The Subformula Tree of a Formula of the First Order Language

Oleg Okhotnikov
Ural University
Ekaterinburg

Abstract

Summary. A continuation of [12]. The notions of list of immediate constituents of a formula and subformula tree of a formula are introduced. The some propositions related to these notions are proved.

MML Identifier: QC_LANG4.

The terminology and notation used in this paper are introduced in the following articles: [15], [18], [3], [11], [19], [9], [10], [13], [8], [17], [1], [4], [6], [5], [7], [14], [2], and [16].

1. Preliminaries

The following propositions are true:
(1) For all real numbers x, y, z such that $x \leq y$ and $y<z$ holds $x<z$.
(2) For all natural numbers m, k holds $m+1 \leq k$ iff $m<k$.
(3) For every finite sequence r holds $r=r \upharpoonright \operatorname{Seg} \operatorname{len} r$.
(4) For every natural number n and for every finite sequence r there exists a finite sequence q such that $q=r \upharpoonright \operatorname{Seg} n$ and $q \preceq r$.
(5) For all finite sequences p, q, r such that $q \preceq r$ holds $p^{\wedge} q \preceq p^{\wedge} r$.
(6) Let D be a non empty set, and let r be a finite sequence of elements of D, and let r_{1}, r_{2} be finite sequences, and let k be a natural number. Suppose $k+1 \leq \operatorname{len} r$ and $r_{1}=r \upharpoonright \operatorname{Seg}(k+1)$ and $r_{2}=r \upharpoonright \operatorname{Seg} k$. Then there exists an element x of D such that $r_{1}=r_{2} \wedge\langle x\rangle$.
(7) Let D be a non empty set, and let r be a finite sequence of elements of D, and let r_{1} be a finite sequence. If $1 \leq \operatorname{len} r$ and $r_{1}=r \upharpoonright \operatorname{Seg} 1$, then there exists an element x of D such that $r_{1}=\langle x\rangle$.

Let D be a non empty set and let T be a tree decorated with elements of D. Observe that every element of $\operatorname{dom} T$ is function-like and relation-like.

Let D be a non empty set and let T be a tree decorated with elements of D. One can verify that every element of $\operatorname{dom} T$ is finite sequence-like.

Let D be a non empty set. One can check that there exists a tree decorated with elements of D which is finite.

In the sequel T will be a decorated tree and p will be a finite sequence of elements of \mathbb{N}.

Next we state the proposition
(8) If $p \in \operatorname{dom} T$, then $T(p)=(T \upharpoonright p)(\varepsilon)$.

In the sequel T is a finite-branching decorated tree, t is an element of dom T, x is a finite sequence, and n is a natural number.

The following propositions are true:
(9) $\operatorname{succ}(T, t)=T \cdot \operatorname{Succ} t$.
$\operatorname{dom}(T \cdot \operatorname{Succ} t)=\operatorname{dom} \operatorname{Succ} t$.
$\operatorname{dom} \operatorname{succ}(T, t)=\operatorname{dom} \operatorname{Succ} t$.
$t^{\wedge}\langle n\rangle \in \operatorname{dom} T$ iff $n+1 \in \operatorname{dom} \operatorname{Succ} t$.
(13) For all T, x, n such that $x \cap\langle n\rangle$ $(\operatorname{succ}(T, x))(n+1)$.
In the sequel x, x^{\prime} will be elements of $\operatorname{dom} T$ and y^{\prime} will be arbitrary.
One can prove the following two propositions:
(14) If $x^{\prime} \in \operatorname{succ} x$, then $T\left(x^{\prime}\right) \in \operatorname{rng} \operatorname{succ}(T, x)$.
(15) If $y^{\prime} \in \operatorname{rng} \operatorname{succ}(T, x)$, then there exists x^{\prime} such that $y^{\prime}=T\left(x^{\prime}\right)$ and $x^{\prime} \in \operatorname{succ} x$.
In the sequel n, k, m will denote natural numbers.
The scheme ExDecTrees deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a unary functor \mathcal{F} yielding a finite sequence of elements of \mathcal{A}, and states that:

There exists a finite-branching tree T decorated with elements of \mathcal{A} such that $T(\varepsilon)=\mathcal{B}$ and for every element t of $\operatorname{dom} T$ and for every element w of \mathcal{A} such that $w=T(t)$ holds $\operatorname{succ}(T, t)=\mathcal{F}(w)$
for all values of the parameters.
The following propositions are true:
(16) For every tree T and for every element t of T holds $\operatorname{Seg}_{\preceq}(t)$ is a finite chain of T.
(17) For every tree T holds T-level $(0)=\{\varepsilon\}$.
(18) For every tree T holds T-level $(n+1)=\bigcup\{\operatorname{succ} w: w$ ranges over elements of T, len $w=n\}$.
(19) For every finite-branching tree T and for every natural number n holds T-level (n) is finite.
(20) For every finite-branching tree T holds T is finite iff there exists a natural number n such that T-level $(n)=\emptyset$.
(21) For every finite-branching tree T such that T is not finite holds there exists chain of T which is not finite.
(22) For every finite-branching tree T such that T is not finite holds there exists branch of T which is not finite.
(23) Let T be a tree, and let C be a chain of T, and let t be an element of T. If $t \in C$ and C is not finite, then there exists an element t^{\prime} of T such that $t^{\prime} \in C$ and $t \prec t^{\prime}$.
(24) Let T be a tree, and let B be a branch of T, and let t be an element of T. Suppose $t \in B$ and B is not finite. Then there exists an element t^{\prime} of T such that $t^{\prime} \in B$ and $t^{\prime} \in \operatorname{succ} t$.
(25) Let f be a function from \mathbb{N} into \mathbb{N}. Suppose that for every n holds $f(n+1)$ qua natural number $\leq f(n)$ qua natural number. Then there exists m such that for every n such that $m \leq n$ holds $f(n)=f(m)$.
The scheme FinDecTree concerns a non empty set \mathcal{A}, a finite-branching tree \mathcal{B} decorated with elements of \mathcal{A}, and a unary functor \mathcal{F} yielding a natural number, and states that:
\mathcal{B} is finite
provided the parameters meet the following requirement:

- For all elements t, t^{\prime} of $\operatorname{dom} \mathcal{B}$ and for every element d of \mathcal{A} such that $t^{\prime} \in \operatorname{succ} t$ and $d=\mathcal{B}\left(t^{\prime}\right)$ holds $\mathcal{F}(d)<\mathcal{F}(\mathcal{B}(t))$.
In the sequel D will denote a non empty set and T will denote a tree decorated with elements of D.

Next we state two propositions:
(26) For arbitrary y such that $y \in \operatorname{rng} T$ holds y is an element of D.
(27) For arbitrary x such that $x \in \operatorname{dom} T$ holds $T(x)$ is an element of D.

2. Subformula tree

In the sequel F, G, H will denote elements of WFF.
One can prove the following propositions:
(28) If F is a subformula of G, then len $\left({ }^{@} F\right) \leq \operatorname{len}\left({ }^{@} G\right)$.
(29) If F is a subformula of G and len $\left({ }^{@} F\right)=\operatorname{len}\left({ }^{@} G\right)$, then $F=G$.

Let p be an element of WFF. The list of immediate constituents of p yields a finite sequence of elements of WFF and is defined by:
(Def.1) (i) The list of immediate constituents of $p=\varepsilon_{\text {WFF }}$ if $p=$ VERUM or p is atomic,
(ii) the list of immediate constituents of $p=\langle\operatorname{Arg}(p)\rangle$ if p is negative,
(iii) the list of immediate constituents of $p=\langle\operatorname{Left} \operatorname{Arg}(p), \operatorname{Right} \operatorname{Arg}(p)\rangle$ if p is conjunctive,
(iv) the list of immediate constituents of $p=\langle\operatorname{Scope}(p)\rangle$, otherwise.

Next we state two propositions:
(30) Suppose $k \in \operatorname{dom}(t h e ~ l i s t ~ o f ~ i m m e d i a t e ~ c o n s t i t u e n t s ~ o f ~ F) ~ a n d ~ G=~$ (the list of immediate constituents of $F)(k)$. Then G is an immediate constituent of F.
(31) $\quad \operatorname{rng}($ the list of immediate constituents of $F)=\{G: G$ ranges over elements of WFF, G is an immediate constituent of $F\}$.
Let p be an element of WFF. The tree of subformulae of p yields a finite tree decorated with elements of WFF and is defined by the conditions (Def.2).
(Def.2) (i) (The tree of subformulae of $p)(\varepsilon)=p$, and
(ii) for every element x of dom (the tree of subformulae of p) holds succ(the tree of subformulae of $p, x)=$ the list of immediate constituents of (the tree of subformulae of $p)(x)$.
In the sequel t, t^{\prime} will be elements of dom (the tree of subformulae of F).
One can prove the following propositions:
(32) (The tree of subformulae of $F)(\varepsilon)=F$.
(33) $\operatorname{succ}($ the tree of subformulae of $F, t)=$ the list of immediate constituents of (the tree of subformulae of $F)(t)$.
(34) $\quad F \in \operatorname{rng}($ the tree of subformulae of F).
(35) Suppose $t^{\wedge}\langle n\rangle \in \operatorname{dom}$ (the tree of subformulae of F). Then there exists G such that
(i) $\quad G=($ the tree of subformulae of $F)\left(t^{\wedge}\langle n\rangle\right)$, and
(ii) $\quad G$ is an immediate constituent of (the tree of subformulae of $F)(t)$.
(36) The following statements are equivalent
(i) H is an immediate constituent of (the tree of subformulae of $F)(t)$,
(ii) there exists n such that $t^{\wedge}\langle n\rangle \in \operatorname{dom}$ (the tree of subformulae of F) and $H=($ the tree of subformulae of $F)\left(t^{\wedge}\langle n\rangle\right)$.
(37) Suppose $G \in \operatorname{rng}$ (the tree of subformulae of F) and H is an immediate constituent of G. Then $H \in \operatorname{rng}$ (the tree of subformulae of F).
(38) If $G \in \operatorname{rng}($ the tree of subformulae of F) and H is a subformula of G, then $H \in \operatorname{rng}($ the tree of subformulae of F).
$G \in \operatorname{rng}($ the tree of subformulae of F) iff G is a subformula of F.
rng (the tree of subformulae of F) $=$ Subformulae F.
(41) Suppose $t^{\prime} \in \operatorname{succ} t$. Then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right)$ is an immediate constituent of (the tree of subformulae of $F)(t)$.
(42) If $t \preceq t^{\prime}$, then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right)$ is a subformula of (the tree of subformulae of $F)(t)$.
(43) If $t \prec t^{\prime}$, then len $\left({ }^{@}(\right.$ the tree of subformulae of $\left.F)\left(t^{\prime}\right)\right)<\operatorname{len}\left({ }^{@}(\right.$ the tree of subformulae of $F)(t)$).
(44) If $t \prec t^{\prime}$, then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right) \neq$ (the tree of subformulae of $F)(t)$.
(45) If $t \prec t^{\prime}$, then (the tree of subformulae of $\left.F\right)\left(t^{\prime}\right)$ is a proper subformula of (the tree of subformulae of $F)(t)$.
(46) (The tree of subformulae of $F)(t)=F$ iff $t=\varepsilon$.
(47) Suppose $t \neq t^{\prime}$ and (the tree of subformulae of $\left.F\right)(t)=$ (the tree of subformulae of $F)\left(t^{\prime}\right)$. Then t and t^{\prime} are not comparable.
Let F, G be elements of WFF. The F-entry points in subformula tree of G yields an antichain of prefixes of dom (the tree of subformulae of F) and is defined by the condition (Def.3).
(Def.3) Let t be an element of dom (the tree of subformulae of F). Then $t \in$ the F-entry points in subformula tree of G if and only if (the tree of subformulae of $F)(t)=G$.
We now state several propositions:
(48) $t \in$ the F-entry points in subformula tree of G iff (the tree of subformulae of $F)(t)=G$.
(49) The F-entry points in subformula tree of $G=\{t: t$ ranges over elements of dom (the tree of subformulae of F), (the tree of subformulae of $F)(t)=$ $G\}$.
(50) G is a subformula of F iff the F-entry points in subformula tree of $G \neq \emptyset$.
(51) Suppose $t^{\prime}=t^{\wedge}\langle m\rangle$ and (the tree of subformulae of $\left.F\right)(t)$ is negative. Then (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Arg}(($ the tree of subformulae of $F)(t))$ and $m=0$.
(52) Suppose $t^{\prime}=t^{\wedge}\langle m\rangle$ and (the tree of subformulae of $\left.F\right)(t)$ is conjunctive. Then
(i) (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Left} \operatorname{Arg}(($ the tree of subformulae of $F)(t)$) and $m=0$, or
(ii) (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Right} \operatorname{Arg}(($ the tree of subformulae of $F)(t))$ and $m=1$.
(53) Suppose $t^{\prime}=t^{\wedge}\langle m\rangle$ and (the tree of subformulae of $\left.F\right)(t)$ is universal. Then (the tree of subformulae of $F)\left(t^{\prime}\right)=\operatorname{Scope}(($ the tree of subformulae of $F)(t))$ and $m=0$.
(54) Suppose (the tree of subformulae of $F)(t)$ is negative. Then
(i) $\quad t \wedge\langle 0\rangle \in \operatorname{dom}$ (the tree of subformulae of F), and
(ii) (the tree of subformulae of $F)\left(t^{\sim}\langle 0\rangle\right)=\operatorname{Arg}(($ the tree of subformulae of $F)(t)$).
(55) Suppose (the tree of subformulae of $F)(t)$ is conjunctive. Then
(i) $\quad t^{\wedge}\langle 0\rangle \in \operatorname{dom}($ the tree of subformulae of F),
(ii) (the tree of subformulae of $F)\left(t^{\wedge}\langle 0\rangle\right)=\operatorname{Left} \operatorname{Arg}(($ the tree of subformulae of $F)(t)$),
(iii) $t^{\wedge}\langle 1\rangle \in \operatorname{dom}$ (the tree of subformulae of F), and
(iv) (the tree of subformulae of $F)\left(t^{\sim}\langle 1\rangle\right)=\operatorname{Right} \operatorname{Arg}(($ the tree of subformulae of $F)(t)$).
(56) Suppose (the tree of subformulae of $F)(t)$ is universal. Then
(i) $\quad t^{\wedge}\langle 0\rangle \in \operatorname{dom}$ (the tree of subformulae of F), and
(ii) (the tree of subformulae of $F)\left(t^{\wedge}\langle 0\rangle\right)=\operatorname{Scope}(($ the tree of subformulae of $F)(t)$).

In the sequel t will be an element of dom (the tree of subformulae of F) and s will be an element of dom (the tree of subformulae of G).

Next we state the proposition
(57) Suppose $t \in$ the F-entry points in subformula tree of G and $s \in$ the G-entry points in subformula tree of H. Then $t^{\wedge} s \in$ the F-entry points in subformula tree of H.
In the sequel t will be an element of dom (the tree of subformulae of F) and s will be a finite sequence.

Next we state several propositions:
(58) Suppose $t \in$ the F-entry points in subformula tree of G and $t^{\wedge} s \in$ the F-entry points in subformula tree of H. Then $s \in$ the G-entry points in subformula tree of H.
(59) Given F, G, H. Then $\left\{t^{\wedge} s: t\right.$ ranges over elements of dom (the tree of subformulae of F), s ranges over elements of dom (the tree of subformulae of G), $t \in$ the F-entry points in subformula tree of $G \wedge s \in$ the G-entry points in subformula tree of $H\} \subseteq$ the F-entry points in subformula tree of H.
(60) (The tree of subformulae of F) $\upharpoonright t=$ the tree of subformulae of (the tree of subformulae of $F)(t)$.
(61) $t \in$ the F-entry points in subformula tree of G if and only if (the tree of subformulae of $F) \upharpoonright t=$ the tree of subformulae of G.
(62) The F-entry points in subformula tree of $G=\{t: t$ ranges over elements of dom (the tree of subformulae of F), (the tree of subformulae of F) $\upharpoonright t=$ the tree of subformulae of $G\}$.
In the sequel C is a chain of dom (the tree of subformulae of F).
Next we state the proposition
(63) Given F, G, H, C. Suppose that
(i) $G \in\{($ the tree of subformulae of $F)(t): t$ ranges over elements of dom (the tree of subformulae of F), $t \in C\}$, and
(ii) $H \in\{($ the tree of subformulae of $F)(t): t$ ranges over elements of dom (the tree of subformulae of F), $t \in C\}$.
Then G is a subformula of H or H is a subformula of G.
Let F be an element of WFF. An element of WFF is said to be a subformula of F if:
(Def.4) It is a subformula of F.
Let F be an element of WFF and let G be a subformula of F. An element of dom (the tree of subformulae of F) is said to be an entry point in subformula tree of G if:
(Def.5) (The tree of subformulae of $F)($ it $)=G$.
In the sequel G will denote a subformula of F.
Next we state the proposition
(64) t is an entry point in subformula tree of G iff (the tree of subformulae of $F)(t)=G$.
In the sequel t, t^{\prime} are entry points in subformula tree of G.
The following proposition is true
(65) If $t \neq t^{\prime}$, then t and t^{\prime} are not comparable.

Let F be an element of WFF and let G be a subformula of F. The entry points in subformula tree of G yields a non empty antichain of prefixes of dom (the tree of subformulae of F) and is defined as follows:
(Def.6) The entry points in subformula tree of $G=$ the F-entry points in subformula tree of G.

We now state three propositions:
(66) The entry points in subformula tree of $G=$ the F-entry points in subformula tree of G.
(67) $t \in$ the entry points in subformula tree of G.
(68) The entry points in subformula tree of $G=\{t: t$ ranges over entry points in subformula tree of $G, t=t\}$.
In the sequel G_{1}, G_{2} will denote subformulae of F, t_{1} will denote an entry point in subformula tree of G_{1}, and s will denote an element of dom (the tree of subformulae of G_{1}).

We now state the proposition
(69) If $s \in$ the G_{1}-entry points in subformula tree of G_{2}, then $t_{1} \wedge s$ is an entry point in subformula tree of G_{2}.
In the sequel s will be a finite sequence.
Next we state three propositions:
(70) If $t_{1} \wedge s$ is an entry point in subformula tree of G_{2}, then $s \in$ the G_{1}-entry points in subformula tree of G_{2}.
(71) Given F, G_{1}, G_{2}. Then $\{t \wedge s: t$ ranges over entry points in subformula tree of G_{1}, s ranges over elements of dom (the tree of subformulae of G_{1}), $s \in$ the G_{1}-entry points in subformula tree of $\left.G_{2}\right\}=\left\{t^{\wedge} s: t\right.$ ranges over elements of dom (the tree of subformulae of F), s ranges over elements of dom (the tree of subformulae of G_{1}), $t \in$ the F-entry points in subformula tree of $G_{1} \wedge s \in$ the G_{1}-entry points in subformula tree of $\left.G_{2}\right\}$.
(72) Given F, G_{1}, G_{2}. Then $\left\{t^{\wedge} s: t\right.$ ranges over entry points in subformula tree of G_{1}, s ranges over elements of dom (the tree of subformulae of G_{1}), $s \in$ the G_{1}-entry points in subformula tree of $\left.G_{2}\right\} \subseteq$ the entry points in subformula tree of G_{2}.
In the sequel G_{1}, G_{2} will denote subformulae of F, t_{1} will denote an entry point in subformula tree of G_{1}, and t_{2} will denote an entry point in subformula tree of G_{2}.

The following two propositions are true:
(73) If there exist t_{1}, t_{2} such that $t_{1} \preceq t_{2}$, then G_{2} is a subformula of G_{1}.
(74) If G_{2} is a subformula of G_{1}, then for every t_{1} there exists t_{2} such that $t_{1} \preceq t_{2}$.

Acknowledgments

The author wishes to thank to G. Bancerek for his assistance during the preparation of this paper.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized Mathematics, 1(3):451-458, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[5] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[6] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Czesław Byliński and Grzegorz Bancerek. Variables in formulae of the first order language. Formalized Mathematics, 1(3):459-469, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[18] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 2, 1995

