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Summary. A continuation of [12]. The notions of list of immediate
constituents of a formula and subformula tree of a formula are introduced.
The some propositions related to these notions are proved.

MML Identifier: QC_LANG4.

The terminology and notation used in this paper are introduced in the following
articles: [15], [18], [3], [11], [19], [9], [10], [13], [8], [17], [1], [4], [6], [5], [7], [14],
[2], and [16].

1. PRELIMINARIES

The following propositions are true:

(1)  For all real numbers z, y, z such that x < y and y < z holds z < z.
(2)  For all natural numbers m, k holds m+ 1 < k iff m < k.

(3)  For every finite sequence r holds r = r | Seglenr.
(

[u—y

N

) For every natural number n and for every finite sequence r there exists
a finite sequence ¢ such that ¢ =7 | Segn and ¢ < r.

(5)  For all finite sequences p, g, r such that ¢ < r holdsp ~ ¢ <p~r.

(6) Let D be a non empty set, and let r be a finite sequence of elements
of D, and let r1, 79 be finite sequences, and let k be a natural number.
Suppose k + 1 < lenr and r; = r | Seg(k + 1) and r9 = r | Segk. Then
there exists an element x of D such that r1 =72 ™ (x).

(7)  Let D be a non empty set, and let r be a finite sequence of elements of

D, and let 71 be a finite sequence. If 1 < lenr and r; = r | Seg1, then

there exists an element x of D such that r; = (z).
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Let D be a non empty set and let T" be a tree decorated with elements of D.
Observe that every element of dom T is function-like and relation-like.

Let D be a non empty set and let T' be a tree decorated with elements of D.
One can verify that every element of dom T is finite sequence-like.

Let D be a non empty set. One can check that there exists a tree decorated
with elements of D which is finite.

In the sequel T will be a decorated tree and p will be a finite sequence of
elements of N.

Next we state the proposition

(8) If pedomT, then T'(p) = (T | p)(e).

In the sequel T' is a finite-branching decorated tree, t is an element of dom T,
x is a finite sequence, and n is a natural number.

The following propositions are true:

(9) suce(T,t) =T - Succt.
10)  dom(7T - Succt) = dom Succt.
11)  domsucc(T,t) = dom Succt.
12) t~(n) edomT iff n+ 1 € dom Succt.
13) For all T, =z, n such that x ~ (n) € dom7 holds T(x ~ (n)) =
(suce(T,z))(n + 1).
In the sequel z, 2’ will be elements of dom T and y’ will be arbitrary.
One can prove the following two propositions:
(14) If 2/ € succz, then T'(z') € rngsuce(T, x).
(15) If y' € rngsucc(T,z), then there exists x’ such that y' = T'(2’) and
x’ € succx.

~—~~
~— ~— ~— ~— ~—

In the sequel n, k, m will denote natural numbers.
The scheme EzDecTrees deals with a non empty set A, an element B of A,
and a unary functor F yielding a finite sequence of elements of A, and states
that:
There exists a finite-branching tree T decorated with elements of A
such that T'(¢) = B and for every element t of dom 7" and for every
element w of A such that w = T'(t) holds succ(T,t) = F(w)

for all values of the parameters.

The following propositions are true:

(16)  For every tree T' and for every element ¢ of 7" holds Seg~(t) is a finite
chain of T B

(17)  For every tree T holds T-level(0) = {e}.

(18)  For every tree T holds T-level(n + 1) = J{succw : w ranges over ele-
ments of T, lenw = n}.

(19)  For every finite-branching tree T" and for every natural number n holds
T-level(n) is finite.

(20)  For every finite-branching tree T' holds 7T is finite iff there exists a
natural number n such that T-level(n) = 0.
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(21)  For every finite-branching tree T such that 7" is not finite holds there
exists chain of T" which is not finite.

(22)  For every finite-branching tree T such that 7" is not finite holds there
exists branch of T" which is not finite.

(23) Let T be a tree, and let C be a chain of T, and let ¢ be an element of
T. If t € C and C is not finite, then there exists an element t’ of T such
that ' € C and t < t'.

(24) Let T be a tree, and let B be a branch of T, and let ¢ be an element of
T. Suppose t € B and B is not finite. Then there exists an element ¢’ of
T such that ¢ € B and t’ € succt.

(25) Let f be a function from N into N. Suppose that for every n holds
f(n+ 1) qua natural number < f(n) qua natural number. Then there
exists m such that for every n such that m < n holds f(n) = f(m).

The scheme FinDecTree concerns a non empty set A, a finite-branching tree
B decorated with elements of A, and a unary functor F yielding a natural
number, and states that:
B is finite
provided the parameters meet the following requirement:
e For all elements ¢, t' of dom B and for every element d of A such
that ¢ € succt and d = B(t') holds F(d) < F(B(t)).
In the sequel D will denote a non empty set and 7" will denote a tree decorated
with elements of D.
Next we state two propositions:
(26)  For arbitrary y such that y € rngT holds y is an element of D.

(27)  For arbitrary x such that z € domT holds T'(z) is an element of D.

2. SUBFORMULA TREE

In the sequel F', G, H will denote elements of WFF.
One can prove the following propositions:
(28)  If F is a subformula of G, then len(®F) < len(°G).
(29) If F is a subformula of G and len(®F) = len(“G), then F = G.
Let p be an element of WFF. The list of immediate constituents of p yields
a finite sequence of elements of WFF and is defined by:
(Def.1) (i)  The list of immediate constituents of p = ewpr if p = VERUM or p
is atomic,
(ii)  the list of immediate constituents of p = (Arg(p)) if p is negative,
(i)  the list of immediate constituents of p = (LeftArg(p), RightArg(p)) if
p is conjunctive,
(iv)  the list of immediate constituents of p = (Scope(p)), otherwise.
Next we state two propositions:
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(30) Suppose k € dom (the list of immediate constituents of F) and G =
(the list of immediate constituents of F')(k). Then G is an immediate
constituent of F'.

(31)  rng(the list of immediate constituents of F') = {G : G ranges over
elements of WFF, GG is an immediate constituent of F'}.

Let p be an element of WFFE. The tree of subformulae of p yields a finite tree

decorated with elements of WFF and is defined by the conditions (Def.2).
(Def.2) (i)  (The tree of subformulae of p)(e) = p, and

(ii)  for every element z of dom (the tree of subformulae of p) holds succ(the
tree of subformulae of p, x) = the list of immediate constituents of (the
tree of subformulae of p)(z).

In the sequel ¢, ¢’ will be elements of dom (the tree of subformulae of F').

One can prove the following propositions:

(32)  (The tree of subformulae of F)(¢) = F.

(33)  succ(the tree of subformulae of F, t) = the list of immediate con-
stituents of (the tree of subformulae of F')(t).

(34) F € rng(the tree of subformulae of F).

(35)  Suppose t~ (n) € dom (the tree of subformulae of F'). Then there exists
G such that

(i) G = (the tree of subformulae of F')(t ~ (n)), and
(i) G is an immediate constituent of (the tree of subformulae of F')(t).
(36)  The following statements are equivalent
(i) H is an immediate constituent of (the tree of subformulae of F))(t),
(ii)  there exists n such that ¢ ~ (n) € dom (the tree of subformulae of F)
and H = (the tree of subformulae of F)(t ~ (n)).

(37)  Suppose G € rng (the tree of subformulae of F') and H is an immediate
constituent of G. Then H € rng (the tree of subformulae of F).

(38) If G € rng(the tree of subformulae of F') and H is a subformula of G,
then H € rng (the tree of subformulae of F).

(39) G € rng (the tree of subformulae of F) iff G is a subformula of F.

(40)  rng (the tree of subformulae of F') = Subformulae F.

(41)  Suppose t' € succt. Then (the tree of subformulae of F')(t') is an im-
mediate constituent of (the tree of subformulae of F')(t).

(42) Ift < t/, then (the tree of subformulae of F)(t') is a subformula of (the
tree of subformulae of F')(t).

(43) Ift < #', then len(®(the tree of subformulae of F')(#')) < len(®(the tree
of subformulae of F)(t)).

(44) Ift < t/, then (the tree of subformulae of F))(t') # (the tree of subfor-
mulae of F')(t).

(45) Ift < t/, then (the tree of subformulae of F')(t) is a proper subformula
of (the tree of subformulae of F')(t).

(46)  (The tree of subformulae of F)(t) = F iff t = ¢.



THE SUBFORMULA TREE OF A FORMULA OF THE ... 419

(47)  Suppose t # t' and (the tree of subformulae of F)(t) = (the tree of
subformulae of F)(¢'). Then ¢ and t' are not comparable.

Let F, G be elements of WFF. The F-entry points in subformula tree of
G yields an antichain of prefixes of dom (the tree of subformulae of F') and is
defined by the condition (Def.3).

(Def.3) Let t be an element of dom (the tree of subformulae of F). Then ¢ €
the F-entry points in subformula tree of G if and only if (the tree of
subformulae of F)(t) = G.

We now state several propositions:

(48) t € the F-entry points in subformula tree of G iff (the tree of subfor-
mulae of F')(t) = G.

(49)  The F-entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F'), (the tree of subformulae of F')(t) =
G}.
(50) G is a subformula of F' iff the F-entry points in subformula tree of
G # 0.
(51)  Suppose t' =t~ (m) and (the tree of subformulae of F)(t) is negative.
Then (the tree of subformulae of F)(t') = Arg((the tree of subformulae
of F)(t)) and m = 0.
(52)  Supposet’ =t~ (m) and (the tree of subformulae of F')(t) is conjunctive.
Then
(i) (the tree of subformulae of F')(t') = LeftArg((the tree of subformulae
of F)(t)) and m =0, or
(i)  (the tree of subformulae of F')(t') = RightArg((the tree of subformulae
of F)(t)) and m = 1.
(53)  Suppose t’ =t~ (m) and (the tree of subformulae of F')(t) is universal.
Then (the tree of subformulae of F')(t') = Scope((the tree of subformulae
of F)(t)) and m = 0.

(54)  Suppose (the tree of subformulae of F')(¢) is negative. Then
(i) ¢t~ (0) € dom (the tree of subformulae of F'), and
(ii)  (the tree of subformulae of F)(t ~ (0)) = Arg((the tree of subformulae
of F)(t)).
(55)  Suppose (the tree of subformulae of F')(t) is conjunctive. Then
(i) ¢t~ (0) € dom (the tree of subformulae of F),
(ii)  (the tree of subformulae of F)(t ~ (0)) = LeftArg((the tree of subfor-
mulae of F)(t)),
(i) ¢~ (1) € dom (the tree of subformulae of F), and
(iv)  (the tree of subformulae of F')(t ~ (1)) = RightArg((the tree of subfor-
mulae of F)(t)).
(56)  Suppose (the tree of subformulae of F)(t) is universal. Then
(i) ¢t~ (0) € dom (the tree of subformulae of F'), and
(ii)  (the tree of subformulae of F')(t~(0)) = Scope((the tree of subformulae
of F)(t)).
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In the sequel ¢ will be an element of dom (the tree of subformulae of F') and
s will be an element of dom (the tree of subformulae of G).
Next we state the proposition

(57)  Suppose t € the F-entry points in subformula tree of G and s € the
G-entry points in subformula tree of H. Then t ~ s € the F-entry points
in subformula tree of H.

In the sequel ¢ will be an element of dom (the tree of subformulae of F') and
s will be a finite sequence.
Next we state several propositions:

(58)  Suppose t € the F-entry points in subformula tree of G and ¢ ~ s € the
F-entry points in subformula tree of H. Then s € the G-entry points in
subformula tree of H.

(59) Given F', G, H. Then {t "~ s : t ranges over elements of dom (the tree of
subformulae of F'), s ranges over elements of dom (the tree of subformulae
of G), t € the F-entry points in subformula tree of G A s € the G-entry
points in subformula tree of H} C the F-entry points in subformula tree
of H.

(60)  (The tree of subformulae of F') [ t = the tree of subformulae of (the tree
of subformulae of F)(t).

(61) t € the F-entry points in subformula tree of G if and only if (the tree
of subformulae of F') | t = the tree of subformulae of G.

(62)  The F-entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F'), (the tree of subformulae of F) [t =
the tree of subformulae of G}.

In the sequel C' is a chain of dom (the tree of subformulae of F').
Next we state the proposition
(63) Given F, G, H, C. Suppose that

(i) G € {(the tree of subformulae of F)(t) : ¢ ranges over elements of
dom (the tree of subformulae of F'), t € C'}, and

(i) H € {(the tree of subformulae of F')(t) : ¢t ranges over elements of
dom (the tree of subformulae of F'), t € C'}.
Then G is a subformula of H or H is a subformula of G.

Let F be an element of WFFE. An element of WEF is said to be a subformula
of F if:

(Def.4) Tt is a subformula of F'.

Let F' be an element of WFF and let G be a subformula of F. An element
of dom (the tree of subformulae of F') is said to be an entry point in subformula
tree of G if:

(Def.5)  (The tree of subformulae of F')(it) = G.

In the sequel G will denote a subformula of F'.
Next we state the proposition
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(64) tis an entry point in subformula tree of G iff (the tree of subformulae
of F)(t) = G.
In the sequel ¢, t' are entry points in subformula tree of G.
The following proposition is true

(65) Ift #t, then t and ¢’ are not comparable.

Let F' be an element of WFF and let G be a subformula of F. The en-
try points in subformula tree of G yields a non empty antichain of prefixes of
dom (the tree of subformulae of F') and is defined as follows:

(Def.6)  The entry points in subformula tree of G = the F-entry points in sub-
formula tree of G.

We now state three propositions:

(66) The entry points in subformula tree of G = the F-entry points in sub-
formula tree of G.

(67) t € the entry points in subformula tree of G.

(68)  The entry points in subformula tree of G = {t : ¢ ranges over entry
points in subformula tree of G, t = t}.

In the sequel G1, G5 will denote subformulae of F', t; will denote an entry
point in subformula tree of G, and s will denote an element of dom (the tree of
subformulae of G).

We now state the proposition

(69) If s € the Gi-entry points in subformula tree of Gg, then ¢; ~ s is an
entry point in subformula tree of Ga.

In the sequel s will be a finite sequence.
Next we state three propositions:

(70)  Ift;" s is an entry point in subformula tree of Gg, then s € the Gp-entry
points in subformula tree of Gs.

(71)  Given F, G1, Ga. Then {t" s : t ranges over entry points in subformula
tree of G, s ranges over elements of dom (the tree of subformulae of G1),
s € the Gy-entry points in subformula tree of Go} = {t ~ s : t ranges over
elements of dom (the tree of subformulae of F), s ranges over elements of
dom (the tree of subformulae of G1), t € the F-entry points in subformula
tree of G1 A s € the Gy-entry points in subformula tree of Ga}.

(72)  Given F, Gy, Go. Then {t~ s : t ranges over entry points in subformula
tree of G1, s ranges over elements of dom (the tree of subformulae of G1),
s € the Gp-entry points in subformula tree of G2} C the entry points in
subformula tree of Gs.

In the sequel Gy, Go will denote subformulae of F', t; will denote an entry
point in subformula tree of G4, and to will denote an entry point in subformula
tree of Gs.

The following two propositions are true:
(73)  1If there exist t1, t2 such that ¢; < t9, then Gy is a subformula of G;.
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(74)
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If G4 is a subformula of Gy, then for every t; there exists to such that
t1 X to.
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