Some Basic Properties of Many Sorted Sets

Artur Korniłowicz
Warsaw University
Białystok

MML Identifier: PZFMISC1.

The notation and terminology used here are introduced in the following papers: [11], [12], [5], [13], [2], [3], [4], [6], [1], [10], [9], [8], and [7].

1. Preliminaries

For simplicity we follow a convention: i will be arbitrary, I will be a set, f will be a function, $x, x_{1}, x_{2}, y, A, B, X, Y, Z$ will be many sorted sets indexed by I, J will be a non empty set, and N_{1} will be a many sorted set indexed by J.

We now state three propositions:
(1) For every set X and for every many sorted set M indexed by I such that $i \in I$ holds $\operatorname{dom}(M+\cdot(i \longmapsto X))=I$.
(2) If $f=\emptyset$, then f is a many sorted set indexed by \emptyset.
(3) If I is non empty, then there exists no X which is empty yielding and non-empty.

2. Singelton and unordered pairs

Let us consider I, A. The functor $\{A\}$ yielding a many sorted set indexed by I is defined as follows:
(Def.1) For every i such that $i \in I$ holds $\{A\}(i)=\{A(i)\}$.
Let us consider I, A. Observe that $\{A\}$ is non-empty and locally-finite.
Let us consider I, A, B. The functor $\{A, B\}$ yields a many sorted set indexed by I and is defined as follows:
(Def.2) For every i such that $i \in I$ holds $\{A, B\}(i)=\{A(i), B(i)\}$.
Let us consider I, A, B. One can verify that $\{A, B\}$ is non-empty and locally-finite.

We now state a number of propositions:
(4) $\quad X=\{y\}$ iff for every x holds $x \in X$ iff $x=y$.
(5) If for every x holds $x \in X$ iff $x=x_{1}$ or $x=x_{2}$, then $X=\left\{x_{1}, x_{2}\right\}$.
(6) If $X=\left\{x_{1}, x_{2}\right\}$, then for every x such that $x=x_{1}$ or $x=x_{2}$ holds $x \in X$.
(7) $\left\{N_{1}\right\} \neq \emptyset_{I}$.
(8) If $x \in\{A\}$, then $x=A$.
(9) $x \in\{x\}$.
(10) If $x=A$ or $x=B$, then $x \in\{A, B\}$.
(11) $\{A\} \cup\{B\}=\{A, B\}$.
(12) $\{x, x\}=\{x\}$.
(13) $\{A, B\}=\{B, A\}$.
(14) If $\{A\} \subseteq\{B\}$, then $A=B$.
(15) If $\{x\}=\{y\}$, then $x=y$.
(16) If $\{x\}=\{A, B\}$, then $x=A$ and $x=B$.
(17) If $\{x\}=\{A, B\}$, then $A=B$.
(18) $\{x\} \subseteq\{x, y\}$ and $\{y\} \subseteq\{x, y\}$.
(19) If $\{x\} \cup\{y\}=\{x\}$ or $\{x\} \cup\{y\}=\{y\}$, then $x=y$.
(20) $\{x\} \cup\{x, y\}=\{x, y\}$.
(21) $\{y\} \cup\{x, y\}=\{x, y\}$.
(22) If I is non empty and $\{x\} \cap\{y\}=\emptyset_{I}$, then $x \neq y$.
(23) If $\{x\} \cap\{y\}=\{x\}$ or $\{x\} \cap\{y\}=\{y\}$, then $x=y$.
(24) $\quad\{x\} \cap\{x, y\}=\{x\}$ and $\{y\} \cap\{x, y\}=\{y\}$.
(25) If I is non empty and $\{x\} \backslash\{y\}=\{x\}$, then $x \neq y$.
(26) If $\{x\} \backslash\{y\}=\emptyset_{I}$, then $x=y$.
(27) $\quad\{x\} \backslash\{x, y\}=\emptyset_{I}$ and $\{y\} \backslash\{x, y\}=\emptyset_{I}$.
(28) If $\{x\} \subseteq\{y\}$, then $\{x\}=\{y\}$.
(29) If $\{x, y\} \subseteq\{A\}$, then $x=A$ and $y=A$.
(30) If $\{x, y\} \subseteq\{A\}$, then $\{x, y\}=\{A\}$.
(31) $2^{\{x\}}=\left\{\emptyset_{I},\{x\}\right\}$.
(32) $\{A\} \subseteq 2^{A}$.
(33) $\cup\{x\}=x$.
(34) $\bigcup\{\{x\},\{y\}\}=\{x, y\}$.
(35) $\cup\{A, B\}=A \cup B$.
(36) $\quad\{x\} \subseteq X$ iff $x \in X$.

$$
\begin{equation*}
\left\{x_{1}, x_{2}\right\} \subseteq X \text { iff } x_{1} \in X \text { and } x_{2} \in X \tag{37}
\end{equation*}
$$

(38) If $A=\emptyset_{I}$ or $A=\left\{x_{1}\right\}$ or $A=\left\{x_{2}\right\}$ or $A=\left\{x_{1}, x_{2}\right\}$, then $A \subseteq\left\{x_{1}, x_{2}\right\}$.
3. Sum of unordered pairs (or a singelton) and a set

One can prove the following propositions:
(39) If $x \in A$ or $x=B$, then $x \in A \cup\{B\}$.
(40) $A \cup\{x\} \subseteq B$ iff $x \in B$ and $A \subseteq B$.
(41) If $\{x\} \cup X=X$, then $x \in X$.
(42) If $x \in X$, then $\{x\} \cup X=X$.
(43) $\quad\{x, y\} \cup A=A$ iff $x \in A$ and $y \in A$.
(44) If I is non empty, then $\{x\} \cup X \neq \emptyset_{I}$.
(45) If I is non empty, then $\{x, y\} \cup X \neq \emptyset_{I}$.
4. Intersection of unordered pairs (or a singelton) and a set

We now state several propositions:
(46) If $X \cap\{x\}=\{x\}$, then $x \in X$.
(47) If $x \in X$, then $X \cap\{x\}=\{x\}$.
(48) $x \in X$ and $y \in X$ iff $\{x, y\} \cap X=\{x, y\}$.
(49) If I is non empty and $\{x\} \cap X=\emptyset_{I}$, then $x \notin X$.
(50) If I is non empty and $\{x, y\} \cap X=\emptyset_{I}$, then $x \notin X$ and $y \notin X$.
5. Difference of unordered pairs (or a singelton) and a set

The following propositions are true:
(51) If $y \in X \backslash\{x\}$, then $y \in X$.
(52) If I is non empty and $y \in X \backslash\{x\}$, then $y \neq x$.
(53) If I is non empty and $X \backslash\{x\}=X$, then $x \notin X$.
(54) If I is non empty and $\{x\} \backslash X=\{x\}$, then $x \notin X$.
(55) $\quad\{x\} \backslash X=\emptyset_{I}$ iff $x \in X$.
(56) If I is non empty and $\{x, y\} \backslash X=\{x\}$, then $x \notin X$.
(57) If I is non empty and $\{x, y\} \backslash X=\{y\}$, then $y \notin X$.
(58) If I is non empty and $\{x, y\} \backslash X=\{x, y\}$, then $x \notin X$ and $y \notin X$.
(59) $\quad\{x, y\} \backslash X=\emptyset_{I}$ iff $x \in X$ and $y \in X$.
(60) If $X=\emptyset_{I}$ or $X=\{x\}$ or $X=\{y\}$ or $X=\{x, y\}$, then $X \backslash\{x, y\}=\emptyset_{I}$.

6. Cartesian product

One can prove the following propositions:
(61) If $X=\emptyset_{I}$ or $Y=\emptyset_{I}$, then $\llbracket X, Y \rrbracket=\emptyset_{I}$.
(62) If X is non-empty and Y is non-empty and $\llbracket X, Y \rrbracket=\llbracket Y, X \rrbracket$, then $X=Y$.
(63) If $\llbracket X, X \rrbracket=\llbracket Y, Y \rrbracket$, then $X=Y$.
(64) If Z is non-empty and if $\llbracket X, Z \rrbracket \subseteq \llbracket Y, Z \rrbracket$ or $\llbracket Z, X \rrbracket \subseteq \llbracket Z, Y \rrbracket$, then $X \subseteq Y$.
(65) If $X \subseteq Y$, then $\llbracket X, Z \rrbracket \subseteq \llbracket Y, Z \rrbracket$ and $\llbracket Z, X \rrbracket \subseteq \llbracket Z, Y \rrbracket$.
(66) If $x_{1} \subseteq A$ and $x_{2} \subseteq B$, then $\llbracket x_{1}, x_{2} \rrbracket \subseteq \llbracket A, B \rrbracket$.
(67) $\llbracket X \cup Y, Z \rrbracket=\llbracket X, Z \rrbracket \cup \llbracket Y, Z \rrbracket$ and $\llbracket Z, X \cup Y \rrbracket=\llbracket Z, X \rrbracket \cup \llbracket Z, Y \rrbracket$.
(68) $\llbracket x_{1} \cup x_{2}, A \cup B \rrbracket=\llbracket x_{1}, A \rrbracket \cup \llbracket x_{1}, B \rrbracket \cup \llbracket x_{2}, A \rrbracket \cup \llbracket x_{2}, B \rrbracket$.
(69) $\llbracket X \cap Y, Z \rrbracket=\llbracket X, Z \rrbracket \cap \llbracket Y, Z \rrbracket$ and $\llbracket Z, X \cap Y \rrbracket=\llbracket Z, X \rrbracket \cap \llbracket Z, Y \rrbracket$.
(70) $\llbracket x_{1} \cap x_{2}, A \cap B \rrbracket=\llbracket x_{1}, A \rrbracket \cap \llbracket x_{2}, B \rrbracket$.
(71) If $A \subseteq X$ and $B \subseteq Y$, then $\llbracket A, Y \rrbracket \cap \llbracket X, B \rrbracket=\llbracket A, B \rrbracket$.
(72) $\llbracket X \backslash Y, Z \rrbracket=\llbracket X, Z \rrbracket \backslash \llbracket Y, Z \rrbracket$ and $\llbracket Z, X \backslash Y \rrbracket=\llbracket Z, X \rrbracket \backslash \llbracket Z, Y \rrbracket$.
(73) $\llbracket x_{1}, x_{2} \rrbracket \backslash \llbracket A, B \rrbracket=\llbracket x_{1} \backslash A, x_{2} \rrbracket \cup \llbracket x_{1}, x_{2} \backslash B \rrbracket$.
(74) If $x_{1} \cap x_{2}=\emptyset_{I}$ or $A \cap B=\emptyset_{I}$, then $\llbracket x_{1}, A \rrbracket \cap \llbracket x_{2}, B \rrbracket=\emptyset_{I}$.
(75) If X is non-empty, then $\llbracket\{x\}, X \rrbracket$ is non-empty and $\llbracket X,\{x\} \rrbracket$ is nonempty.
(76) $\llbracket\{x, y\}, X \rrbracket=\llbracket\{x\}, X \rrbracket \cup \llbracket\{y\}, X \rrbracket$ and $\llbracket X,\{x, y\} \rrbracket=\llbracket X,\{x\} \rrbracket \cup \llbracket X,\{y\} \rrbracket$.
(77) If x_{1} is non-empty and A is non-empty and $\llbracket x_{1}, A \rrbracket=\llbracket x_{2}, B \rrbracket$, then $x_{1}=x_{2}$ and $A=B$.
(78) If $X \subseteq \llbracket X, Y \rrbracket$ or $X \subseteq \llbracket Y, X \rrbracket$, then $X=\emptyset_{I}$.
(79) If $A \in \llbracket x, y \rrbracket$ and $A \in \llbracket X, Y \rrbracket$, then $A \in \llbracket x \cap X, y \cap Y \rrbracket$.
(80) If $\llbracket x, X \rrbracket \subseteq \llbracket y, Y \rrbracket$ and $\llbracket x, X \rrbracket$ is non-empty, then $x \subseteq y$ and $X \subseteq Y$.
(81) If $A \subseteq X$, then $\llbracket A, A \rrbracket \subseteq \llbracket X, X \rrbracket$.
(82) If $X \cap Y=\emptyset_{I}$, then $\llbracket X, Y \rrbracket \cap \llbracket Y, X \rrbracket=\emptyset_{I}$.
(83) If A is non-empty and if $\llbracket A, B \rrbracket \subseteq \llbracket X, Y \rrbracket$ or $\llbracket B, A \rrbracket \subseteq \llbracket Y, X \rrbracket$, then $B \subseteq Y$.
(84) If $x \subseteq \llbracket A, B \rrbracket$ and $y \subseteq \llbracket X, Y \rrbracket$, then $x \cup y \subseteq \llbracket A \cup X, B \cup Y \rrbracket$.

References

[1] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Artur Korniłowicz. Definitions and basic properties of boolean \& union of many sorted sets. Formalized Mathematics, 5(2):279-281, 1996.
[8] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
[9] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[10] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 29, 1995

