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Summary. The concept of characterizing of partial algebras by
many sorted signature is introduced, i.e. we say that a signature S char-
acterizes a partial algebra A if there is an S-algebra whose sorts form
a partition of the carrier of algebra A and operations are formed from
operations of A by the partition. The main result is that for any partial
algebra there is the minimal many sorted signature which characterizes
the algebra. The minimality means that there are signature endomor-
phisms from any signature which characterizes the algebra A onto the
minimal one.

MML Identifier: PUA2MSS1.

The papers [16], [18], [9], [1], [12], [19], [20], [6], [17], [3], [5], [7], [21], [13], [8],
[11], [2], [4], [15], [14], and [10] provide the notation and terminology for this
paper.

1. Preliminary

Let f be a non empty binary relation. Observe that dom f is non empty and
rng f is non empty.

Let f be a non-empty function. One can verify that rng f has non empty
elements.

Let X, Y be non empty sets. One can verify that there exists a partial
function from X to Y which is non empty.

Let X be a set with non empty elements. Note that every finite sequence of
elements of X is non-empty.

Let A be a non empty set. One can verify that there exists a finite sequence
of operational functions of A which is homogeneous quasi total non-empty and
non empty.
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Let us observe that every universal algebra structure which is non-empty is
also non empty.

Let X be a non empty set with non empty elements. One can verify that
every element of X is non empty.

Next we state two propositions:

(1) For all non-empty functions f , g such that
∏

f ⊆
∏

g holds dom f =
dom g and for every set x such that x ∈ dom f holds f(x) ⊆ g(x).

(2) For all non-empty functions f , g such that
∏

f =
∏

g holds f = g.

Let A be a non empty set and let f be a finite sequence of operational
functions of A. Then rng f is a subset of A∗→̇A.

Let A, B be non empty sets and let S be a non empty subset of A→̇B. We
see that the element of S is a partial function from A to B.

Let A be a non-empty universal algebra structure. An operation symbol of A

is an element of dom(the characteristic of A). An operation of A is an element
of rng (the characteristic of A).

Let A be a non-empty universal algebra structure and let o be an operation
symbol of A. The functor Den(o,A) yielding an operation of A is defined by:

(Def.1) Den(o,A) = (the characteristic of A)(o).

2. Partitions

Let X be a set. Note that every partition of X has non empty elements.
Let X be a non empty set. One can verify that every partition of X is non

empty.
Let X be a set and let R be an equivalence relation of X. Then Classes R is

a partition of X.
Next we state a number of propositions:

(3) Let X be a set, and let P be a partition of X, and let x, a, b be sets.
If x ∈ a and a ∈ P and x ∈ b and b ∈ P, then a = b.

(4) Let X, Y be sets. Suppose X is finer than Y . Let p be a finite sequence
of elements of X. Then there exists a finite sequence q of elements of Y

such that
∏

p ⊆
∏

q.

(5) Let X be a set, and let P , Q be partitions of X, and let f be a function
from P into Q. Suppose that for every set a such that a ∈ P holds
a ⊆ f(a). Let p be a finite sequence of elements of P and let q be a finite
sequence of elements of Q. Then

∏
p ⊆

∏
q if and only if f · p = q.

(6) For every set P and for every function f such that rng f ⊆
⋃

P there
exists a function p such that dom p = dom f and rng p ⊆ P and f ∈

∏
p.

(7) Let X be a set, and let P be a partition of X, and let f be a finite se-
quence of elements of X. Then there exists a finite sequence p of elements
of P such that f ∈

∏
p.
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(8) Let X, Y be non empty sets, and let P be a partition of X, and let Q

be a partition of Y . Then {[: p, q :] : p ranges over elements of P , q ranges
over elements of Q} is a partition of [: X, Y :].

(9) For every non empty set X and for every partition P of X holds {
∏

p : p

ranges over elements of P ∗} is a partition of X∗.

(10) Let X be a non empty set, and let n be a natural number, and let P be
a partition of X. Then {

∏
p : p ranges over elements of P n} is a partition

of Xn.

(11) Let X be a non empty set and let Y be a set. Suppose Y ⊆ X. Let P

be a partition of X. Then {a ∩ Y : a ranges over elements of P , a meets
Y } is a partition of Y .

(12) Let f be a non empty function and let P be a partition of dom f. Then
{f

�
a : a ranges over elements of P} is a partition of f .

Let X be a set. The functor SmallestPartition(X) yielding a partition of X

is defined as follows:

(Def.2) SmallestPartition(X) = Classes(△X).

One can prove the following propositions:

(13) For every non empty set X holds SmallestPartition(X) = {{x} : x

ranges over elements of X}.

(14) Let X be a set and let p be a finite sequence of elements of
SmallestPartition(X). Then there exists a finite sequence q of elements
of X such that

∏
p = {q}.

Let X be a set. A function is said to be an indexed partition of X if:

(Def.3) rng it is a partition of X and it is one-to-one.

Let X be a set. Note that every indexed partition of X is one-to-one and
non-empty. Let P be an indexed partition of X. Then rng P is a partition of
X.

Let X be a non empty set. Observe that every indexed partition of X is non
empty.

Let X be a set and let P be a partition of X. Then △P is an indexed
partition of X.

Let X be a set, let P be an indexed partition of X, and let x be a set. Let
us assume that x ∈ X. The P -index of x is a set and is defined by:

(Def.4) The P -index of x ∈ domP and x ∈ P (the P -index of x).

Next we state two propositions:

(15) Let X be a set and let P be a non-empty function. Suppose
⋃

P = X

and for all sets x, y such that x ∈ dom P and y ∈ dom P and x 6= y holds
P (x) misses P (y). Then P is an indexed partition of X.

(16) Let X, Y be non empty sets, and let P be a partition of Y , and let f

be a function from X into P . If P ⊆ rng f and f is one-to-one, then f is
an indexed partition of Y .
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3. Relations Generated by Operations of Partial Algebra

In this article we present several logical schemes. The scheme RelationEx

concerns non empty sets A, B and a binary predicate P, and states that:
There exists a relation R between A and B such that for every
element x of A and for every element y of B holds 〈〈x, y〉〉 ∈ R if and
only if P[x, y]

for all values of the parameters.
The scheme IndRelationEx concerns non empty sets A, B, a natural number

C, a relation D between A and B, and a binary functor F yielding a relation
between A and B, and states that:

There exists a relation R between A and B and there exists a many
sorted set F indexed by  such that
(i) R = F (C),
(ii) F (0) = D, and
(iii) for every natural number i and for every relation R between
A and B such that R = F (i) holds F (i + 1) = F(R, i)

for all values of the parameters.
The scheme RelationUniq concerns non empty sets A, B and a binary pred-

icate P, and states that:
Let R1, R2 be relations between A and B. Suppose that
(i) for every element x of A and for every element y of B holds
〈〈x, y〉〉 ∈ R1 iff P[x, y], and
(ii) for every element x of A and for every element y of B holds
〈〈x, y〉〉 ∈ R2 iff P[x, y].

Then R1 = R2

for all values of the parameters.
The scheme IndRelationUniq concerns non empty sets A, B, a natural number

C, a relation D between A and B, and a binary functor F yielding a relation
between A and B, and states that:

Let R1, R2 be relations between A and B. Suppose that
(i) there exists a many sorted set F indexed by  such that
R1 = F (C) and F (0) = D and for every natural number i and
for every relation R between A and B such that R = F (i) holds
F (i + 1) = F(R, i), and
(ii) there exists a many sorted set F indexed by  such that
R2 = F (C) and F (0) = D and for every natural number i and
for every relation R between A and B such that R = F (i) holds
F (i + 1) = F(R, i).

Then R1 = R2

for all values of the parameters.
Let A be a partial non-empty universal algebra structure. The functor

DomRel(A) yields a binary relation on the carrier of A and is defined by the
condition (Def.5).
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(Def.5) Let x, y be elements of the carrier of A. Then 〈〈x, y〉〉 ∈ DomRel(A)
if and only if for every operation f of A and for all finite sequences p, q

holds p � 〈x〉 � q ∈ dom f iff p � 〈y〉 � q ∈ dom f.

Let A be a partial non-empty universal algebra structure. Note that
DomRel(A) is equivalence relation-like.

Let A be a non-empty partial universal algebra structure and let R be a
binary relation on the carrier of A. The functor RA yielding a binary relation
on the carrier of A is defined by the condition (Def.6).

(Def.6) Let x, y be elements of the carrier of A. Then 〈〈x, y〉〉 ∈ RA if and only
if the following conditions are satisfied:

(i) 〈〈x, y〉〉 ∈ R, and

(ii) for every operation f of A and for all finite sequences p, q such that
p � 〈x〉 � q ∈ dom f and p � 〈y〉 � q ∈ dom f holds 〈〈f(p � 〈x〉 � q), f(p � 〈y〉 � q)〉〉 ∈
R.

Let A be a non-empty partial universal algebra structure, let R be a binary
relation on the carrier of A, and let i be a natural number. The functor RA,i

yielding a binary relation on the carrier of A is defined by the condition (Def.7).

(Def.7) There exists a many sorted set F indexed by  such that

(i) RA,i = F (i),

(ii) F (0) = R, and

(iii) for every natural number i and for every binary relation R on the
carrier of A such that R = F (i) holds F (i + 1) = RA.

Next we state several propositions:

(17) Let A be a non-empty partial universal algebra structure and let R be
a binary relation on the carrier of A. Then RA,0 = R and RA,1 = RA.

(18) Let A be a non-empty partial universal algebra structure, and let i be a
natural number, and let R be a binary relation on the carrier of A. Then
RA,i+1 = (RA,i)A.

(19) Let A be a non-empty partial universal algebra structure, and let i, j

be natural numbers, and let R be a binary relation on the carrier of A.
Then RA,i+j = (RA,i)A,j.

(20) Let A be a non-empty partial universal algebra structure and let R be
an equivalence relation of the carrier of A. If R ⊆ DomRel(A), then RA

is equivalence relation-like.

(21) Let A be a non-empty partial universal algebra structure and let R be
a binary relation on the carrier of A. Then RA ⊆ R.

(22) Let A be a non-empty partial universal algebra structure and let R be
an equivalence relation of the carrier of A. Suppose R ⊆ DomRel(A). Let
i be a natural number. Then RA,i is equivalence relation-like.

Let A be a non-empty partial universal algebra structure. The functor
LimDomRel(A) yields a binary relation on the carrier of A and is defined by the
condition (Def.8).
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(Def.8) Let x, y be elements of the carrier of A. Then 〈〈x, y〉〉 ∈ LimDomRel(A)
if and only if for every natural number i holds 〈〈x, y〉〉 ∈ (DomRel(A))A,i.

The following proposition is true

(23) For every non-empty partial universal algebra structure A holds
LimDomRel(A) ⊆ DomRel(A).

Let A be a non-empty partial universal algebra structure. Note that
LimDomRel(A) is equivalence relation-like.

4. Partitability

Let X be a non empty set, let f be a partial function from X ∗ to X, and let
P be a partition of X. We say that f is partitable w.r.t. P if and only if:

(Def.9) For every finite sequence p of elements of P there exists an element a

of P such that f ◦
∏

p ⊆ a.

Let X be a non empty set, let f be a partial function from X ∗ to X, and let
P be a partition of X. We say that f is exactly partitable w.r.t. P if and only
if:

(Def.10) f is partitable w.r.t. P and for every finite sequence p of elements of P

such that
∏

p meets dom f holds
∏

p ⊆ dom f.

We now state the proposition

(24) Let A be a non-empty partial universal algebra structure. Then every
operation of A is exactly partitable w.r.t. SmallestPartition(the carrier
of A).

The scheme FiniteTransitivity concerns finite sequences A, B, a unary pred-
icate P, and a binary predicate Q, and states that:

P[B]
provided the following conditions are met:

• P[A],
• lenA = lenB,

• For all finite sequences p, q and for all sets z1, z2 such that P[p �
〈z1〉 � q] and Q[z1, z2] holds P[p � 〈z2〉 � q],

• For every natural number i such that i ∈ domA holds Q[A(i),B(i)].
One can prove the following proposition

(25) For every non-empty partial universal algebra structure A holds every
operation of A is exactly partitable w.r.t. Classes LimDomRel(A).

Let A be a partial non-empty universal algebra structure. A partition of the
carrier of A is said to be a partition of A if:

(Def.11) Every operation of A is exactly partitable w.r.t. it.

Let A be a partial non-empty universal algebra structure. An indexed par-
tition of the carrier of A is called an indexed partition of A if:

(Def.12) rng it is a partition of A.
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Let A be a partial non-empty universal algebra structure and let P be an
indexed partition of A. Then rng P is a partition of A.

One can prove the following propositions:

(26) For every non-empty partial universal algebra structure A holds
Classes LimDomRel(A) is a partition of A.

(27) Let X be a non empty set, and let P be a partition of X, and let p be
a finite sequence of elements of P , and let q1, q2 be finite sequences, and
let x, y be sets. Suppose q1 � 〈x〉 � q2 ∈

∏
p and there exists an element

a of P such that x ∈ a and y ∈ a. Then q1 � 〈y〉 � q2 ∈
∏

p.

(28) For every partial non-empty universal algebra structure A holds every
partition of A is finer than Classes LimDomRel(A).

5. Signature Morphisms

Let S1, S2 be many sorted signatures and let f , g be functions. We say that
f and g form morphism between S1 and S2 if and only if the conditions (Def.13)
are satisfied.

(Def.13) (i) dom f = the carrier of S1,
(ii) dom g = the operation symbols of S1,
(iii) rng f ⊆ the carrier of S2,
(iv) rng g ⊆ the operation symbols of S2,
(v) f · (the result sort of S1) = (the result sort of S2) · (g), and
(vi) for every set o and for every function p such that o ∈ the operation

symbols of S1 and p = (the arity of S1)(o) holds f · p = (the arity of
S2)(g(o)).

Next we state two propositions:

(29) Let S be a non void non empty many sorted signature. Then
id(the carrier of S) and id(the operation symbols of S) form morphism between S

and S.

(30) Let S1, S2, S3 be many sorted signatures and let f1, f2, g1, g2 be
functions. Suppose f1 and g1 form morphism between S1 and S2 and f2

and g2 form morphism between S2 and S3. Then f2 · f1 and g2 · g1 form
morphism between S1 and S3.

Let S1, S2 be many sorted signatures. We say that S1 is rougher than S2 if
and only if the condition (Def.14) is satisfied.

(Def.14) There exist functions f , g such that f and g form morphism between S2

and S1 and rng f = the carrier of S1 and rng g = the operation symbols
of S1.

Let S1, S2 be non void non empty many sorted signatures. Let us observe
that the predicate defined above is reflexive.

One can prove the following proposition
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(31) For all many sorted signatures S1, S2, S3 such that S1 is rougher than
S2 and S2 is rougher than S3 holds S1 is rougher than S3.

6. Many Sorted Signature of Partial Algebra

Let A be a partial non-empty universal algebra structure and let P be a
partition of A. The functor MSSign(A,P ) yields a strict many sorted signature
and is defined by the conditions (Def.15).

(Def.15) (i) The carrier of MSSign(A,P ) = P,

(ii) the operation symbols of MSSign(A,P ) = {〈〈o, p〉〉 : o ranges over
operation symbols of A, p ranges over elements of P ∗,

∏
p meets

domDen(o,A)}, and
(iii) for every operation symbol o of A and for every element p of P ∗ such

that
∏

p meets domDen(o,A) holds (the arity of MSSign(A,P ))(〈〈o, p〉〉) =
p and (Den(o,A))◦

∏
p ⊆ (the result sort of MSSign(A,P ))(〈〈o, p〉〉).

Let A be a partial non-empty universal algebra structure and let P be a
partition of A. One can verify that MSSign(A,P ) is non empty and non void.

Let A be a partial non-empty universal algebra structure, let P be a partition
of A, and let o be an operation symbol of MSSign(A,P ). Then o1 is an operation
symbol of A. Then o2 is an element of P ∗.

Let A be a partial non-empty universal algebra structure, let S be a non
void non empty many sorted signature, let G be an algebra over S, and let P

be an indexed partition of the operation symbols of S. We say that A can be
characterized by S, G, and P if and only if the conditions (Def.16) are satisfied.

(Def.16) (i) The sorts of G is an indexed partition of A,
(ii) domP = dom (the characteristic of A), and
(iii) for every operation symbol o of A holds (the characteristics of G)

�
P (o)

is an indexed partition of Den(o,A).

Let A be a partial non-empty universal algebra structure and let S be a non
void non empty many sorted signature. We say that A can be characterized by
S if and only if the condition (Def.17) is satisfied.

(Def.17) There exists an algebra G over S and there exists an indexed partition
P of the operation symbols of S such that A can be characterized by S,
G, and P .

One can prove the following propositions:

(32) Let A be a partial non-empty universal algebra structure and let P be
a partition of A. Then A can be characterized by MSSign(A,P ).

(33) Let A be a partial non-empty universal algebra structure, and let S be
a non void non empty many sorted signature, and let G be an algebra
over S, and let Q be an indexed partition of the operation symbols of S.
Suppose A can be characterized by S, G, and Q. Let o be an operation
symbol of A and let r be a finite sequence of elements of rng (the sorts of
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G). Suppose
∏

r ⊆ dom Den(o,A). Then there exists an operation symbol
s of S such that (the sorts of G) · Arity(s) = r and s ∈ Q(o).

(34) Let A be a partial non-empty universal algebra structure and let P be
a partition of A. Suppose P = Classes LimDomRel(A). Let S be a non
void non empty many sorted signature. If A can be characterized by S,
then MSSign(A,P ) is rougher than S.
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