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Summary. A continuation of [12]. The notions of list of immediate
constituents of a formula and subformula tree of a formula are introduced.
The some propositions related to these notions are proved.
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The terminology and notation used in this paper are introduced in the following
articles: [15], [18], [3], [11], [19], [9], [10], [13], [8], [17], [1], [4], [6], [5], [7], [14],
[2], and [16].

1. Preliminaries

The following propositions are true:

(1) For all real numbers x, y, z such that x ≤ y and y < z holds x < z.

(2) For all natural numbers m, k holds m + 1 ≤ k iff m < k.

(3) For every finite sequence r holds r = r
�
Seg len r.

(4) For every natural number n and for every finite sequence r there exists
a finite sequence q such that q = r

�
Seg n and q � r.

(5) For all finite sequences p, q, r such that q � r holds p � q � p � r.

(6) Let D be a non empty set, and let r be a finite sequence of elements
of D, and let r1, r2 be finite sequences, and let k be a natural number.
Suppose k + 1 ≤ len r and r1 = r

�
Seg(k + 1) and r2 = r

�
Seg k. Then

there exists an element x of D such that r1 = r2 � 〈x〉.

(7) Let D be a non empty set, and let r be a finite sequence of elements of
D, and let r1 be a finite sequence. If 1 ≤ len r and r1 = r

�
Seg 1, then

there exists an element x of D such that r1 = 〈x〉.
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Let D be a non empty set and let T be a tree decorated with elements of D.
Observe that every element of domT is function-like and relation-like.

Let D be a non empty set and let T be a tree decorated with elements of D.
One can verify that every element of domT is finite sequence-like.

Let D be a non empty set. One can check that there exists a tree decorated
with elements of D which is finite.

In the sequel T will be a decorated tree and p will be a finite sequence of
elements of 
 .

Next we state the proposition

(8) If p ∈ dom T, then T (p) = (T
�
p)(ε).

In the sequel T is a finite-branching decorated tree, t is an element of dom T,

x is a finite sequence, and n is a natural number.
The following propositions are true:

(9) succ(T, t) = T · Succ t.

(10) dom(T · Succ t) = dom Succ t.

(11) dom succ(T, t) = domSucc t.

(12) t � 〈n〉 ∈ dom T iff n + 1 ∈ dom Succ t.

(13) For all T , x, n such that x � 〈n〉 ∈ dom T holds T (x � 〈n〉) =
(succ(T, x))(n + 1).

In the sequel x, x′ will be elements of dom T and y′ will be arbitrary.
One can prove the following two propositions:

(14) If x′ ∈ succx, then T (x′) ∈ rng succ(T, x).

(15) If y′ ∈ rng succ(T, x), then there exists x′ such that y′ = T (x′) and
x′ ∈ succx.

In the sequel n, k, m will denote natural numbers.
The scheme ExDecTrees deals with a non empty set A, an element B of A,

and a unary functor F yielding a finite sequence of elements of A, and states
that:

There exists a finite-branching tree T decorated with elements of A
such that T (ε) = B and for every element t of domT and for every
element w of A such that w = T (t) holds succ(T, t) = F(w)

for all values of the parameters.
The following propositions are true:

(16) For every tree T and for every element t of T holds Seg�(t) is a finite
chain of T .

(17) For every tree T holds T -level(0) = {ε}.

(18) For every tree T holds T -level(n + 1) =
⋃
{succ w : w ranges over ele-

ments of T , len w = n}.

(19) For every finite-branching tree T and for every natural number n holds
T -level(n) is finite.

(20) For every finite-branching tree T holds T is finite iff there exists a
natural number n such that T -level(n) = ∅.
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(21) For every finite-branching tree T such that T is not finite holds there
exists chain of T which is not finite.

(22) For every finite-branching tree T such that T is not finite holds there
exists branch of T which is not finite.

(23) Let T be a tree, and let C be a chain of T , and let t be an element of
T . If t ∈ C and C is not finite, then there exists an element t′ of T such
that t′ ∈ C and t ≺ t′.

(24) Let T be a tree, and let B be a branch of T , and let t be an element of
T . Suppose t ∈ B and B is not finite. Then there exists an element t′ of
T such that t′ ∈ B and t′ ∈ succ t.

(25) Let f be a function from 
 into 
 . Suppose that for every n holds
f(n + 1) qua natural number ≤ f(n) qua natural number. Then there
exists m such that for every n such that m ≤ n holds f(n) = f(m).

The scheme FinDecTree concerns a non empty set A, a finite-branching tree
B decorated with elements of A, and a unary functor F yielding a natural
number, and states that:

B is finite
provided the parameters meet the following requirement:

• For all elements t, t′ of domB and for every element d of A such
that t′ ∈ succ t and d = B(t′) holds F(d) < F(B(t)).

In the sequel D will denote a non empty set and T will denote a tree decorated
with elements of D.

Next we state two propositions:

(26) For arbitrary y such that y ∈ rng T holds y is an element of D.

(27) For arbitrary x such that x ∈ dom T holds T (x) is an element of D.

2. Subformula tree

In the sequel F , G, H will denote elements of WFF.
One can prove the following propositions:

(28) If F is a subformula of G, then len(@F ) ≤ len(@G).

(29) If F is a subformula of G and len(@F ) = len(@G), then F = G.

Let p be an element of WFF. The list of immediate constituents of p yields
a finite sequence of elements of WFF and is defined by:

(Def.1) (i) The list of immediate constituents of p = εWFF if p = VERUM or p

is atomic,
(ii) the list of immediate constituents of p = 〈Arg(p)〉 if p is negative,
(iii) the list of immediate constituents of p = 〈LeftArg(p),RightArg(p)〉 if

p is conjunctive,
(iv) the list of immediate constituents of p = 〈Scope(p)〉, otherwise.

Next we state two propositions:
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(30) Suppose k ∈ dom(the list of immediate constituents of F ) and G =
(the list of immediate constituents of F )(k). Then G is an immediate
constituent of F .

(31) rng (the list of immediate constituents of F ) = {G : G ranges over
elements of WFF, G is an immediate constituent of F}.

Let p be an element of WFF. The tree of subformulae of p yields a finite tree
decorated with elements of WFF and is defined by the conditions (Def.2).

(Def.2) (i) (The tree of subformulae of p)(ε) = p, and
(ii) for every element x of dom (the tree of subformulae of p) holds succ(the

tree of subformulae of p, x) = the list of immediate constituents of (the
tree of subformulae of p)(x).

In the sequel t, t′ will be elements of dom(the tree of subformulae of F ).
One can prove the following propositions:

(32) (The tree of subformulae of F )(ε) = F.

(33) succ(the tree of subformulae of F , t) = the list of immediate con-
stituents of (the tree of subformulae of F )(t).

(34) F ∈ rng (the tree of subformulae of F ).

(35) Suppose t � 〈n〉 ∈ dom (the tree of subformulae of F ). Then there exists
G such that

(i) G = (the tree of subformulae of F )(t � 〈n〉), and
(ii) G is an immediate constituent of (the tree of subformulae of F )(t).

(36) The following statements are equivalent
(i) H is an immediate constituent of (the tree of subformulae of F )(t),
(ii) there exists n such that t � 〈n〉 ∈ dom (the tree of subformulae of F )

and H = (the tree of subformulae of F )(t � 〈n〉).

(37) Suppose G ∈ rng (the tree of subformulae of F ) and H is an immediate
constituent of G. Then H ∈ rng (the tree of subformulae of F ).

(38) If G ∈ rng (the tree of subformulae of F ) and H is a subformula of G,
then H ∈ rng (the tree of subformulae of F ).

(39) G ∈ rng (the tree of subformulae of F ) iff G is a subformula of F .

(40) rng (the tree of subformulae of F ) = SubformulaeF.

(41) Suppose t′ ∈ succ t. Then (the tree of subformulae of F )(t′) is an im-
mediate constituent of (the tree of subformulae of F )(t).

(42) If t � t′, then (the tree of subformulae of F )(t′) is a subformula of (the
tree of subformulae of F )(t).

(43) If t ≺ t′, then len(@(the tree of subformulae of F )(t′)) < len(@(the tree
of subformulae of F )(t)).

(44) If t ≺ t′, then (the tree of subformulae of F )(t′) 6= (the tree of subfor-
mulae of F )(t).

(45) If t ≺ t′, then (the tree of subformulae of F )(t′) is a proper subformula
of (the tree of subformulae of F )(t).

(46) (The tree of subformulae of F )(t) = F iff t = ε.
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(47) Suppose t 6= t′ and (the tree of subformulae of F )(t) = (the tree of
subformulae of F )(t′). Then t and t′ are not comparable.

Let F , G be elements of WFF. The F -entry points in subformula tree of
G yields an antichain of prefixes of dom (the tree of subformulae of F ) and is
defined by the condition (Def.3).

(Def.3) Let t be an element of dom (the tree of subformulae of F ). Then t ∈
the F -entry points in subformula tree of G if and only if (the tree of
subformulae of F )(t) = G.

We now state several propositions:

(48) t ∈ the F -entry points in subformula tree of G iff (the tree of subfor-
mulae of F )(t) = G.

(49) The F -entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F ), (the tree of subformulae of F )(t) =
G}.

(50) G is a subformula of F iff the F -entry points in subformula tree of
G 6= ∅.

(51) Suppose t′ = t � 〈m〉 and (the tree of subformulae of F )(t) is negative.
Then (the tree of subformulae of F )(t′) = Arg((the tree of subformulae
of F )(t)) and m = 0.

(52) Suppose t′ = t � 〈m〉 and (the tree of subformulae of F )(t) is conjunctive.
Then

(i) (the tree of subformulae of F )(t′) = LeftArg((the tree of subformulae
of F )(t)) and m = 0, or

(ii) (the tree of subformulae of F )(t′) = RightArg((the tree of subformulae
of F )(t)) and m = 1.

(53) Suppose t′ = t � 〈m〉 and (the tree of subformulae of F )(t) is universal.
Then (the tree of subformulae of F )(t′) = Scope((the tree of subformulae
of F )(t)) and m = 0.

(54) Suppose (the tree of subformulae of F )(t) is negative. Then
(i) t � 〈0〉 ∈ dom(the tree of subformulae of F ), and
(ii) (the tree of subformulae of F )(t � 〈0〉) = Arg((the tree of subformulae

of F )(t)).

(55) Suppose (the tree of subformulae of F )(t) is conjunctive. Then
(i) t � 〈0〉 ∈ dom(the tree of subformulae of F ),
(ii) (the tree of subformulae of F )(t � 〈0〉) = LeftArg((the tree of subfor-

mulae of F )(t)),
(iii) t � 〈1〉 ∈ dom(the tree of subformulae of F ), and
(iv) (the tree of subformulae of F )(t � 〈1〉) = RightArg((the tree of subfor-

mulae of F )(t)).

(56) Suppose (the tree of subformulae of F )(t) is universal. Then
(i) t � 〈0〉 ∈ dom(the tree of subformulae of F ), and
(ii) (the tree of subformulae of F )(t � 〈0〉) = Scope((the tree of subformulae

of F )(t)).
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In the sequel t will be an element of dom (the tree of subformulae of F ) and
s will be an element of dom(the tree of subformulae of G).

Next we state the proposition

(57) Suppose t ∈ the F -entry points in subformula tree of G and s ∈ the
G-entry points in subformula tree of H. Then t � s ∈ the F -entry points
in subformula tree of H.

In the sequel t will be an element of dom (the tree of subformulae of F ) and
s will be a finite sequence.

Next we state several propositions:

(58) Suppose t ∈ the F -entry points in subformula tree of G and t � s ∈ the
F -entry points in subformula tree of H. Then s ∈ the G-entry points in
subformula tree of H.

(59) Given F , G, H. Then {t � s : t ranges over elements of dom (the tree of
subformulae of F ), s ranges over elements of dom (the tree of subformulae
of G), t ∈ the F -entry points in subformula tree of G ∧ s ∈ the G-entry
points in subformula tree of H} ⊆ the F -entry points in subformula tree
of H.

(60) (The tree of subformulae of F )
�
t = the tree of subformulae of (the tree

of subformulae of F )(t).

(61) t ∈ the F -entry points in subformula tree of G if and only if (the tree
of subformulae of F )

�
t = the tree of subformulae of G.

(62) The F -entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F ), (the tree of subformulae of F )

�
t =

the tree of subformulae of G}.

In the sequel C is a chain of dom (the tree of subformulae of F ).

Next we state the proposition

(63) Given F , G, H, C. Suppose that

(i) G ∈ {(the tree of subformulae of F )(t) : t ranges over elements of
dom(the tree of subformulae of F ), t ∈ C}, and

(ii) H ∈ {(the tree of subformulae of F )(t) : t ranges over elements of
dom(the tree of subformulae of F ), t ∈ C}.
Then G is a subformula of H or H is a subformula of G.

Let F be an element of WFF. An element of WFF is said to be a subformula
of F if:

(Def.4) It is a subformula of F .

Let F be an element of WFF and let G be a subformula of F . An element
of dom(the tree of subformulae of F ) is said to be an entry point in subformula
tree of G if:

(Def.5) (The tree of subformulae of F )(it) = G.

In the sequel G will denote a subformula of F .

Next we state the proposition
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(64) t is an entry point in subformula tree of G iff (the tree of subformulae
of F )(t) = G.

In the sequel t, t′ are entry points in subformula tree of G.

The following proposition is true

(65) If t 6= t′, then t and t′ are not comparable.

Let F be an element of WFF and let G be a subformula of F . The en-
try points in subformula tree of G yields a non empty antichain of prefixes of
dom (the tree of subformulae of F ) and is defined as follows:

(Def.6) The entry points in subformula tree of G = the F -entry points in sub-
formula tree of G.

We now state three propositions:

(66) The entry points in subformula tree of G = the F -entry points in sub-
formula tree of G.

(67) t ∈ the entry points in subformula tree of G.

(68) The entry points in subformula tree of G = {t : t ranges over entry
points in subformula tree of G, t = t}.

In the sequel G1, G2 will denote subformulae of F , t1 will denote an entry
point in subformula tree of G1, and s will denote an element of dom(the tree of
subformulae of G1).

We now state the proposition

(69) If s ∈ the G1-entry points in subformula tree of G2, then t1 � s is an
entry point in subformula tree of G2.

In the sequel s will be a finite sequence.

Next we state three propositions:

(70) If t1 � s is an entry point in subformula tree of G2, then s ∈ the G1-entry
points in subformula tree of G2.

(71) Given F , G1, G2. Then {t � s : t ranges over entry points in subformula
tree of G1, s ranges over elements of dom (the tree of subformulae of G1),
s ∈ the G1-entry points in subformula tree of G2} = {t � s : t ranges over
elements of dom (the tree of subformulae of F ), s ranges over elements of
dom (the tree of subformulae of G1), t ∈ the F -entry points in subformula
tree of G1 ∧ s ∈ the G1-entry points in subformula tree of G2}.

(72) Given F , G1, G2. Then {t � s : t ranges over entry points in subformula
tree of G1, s ranges over elements of dom (the tree of subformulae of G1),
s ∈ the G1-entry points in subformula tree of G2} ⊆ the entry points in
subformula tree of G2.

In the sequel G1, G2 will denote subformulae of F , t1 will denote an entry
point in subformula tree of G1, and t2 will denote an entry point in subformula
tree of G2.

The following two propositions are true:

(73) If there exist t1, t2 such that t1 � t2, then G2 is a subformula of G1.
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(74) If G2 is a subformula of G1, then for every t1 there exists t2 such that
t1 � t2.
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