Certain Facts about Families of Subsets of Many Sorted Sets

Artur Korniłowicz
Warsaw University
Białystok

MML Identifier: MSSUBFAM.

The terminology and notation used in this paper are introduced in the following papers: [22], [23], [6], [19], [16], [24], [3], [4], [2], [7], [18], [5], [21], [20], [1], [12], [13], [14], [10], [15], [9], [17], [8], and [11].

1. Preliminaries

For simplicity we follow the rules: I, G, H will denote sets, i will be arbitrary, A, B, M will denote many sorted sets indexed by I, s_{1}, s_{2}, s_{3} will denote families of subsets of I, v, w will denote subsets of I, and F will denote a many sorted function of I.

The scheme MSFExFunc deals with a set \mathcal{A}, a many sorted set \mathcal{B} indexed by \mathcal{A}, a many sorted set \mathcal{C} indexed by \mathcal{A}, and a ternary predicate \mathcal{P}, and states that:

There exists a many sorted function F from \mathcal{B} into \mathcal{C} such that for arbitrary i if $i \in \mathcal{A}$, then there exists a function f from $\mathcal{B}(i)$ into $\mathcal{C}(i)$ such that $f=F(i)$ and for arbitrary x such that $x \in \mathcal{B}(i)$ holds $\mathcal{P}[f(x), x, i]$
provided the following condition is satisfied:

- Let i be arbitrary. Suppose $i \in \mathcal{A}$. Let x be arbitrary. If $x \in \mathcal{B}(i)$, then there exists arbitrary y such that $y \in \mathcal{C}(i)$ and $\mathcal{P}[y, x, i]$.
We now state a number of propositions:
(1) If $s_{1} \neq \emptyset$, then $\operatorname{Intersect}\left(s_{1}\right) \subseteq \bigcup s_{1}$.
(2) If $G \in s_{1}$, then $\operatorname{Intersect}\left(s_{1}\right) \subseteq G$.
(3) If $\emptyset \in s_{1}$, then $\operatorname{Intersect}\left(s_{1}\right)=\emptyset$.
(4) For every subset Z of I such that for arbitrary Z_{1} such that $Z_{1} \in s_{1}$ holds $Z \subseteq Z_{1}$ holds $Z \subseteq \operatorname{Intersect}\left(s_{1}\right)$.
(5) If $s_{1} \neq \emptyset$ and for every set Z_{1} such that $Z_{1} \in s_{1}$ holds $G \subseteq Z_{1}$, then $G \subseteq \operatorname{Intersect}\left(s_{1}\right)$
(6) If $G \in s_{1}$ and $G \subseteq H$, then $\operatorname{Intersect}\left(s_{1}\right) \subseteq H$.
(7) If $G \in s_{1}$ and $G \cap H=\emptyset$, then $\operatorname{Intersect}\left(s_{1}\right) \cap H=\emptyset$.
(8) If $s_{3}=s_{1} \cup s_{2}$, then $\operatorname{Intersect}\left(s_{3}\right)=\operatorname{Intersect}\left(s_{1}\right) \cap \operatorname{Intersect}\left(s_{2}\right)$.
(9) If $s_{1}=\{v\}$, then Intersect $\left(s_{1}\right)=v$.
(10) If $s_{1}=\{v, w\}$, then $\operatorname{Intersect}\left(s_{1}\right)=v \cap w$.
(11) If $A \in B$, then A is an element of B.
(12) For every non-empty many sorted set B indexed by I such that A is an element of B holds $A \in B$.
(13) For every function f such that $i \in I$ and $f=F(i)$ holds $\left(\operatorname{rng}_{\kappa} F(\kappa)\right)(i)=\operatorname{rng} f$.
(14) For every function f such that $i \in I$ and $f=F(i)$ holds $\left(\operatorname{dom}_{\kappa} F(\kappa)\right)(i)=\operatorname{dom} f$.
(15) For all many sorted functions F, G of I holds $G \circ F$ is a many sorted function of I.
(16) Let A be a non-empty many sorted set indexed by I and let F be a many sorted function from A into \emptyset_{I}. Then $F=\emptyset_{I}$.
(17) If A is transformable to B and F is a many sorted function from A into B, then $\operatorname{dom}_{\kappa} F(\kappa)=A$ and $\operatorname{rng}_{\kappa} F(\kappa) \subseteq B$.

2. Finite Many Sorted Sets

Let us consider I. Note that every many sorted set indexed by I which is empty yielding is also locally-finite.

Let us consider I. Note that \emptyset_{I} is empty yielding and locally-finite.
Let us consider I, A. Note that there exists a many sorted subset of A which is empty yielding and locally-finite.

Next we state the proposition
(18) If $A \subseteq B$ and B is locally-finite, then A is locally-finite.

Let us consider I and let A be a locally-finite many sorted set indexed by I. One can check that every many sorted subset of A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Note that $A \cup B$ is locally-finite.

Let us consider I, A and let B be a locally-finite many sorted set indexed by I. Note that $A \cap B$ is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by I. Observe that $A \cap B$ is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by I. Note that $A \backslash B$ is locally-finite.

Let us consider I, F and let A be a locally-finite many sorted set indexed by I. Observe that $F^{\circ} A$ is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Observe that $\llbracket A, B \rrbracket$ is locally-finite.

The following propositions are true:
(19) If B is non-empty and $\llbracket A, B \rrbracket$ is locally-finite, then A is locally-finite.
(20) If A is non-empty and $\llbracket A, B \rrbracket$ is locally-finite, then B is locally-finite.
(21) A is locally-finite iff 2^{A} is locally-finite.

Let us consider I and let M be a locally-finite many sorted set indexed by I. Observe that 2^{M} is locally-finite.

The following propositions are true:
(22) Let A be a non-empty many sorted set indexed by I. Suppose A is locally-finite and for every many sorted set M indexed by I such that $M \in A$ holds M is locally-finite. Then $\bigcup A$ is locally-finite.
(23) If $\cup A$ is locally-finite, then A is locally-finite and for every M such that $M \in A$ holds M is locally-finite.
(24) If $\operatorname{dom}_{\kappa} F(\kappa)$ is locally-finite, then $\mathrm{rng}_{\kappa} F(\kappa)$ is locally-finite.
(25) Suppose $A \subseteq \operatorname{rng}_{\kappa} F(\kappa)$ and for arbitrary i and for every function f such that $i \in I$ and $f=F(i)$ holds $f^{-1} A(i)$ is finite. Then A is locally-finite.
Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Observe that $\operatorname{MSFuncs}(A, B)$ is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Note that $A \doteq B$ is locally-finite.

In the sequel X, Y, Z denote many sorted sets indexed by I.
One can prove the following propositions:
(26) Suppose X is locally-finite and $X \subseteq \llbracket Y, Z \rrbracket$. Then there exist A, B such that A is locally-finite and $A \subseteq Y$ and B is locally-finite and $B \subseteq Z$ and $X \subseteq \llbracket A, B \rrbracket$.
(27) Suppose X is locally-finite and Z is locally-finite and $X \subseteq \llbracket Y, Z \rrbracket$. Then there exists A such that A is locally-finite and $A \subseteq Y$ and $X \subseteq \llbracket A, Z \rrbracket$.
(28) Let M be a non-empty locally-finite many sorted set indexed by I. Suppose that for all many sorted sets A, B indexed by I such that $A \in M$ and $B \in M$ holds $A \subseteq B$ or $B \subseteq A$. Then there exists a many sorted set m indexed by I such that $m \in M$ and for every many sorted set K indexed by I such that $K \in M$ holds $m \subseteq K$.
(29) Let M be a non-empty locally-finite many sorted set indexed by I. Suppose that for all many sorted sets A, B indexed by I such that $A \in M$ and $B \in M$ holds $A \subseteq B$ or $B \subseteq A$. Then there exists a many sorted set m indexed by I such that $m \in M$ and for every many sorted set K indexed by I such that $K \in M$ holds $K \subseteq m$.
(30) If Z is locally-finite and $Z \subseteq \operatorname{rng}_{\kappa} F(\kappa)$, then there exists Y such that $Y \subseteq \operatorname{dom}_{\kappa} F(\kappa)$ and Y is locally-finite and $F^{\circ} Y=Z$.

3. A Family of Subsets of Many Sorted Sets

Let us consider I, M.
(Def.1) A many sorted subset of 2^{M} is said to be a subset family of M.
Let us consider I, M. Note that there exists a subset family of M which is non-empty.

Let us consider I, M. Then 2^{M} is a subset family of M.
Let us consider I, M. One can check that there exists a subset family of M which is empty yielding and locally-finite.

One can prove the following proposition
(31) \emptyset_{I} is an empty yielding locally-finite subset family of M.

Let us consider I and let M be a locally-finite many sorted set indexed by I. Note that there exists a subset family of M which is non-empty and locallyfinite.

We follow the rules: S_{1}, S_{2}, S_{3} will be subset families of M, S_{4} will be a non-empty subset family of M, and V, W will be many sorted subsets of M.

Let I be a non empty set, let M be a many sorted set indexed by I, let S_{1} be a subset family of M, and let i be an element of I. Then $S_{1}(i)$ is a family of subsets of $M(i)$.

The following propositions are true:
(32) If $i \in I$, then $S_{1}(i)$ is a family of subsets of $M(i)$.
(33) If $A \in S_{1}$, then A is a many sorted subset of M.
(34) $S_{1} \cup S_{2}$ is a subset family of M.
(35) $S_{1} \cap S_{2}$ is a subset family of M.
(36) $S_{1} \backslash A$ is a subset family of M.
(37) $\quad S_{1} \doteq S_{2}$ is a subset family of M.
(38) If $A \subseteq M$, then $\{A\}$ is a subset family of M.
(39) If $A \subseteq M$ and $B \subseteq M$, then $\{A, B\}$ is a subset family of M.
(40) $\cup S_{1} \subseteq M$.

4. Intersection of a Family of Many Sorted Sets

Let us consider I, M, S_{1}. The functor $\bigcap S_{1}$ yields a many sorted set indexed by I and is defined by:
(Def.2) For arbitrary i such that $i \in I$ there exists a family Q of subsets of $M(i)$ such that $Q=S_{1}(i)$ and $\left(\cap S_{1}\right)(i)=\operatorname{Intersect}(Q)$.

Let us consider I, M, S_{1}. Then $\cap S_{1}$ is a many sorted subset of M.
We now state a number of propositions:
(41) If $S_{1}=\emptyset_{I}$, then $\cap S_{1}=M$.
(42) $\cap S_{4} \subseteq \cup S_{4}$.
(43) If $A \in S_{1}$, then $\cap S_{1} \subseteq A$.
(44) If $\emptyset_{I} \in S_{1}$, then $\bigcap S_{1}=\emptyset_{I}$.
(45) Let Z, M be many sorted sets indexed by I and let S_{1} be a non-empty subset family of M. Suppose that for every many sorted set Z_{1} indexed by I such that $Z_{1} \in S_{1}$ holds $Z \subseteq Z_{1}$. Then $Z \subseteq \cap S_{1}$.
(46) If $S_{1} \subseteq S_{2}$, then $\cap S_{2} \subseteq \cap S_{1}$.
(47) If $A \in S_{1}$ and $A \subseteq B$, then $\cap S_{1} \subseteq B$.
(48) If $A \in S_{1}$ and $A \cap B=\emptyset_{I}$, then $\cap S_{1} \cap B=\emptyset_{I}$.
(49) If $S_{3}=S_{1} \cup S_{2}$, then $\cap S_{3}=\bigcap S_{1} \cap \cap S_{2}$.
(50) If $S_{1}=\{V\}$, then $\cap S_{1}=V$.
(51) If $S_{1}=\{V, W\}$, then $\cap S_{1}=V \cap W$.
(52) If $A \in \cap S_{1}$, then for every B such that $B \in S_{1}$ holds $A \in B$.
(53) Let A, M be many sorted sets indexed by I and let S_{1} be a non-empty subset family of M. Suppose $A \in M$ and for every many sorted set B indexed by I such that $B \in S_{1}$ holds $A \in B$. Then $A \in \cap S_{1}$.
Let us consider I, M. A subset family of M is additive if:
(Def.3) For all A, B such that $A \in$ it and $B \in$ it holds $A \cup B \in$ it.
A subset family of M is absolutely-additive if:
(Def.4) For every subset family F of M such that $F \subseteq$ it holds $\cup F \in$ it.
A subset family of M is multiplicative if:
(Def.5) For all A, B such that $A \in$ it and $B \in$ it holds $A \cap B \in$ it.
A subset family of M is absolutely-multiplicative if:
(Def.6) For every subset family F of M such that $F \subseteq$ it holds $\bigcap F \in$ it.
A subset family of M is properly-upper-bound if:
(Def.7) $\quad M \in$ it.
A subset family of M is properly-lower-bound if:
(Def.8) $\quad \emptyset_{I} \in$ it.
Let us consider I, M. Observe that there exists a subset family of M which is non-empty additive absolutely-additive multiplicative absolutely-multiplicative properly-upper-bound and properly-lower-bound.

Let us consider I, M. Then 2^{M} is an additive absolutely-additive multiplicative absolutely-multiplicative properly-upper-bound properly-lower-bound subset family of M.

Let us consider I, M. Note that every subset family of M which is absolutelyadditive is also additive.

Let us consider I, M. Note that every subset family of M which is absolutelymultiplicative is also multiplicative.

Let us consider I, M. One can check that every subset family of M which is absolutely-multiplicative is also properly-upper-bound.

Let us consider I, M. Observe that every subset family of M which is properly-upper-bound is also non-empty.

Let us consider I, M. Note that every subset family of M which is absolutelyadditive is also properly-lower-bound.

Let us consider I, M. Note that every subset family of M which is properly-lower-bound is also non-empty.

References

[1] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Artur Korniłowicz. Definitions and basic properties of boolean \& union of many sorted sets. Formalized Mathematics, 5(2):279-281, 1996.
[9] Artur Korniłowicz. Extensions of mappings on generator set. Formalized Mathematics, 5(2):269-272, 1996.
[10] Artur Korniłowicz. On the group of automorphisms of universal algebra \& many sorted algebra. Formalized Mathematics, 5(2):221-226, 1996.
[11] Artur Korniłowicz. Some basic properties of many sorted sets. Formalized Mathematics, 5(3):395-399, 1996.
[12] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[13] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[14] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
[15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[20] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 27, 1995

