Certain Facts about Families of Subsets of Many Sorted Sets

Artur Korniłowicz Warsaw University Białystok

MML Identifier: MSSUBFAM.

The terminology and notation used in this paper are introduced in the following papers: [22], [23], [6], [19], [16], [24], [3], [4], [2], [7], [18], [5], [21], [20], [1], [12], [13], [14], [10], [15], [9], [17], [8], and [11].

1. Preliminaries

For simplicity we follow the rules: I, G, H will denote sets, i will be arbitrary, A, B, M will denote many sorted sets indexed by I, s_1, s_2, s_3 will denote families of subsets of I, v, w will denote subsets of I, and F will denote a many sorted function of I.

The scheme MSFExFunc deals with a set \mathcal{A} , a many sorted set \mathcal{B} indexed by \mathcal{A} , a many sorted set \mathcal{C} indexed by \mathcal{A} , and a ternary predicate \mathcal{P} , and states that:

There exists a many sorted function F from \mathcal{B} into \mathcal{C} such that for arbitrary i if $i \in \mathcal{A}$, then there exists a function f from $\mathcal{B}(i)$ into $\mathcal{C}(i)$ such that f = F(i) and for arbitrary x such that $x \in \mathcal{B}(i)$ holds $\mathcal{P}[f(x), x, i]$

provided the following condition is satisfied:

• Let *i* be arbitrary. Suppose $i \in \mathcal{A}$. Let *x* be arbitrary. If $x \in \mathcal{B}(i)$, then there exists arbitrary *y* such that $y \in \mathcal{C}(i)$ and $\mathcal{P}[y, x, i]$.

451

We now state a number of propositions:

- (1) If $s_1 \neq \emptyset$, then Intersect $(s_1) \subseteq \bigcup s_1$.
- (2) If $G \in s_1$, then $\operatorname{Intersect}(s_1) \subseteq G$.
- (3) If $\emptyset \in s_1$, then $\operatorname{Intersect}(s_1) = \emptyset$.

C 1996 Warsaw University - Białystok ISSN 1426-2630

- (4) For every subset Z of I such that for arbitrary Z_1 such that $Z_1 \in s_1$ holds $Z \subseteq Z_1$ holds $Z \subseteq$ Intersect (s_1) .
- (5) If $s_1 \neq \emptyset$ and for every set Z_1 such that $Z_1 \in s_1$ holds $G \subseteq Z_1$, then $G \subseteq \text{Intersect}(s_1)$.
- (6) If $G \in s_1$ and $G \subseteq H$, then $\operatorname{Intersect}(s_1) \subseteq H$.
- (7) If $G \in s_1$ and $G \cap H = \emptyset$, then $\text{Intersect}(s_1) \cap H = \emptyset$.
- (8) If $s_3 = s_1 \cup s_2$, then $\operatorname{Intersect}(s_3) = \operatorname{Intersect}(s_1) \cap \operatorname{Intersect}(s_2)$.
- (9) If $s_1 = \{v\}$, then Intersect $(s_1) = v$.
- (10) If $s_1 = \{v, w\}$, then $\operatorname{Intersect}(s_1) = v \cap w$.
- (11) If $A \in B$, then A is an element of B.
- (12) For every non-empty many sorted set B indexed by I such that A is an element of B holds $A \in B$.
- (13) For every function f such that $i \in I$ and f = F(i) holds $(\operatorname{rng}_{\kappa} F(\kappa))(i) = \operatorname{rng} f$.
- (14) For every function f such that $i \in I$ and f = F(i) holds $(\operatorname{dom}_{\kappa} F(\kappa))(i) = \operatorname{dom} f.$
- (15) For all many sorted functions F, G of I holds $G \circ F$ is a many sorted function of I.
- (16) Let A be a non-empty many sorted set indexed by I and let F be a many sorted function from A into \emptyset_I . Then $F = \emptyset_I$.
- (17) If A is transformable to B and F is a many sorted function from A into B, then $\operatorname{dom}_{\kappa} F(\kappa) = A$ and $\operatorname{rng}_{\kappa} F(\kappa) \subseteq B$.

2. FINITE MANY SORTED SETS

Let us consider I. Note that every many sorted set indexed by I which is empty yielding is also locally-finite.

Let us consider I. Note that \emptyset_I is empty yielding and locally-finite.

Let us consider I, A. Note that there exists a many sorted subset of A which is empty yielding and locally-finite.

Next we state the proposition

(18) If $A \subseteq B$ and B is locally-finite, then A is locally-finite.

Let us consider I and let A be a locally-finite many sorted set indexed by I. One can check that every many sorted subset of A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Note that $A \cup B$ is locally-finite.

Let us consider I, A and let B be a locally-finite many sorted set indexed by I. Note that $A \cap B$ is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by I. Observe that $A \cap B$ is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by I. Note that $A \setminus B$ is locally-finite.

- Let us consider I, F and let A be a locally-finite many sorted set indexed by I. Observe that $F \circ A$ is locally-finite.
- Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Observe that $[\![A, B]\!]$ is locally-finite.

The following propositions are true:

- (19) If B is non-empty and $\llbracket A, B \rrbracket$ is locally-finite, then A is locally-finite.
- (20) If A is non-empty and $[\![A, B]\!]$ is locally-finite, then B is locally-finite.
- (21) A is locally-finite iff 2^A is locally-finite.

Let us consider I and let M be a locally-finite many sorted set indexed by I. Observe that 2^M is locally-finite.

The following propositions are true:

- (22) Let A be a non-empty many sorted set indexed by I. Suppose A is locally-finite and for every many sorted set M indexed by I such that $M \in A$ holds M is locally-finite. Then $\bigcup A$ is locally-finite.
- (23) If $\bigcup A$ is locally-finite, then A is locally-finite and for every M such that $M \in A$ holds M is locally-finite.
- (24) If dom_{κ} $F(\kappa)$ is locally-finite, then rng_{κ} $F(\kappa)$ is locally-finite.
- (25) Suppose $A \subseteq \operatorname{rng}_{\kappa} F(\kappa)$ and for arbitrary *i* and for every function *f* such that $i \in I$ and f = F(i) holds $f^{-1} A(i)$ is finite. Then *A* is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Observe that MSFuncs(A, B) is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Note that $A \doteq B$ is locally-finite.

In the sequel X, Y, Z denote many sorted sets indexed by I. One can prove the following propositions:

- (26) Suppose X is locally-finite and $X \subseteq \llbracket Y, Z \rrbracket$. Then there exist A, B such that A is locally-finite and $A \subseteq Y$ and B is locally-finite and $B \subseteq Z$ and $X \subseteq \llbracket A, B \rrbracket$.
- (27) Suppose X is locally-finite and Z is locally-finite and $X \subseteq \llbracket Y, Z \rrbracket$. Then there exists A such that A is locally-finite and $A \subseteq Y$ and $X \subseteq \llbracket A, Z \rrbracket$.
- (28) Let M be a non-empty locally-finite many sorted set indexed by I. Suppose that for all many sorted sets A, B indexed by I such that $A \in M$ and $B \in M$ holds $A \subseteq B$ or $B \subseteq A$. Then there exists a many sorted set m indexed by I such that $m \in M$ and for every many sorted set Kindexed by I such that $K \in M$ holds $m \subseteq K$.
- (29) Let M be a non-empty locally-finite many sorted set indexed by I. Suppose that for all many sorted sets A, B indexed by I such that $A \in M$ and $B \in M$ holds $A \subseteq B$ or $B \subseteq A$. Then there exists a many sorted set m indexed by I such that $m \in M$ and for every many sorted set Kindexed by I such that $K \in M$ holds $K \subseteq m$.

- (30) If Z is locally-finite and $Z \subseteq \operatorname{rng}_{\kappa} F(\kappa)$, then there exists Y such that $Y \subseteq \operatorname{dom}_{\kappa} F(\kappa)$ and Y is locally-finite and $F \circ Y = Z$.
 - 3. A Family of Subsets of Many Sorted Sets

Let us consider I, M.

(Def.1) A many sorted subset of 2^M is said to be a subset family of M.

Let us consider I, M. Note that there exists a subset family of M which is non-empty.

Let us consider I, M. Then 2^M is a subset family of M.

Let us consider I, M. One can check that there exists a subset family of M which is empty yielding and locally-finite.

One can prove the following proposition

(31) \emptyset_I is an empty yielding locally-finite subset family of M.

Let us consider I and let M be a locally-finite many sorted set indexed by I. Note that there exists a subset family of M which is non-empty and locally-finite.

We follow the rules: S_1 , S_2 , S_3 will be subset families of M, S_4 will be a non-empty subset family of M, and V, W will be many sorted subsets of M.

Let I be a non empty set, let M be a many sorted set indexed by I, let S_1 be a subset family of M, and let i be an element of I. Then $S_1(i)$ is a family of subsets of M(i).

The following propositions are true:

(32) If $i \in I$, then $S_1(i)$ is a family of subsets of M(i).

- (33) If $A \in S_1$, then A is a many sorted subset of M.
- (34) $S_1 \cup S_2$ is a subset family of M.
- (35) $S_1 \cap S_2$ is a subset family of M.
- (36) $S_1 \setminus A$ is a subset family of M.
- (37) $S_1 \div S_2$ is a subset family of M.
- (38) If $A \subseteq M$, then $\{A\}$ is a subset family of M.
- (39) If $A \subseteq M$ and $B \subseteq M$, then $\{A, B\}$ is a subset family of M.
- $(40) \quad \bigcup S_1 \subseteq M.$

4. INTERSECTION OF A FAMILY OF MANY SORTED SETS

Let us consider I, M, S_1 . The functor $\bigcap S_1$ yields a many sorted set indexed by I and is defined by:

(Def.2) For arbitrary *i* such that $i \in I$ there exists a family *Q* of subsets of M(i) such that $Q = S_1(i)$ and $(\bigcap S_1)(i) = \text{Intersect}(Q)$.

Let us consider I, M, S_1 . Then $\bigcap S_1$ is a many sorted subset of M. We now state a number of propositions:

- (41) If $S_1 = \emptyset_I$, then $\bigcap S_1 = M$.
- (42) $\bigcap S_4 \subseteq \bigcup S_4.$
- (43) If $A \in S_1$, then $\bigcap S_1 \subseteq A$.
- (44) If $\emptyset_I \in S_1$, then $\bigcap S_1 = \emptyset_I$.
- (45) Let Z, M be many sorted sets indexed by I and let S_1 be a non-empty subset family of M. Suppose that for every many sorted set Z_1 indexed by I such that $Z_1 \in S_1$ holds $Z \subseteq Z_1$. Then $Z \subseteq \bigcap S_1$.
- (46) If $S_1 \subseteq S_2$, then $\bigcap S_2 \subseteq \bigcap S_1$.
- (47) If $A \in S_1$ and $A \subseteq B$, then $\bigcap S_1 \subseteq B$.
- (48) If $A \in S_1$ and $A \cap B = \emptyset_I$, then $\bigcap S_1 \cap B = \emptyset_I$.
- (49) If $S_3 = S_1 \cup S_2$, then $\bigcap S_3 = \bigcap S_1 \cap \bigcap S_2$.
- (50) If $S_1 = \{V\}$, then $\bigcap S_1 = V$.
- (51) If $S_1 = \{V, W\}$, then $\bigcap S_1 = V \cap W$.
- (52) If $A \in \bigcap S_1$, then for every B such that $B \in S_1$ holds $A \in B$.
- (53) Let A, M be many sorted sets indexed by I and let S_1 be a non-empty subset family of M. Suppose $A \in M$ and for every many sorted set B indexed by I such that $B \in S_1$ holds $A \in B$. Then $A \in \bigcap S_1$.

Let us consider I, M. A subset family of M is additive if:

(Def.3) For all A, B such that $A \in \text{it and } B \in \text{it holds } A \cup B \in \text{it.}$

A subset family of M is absolutely-additive if:

- (Def.4) For every subset family F of M such that $F \subseteq$ it holds $\bigcup F \in$ it. A subset family of M is multiplicative if:
- (Def.5) For all A, B such that $A \in \text{it and } B \in \text{it holds } A \cap B \in \text{it.}$ A subset family of M is absolutely-multiplicative if:
- (Def.6) For every subset family F of M such that $F \subseteq$ it holds $\bigcap F \in$ it. A subset family of M is properly-upper-bound if:

(Def.7) $M \in \text{it.}$

A subset family of M is properly-lower-bound if:

(Def.8) $\emptyset_I \in \text{it.}$

Let us consider I, M. Observe that there exists a subset family of M which is non-empty additive absolutely-additive multiplicative absolutely-multiplicative properly-upper-bound and properly-lower-bound.

Let us consider I, M. Then 2^M is an additive absolutely-additive multiplicative absolutely-multiplicative properly-upper-bound properly-lower-bound subset family of M.

Let us consider I, M. Note that every subset family of M which is absolutely-additive is also additive.

Let us consider I, M. Note that every subset family of M which is absolutelymultiplicative is also multiplicative. Let us consider I, M. One can check that every subset family of M which is absolutely-multiplicative is also properly-upper-bound.

Let us consider I, M. Observe that every subset family of M which is properly-upper-bound is also non-empty.

Let us consider I, M. Note that every subset family of M which is absolutelyadditive is also properly-lower-bound.

Let us consider I, M. Note that every subset family of M which is properlylower-bound is also non-empty. REFERENCES

- Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Artur Korniłowicz. Definitions and basic properties of boolean & union of many sorted sets. Formalized Mathematics, 5(2):279-281, 1996.
- [9] Artur Korniłowicz. Extensions of mappings on generator set. Formalized Mathematics, 5(2):269-272, 1996.
- [10] Artur Korniłowicz. On the group of automorphisms of universal algebra & many sorted algebra. Formalized Mathematics, 5(2):221–226, 1996.
- [11] Artur Korniłowicz. Some basic properties of many sorted sets. Formalized Mathematics, 5(3):395–399, 1996.
- [12] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
- Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
- [15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [20] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [23] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [24] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received October 27, 1995