t\}/T_1) = T(t/T_1).$

In the sequel D will denote a non empty set, T, T_1 will denote trees decorated with elements of D, and P will denote an antichain of prefixes of dom T.

Let us consider D, T, P, T_1 . Let us assume that $P \neq \emptyset$. The functor $T(P/T_1)$ yields a tree decorated with elements of D and is defined by:

(Def.3) $T(P/T_1) = T(P/T_1).$

Acknowledgments

The author wishes to thank to G. Bancerek for his assistance during the preparation of this paper.

References

- [1] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
- Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993.
- [3] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [9] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received October 1, 1995