Associated Matrix of Linear Map

Robert Milewski Warsaw University Białystok

MML Identifier: MATRLIN.

The notation and terminology used in this paper are introduced in the following articles: [13], [2], [11], [17], [18], [33], [21], [32], [3], [34], [8], [9], [4], [14], [15], [35], [36], [23], [31], [16], [30], [26], [24], [12], [29], [19], [27], [1], [7], [25], [6], [10], [5], [22], [28], and [20].

1. Preliminaries

For simplicity we follow the rules: k, t, i, j, m, n are natural numbers, x is arbitrary, A is a set, and D is a non empty set.

We now state two propositions:

(1) For every finite sequence p of elements of D and for every i holds $p_{\uparrow i}$ is a finite sequence of elements of D.

(2) For every *i* and for every finite sequence *p* holds $\operatorname{rng}(p_{\uparrow i}) \subseteq \operatorname{rng} p$.

Let D be a non empty set. A matrix over D is a tabular finite sequence of elements of D^* .

Let K be a field. A matrix over K is a matrix over the carrier of K.

Let D be a non empty set, let us consider k, and let M be a matrix over D. Then $M_{\dagger k}$ is a matrix over D.

Next we state four propositions:

- (3) For every finite sequence M of elements of D such that len M = n + 1 holds $len(M_{n+1}) = n$.
- (4) Let M be a matrix over D of dimension $n + 1 \times m$ and let M_1 be a matrix over D. Then if n > 0, then width $M = \text{width}(M_{\restriction n+1})$ and if $M_1 = \langle M(n+1) \rangle$, then width $M = \text{width} M_1$.
- (5) For every matrix M over D of dimension $n + 1 \times m$ holds M_{n+1} is a matrix over D of dimension $n \times m$.

C 1996 Warsaw University - Białystok ISSN 1426-2630 (6) For every finite sequence M of elements of D such that $\operatorname{len} M = n+1$ holds $M = (M_{| \operatorname{len} M}) \cap \langle M(\operatorname{len} M) \rangle$.

Let us consider D and let P be a finite sequence of elements of D. Then $\langle P \rangle$ is a matrix over D of dimension $1 \times \text{len } P$.

2. More on Finite Sequence

One can prove the following propositions:

- (7) For every set A and for every finite sequence F holds $(\text{Sgm}(F^{-1}A)) \cap \text{Sgm}(F^{-1}(\text{rng } F \setminus A))$ is a permutation of dom F.
- (8) Let F be a finite sequence and let A be a subset of rng F. Suppose F is one-to-one. Then there exists a permutation p of dom F such that $(F A^{c}) \cap (F A) = F \cdot p$.

A function is finite sequence yielding if:

(Def.1) For every x such that $x \in \text{dom it holds it}(x)$ is a finite sequence.

Let us observe that there exists a function which is finite sequence yielding. Let F, G be finite sequence yielding functions. The functor $F \cap G$ yields a finite sequence yielding function and is defined by the conditions (Def.2).

- (Def.2) (i) $\operatorname{dom}(F \cap G) = \operatorname{dom} F \cap \operatorname{dom} G$, and
 - (ii) for arbitrary *i* such that $i \in \text{dom}(F \cap G)$ and for all finite sequences f, g such that f = F(i) and g = G(i) holds $(F \cap G)(i) = f \cap g$.
 - 3. MATRICES AND FINITE SEQUENCES IN VECTOR SPACE

For simplicity we adopt the following convention: K denotes a field, V denotes a vector space over K, a denotes an element of the carrier of K, W denotes an element of the carrier of V, K_1 , K_2 , K_3 denote linear combinations of V, and X denotes a subset of the carrier of V.

Next we state four propositions:

- (9) If X is linearly independent and support $K_1 \subseteq X$ and support $K_2 \subseteq X$ and $\sum K_1 = \sum K_2$, then $K_1 = K_2$.
- (10) If X is linearly independent and support $K_1 \subseteq X$ and support $K_2 \subseteq X$ and support $K_3 \subseteq X$ and $\sum K_1 = \sum K_2 + \sum K_3$, then $K_1 = K_2 + K_3$.
- (11) If X is linearly independent and support $K_1 \subseteq X$ and support $K_2 \subseteq X$ and $a \neq 0_K$ and $\sum K_1 = a \cdot \sum K_2$, then $K_1 = a \cdot K_2$.
- (12) For every basis b_2 of V there exists a linear combination K_4 of V such that $W = \sum K_4$ and support $K_4 \subseteq b_2$.

Let K be a field and let V be a vector space over K. We say that V is finite dimensional if and only if:

(Def.3) There exists finite subset of the carrier of V which is a basis of V.

Let K be a field. Note that there exists a vector space over K which is strict and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A finite sequence of elements of the carrier of V is called an ordered basis of V if: (Def.4) It is one-to-one and rng it is a basis of V.

For simplicity we adopt the following convention: p will denote a finite sequence, M_1 will denote a matrix over D of dimension $n \times m$, M_2 will denote a matrix over D of dimension $k \times m$, V_1 , V_2 , V_3 will denote finite dimensional vector spaces over K, f, f_1 , f_2 will denote maps from V_1 into V_2 , g will denote a map from V_2 into V_3 , b_1 will denote an ordered basis of V_1 , b_2 will denote an ordered basis of V_2 , b_3 will denote an ordered basis of V_3 , b will denote a basis of V_1 , v_1 , v_2 will denote vectors of V_2 , v will denote an element of the carrier of V_1 , p_2 , F will denote finite sequences of elements of the carrier of V_1 , p_1 , dwill denote finite sequences of the carrier of K, and K_4 will denote a linear combination of V_1 .

Let us consider K, let us consider V_1 , V_2 , and let us consider f_1 , f_2 . The functor $f_1 + f_2$ yielding a map from V_1 into V_2 is defined as follows:

(Def.5) For every element v of the carrier of V_1 holds $(f_1+f_2)(v) = f_1(v)+f_2(v)$.

Let us consider K, let us consider V_1 , V_2 , let us consider f, and let a be an element of the carrier of K. The functor $a \cdot f$ yielding a map from V_1 into V_2 is defined as follows:

(Def.6) For every element v of the carrier of V_1 holds $(a \cdot f)(v) = a \cdot f(v)$. The following propositions are true:

- (13) Let a be an element of the carrier of V_1 , and let F be a finite sequence of elements of the carrier of V_1 , and let G be a finite sequence of elements of the carrier of K. Suppose len F = len G and for every k and for every element v of the carrier of K such that $k \in \text{dom } F$ and v = G(k) holds $F(k) = v \cdot a$. Then $\sum F = \sum G \cdot a$.
- (14) Let *a* be an element of the carrier of V_1 , and let *F* be a finite sequence of elements of the carrier of *K*, and let *G* be a finite sequence of elements of the carrier of V_1 . If len F = len G and for every *k* such that $k \in \text{dom } F$ holds $G(k) = \pi_k F \cdot a$, then $\sum G = \sum F \cdot a$.

(15) If for every k such that $k \in \text{dom } F$ holds $\pi_k F = 0_{(V_1)}$, then $\sum F = 0_{(V_1)}$. Let us consider K, let us consider V_1 , and let us consider p_1 , p_2 . The functor $\text{Imlt}(p_1, p_2)$ yielding a finite sequence of elements of the carrier of V_1 is defined as follows:

(Def.7) $\operatorname{lmlt}(p_1, p_2) = (\text{the left multiplication of } V_1)^{\circ}(p_1, p_2).$

Next we state the proposition

(16) If dom $p_1 = \text{dom } p_2$, then dom $\text{lmlt}(p_1, p_2) = \text{dom } p_1$ and dom $\text{lmlt}(p_1, p_2) = \text{dom } p_2$.

Let us consider K, let us consider V_1 , and let M be a matrix over the carrier of V_1 . The functor $\sum M$ yields a finite sequence of elements of the carrier of V_1 and is defined as follows: (Def.8) $\operatorname{len} \sum M = \operatorname{len} M$ and for every k such that $k \in \operatorname{dom} \sum M$ holds $\pi_k \sum M = \sum \operatorname{Line}(M, k).$

The following propositions are true:

- (17) For every matrix M over the carrier of V_1 such that len M = 0 holds $\sum \sum M = 0_{(V_1)}$.
- (18) For every matrix M over the carrier of V_1 of dimension $m + 1 \times 0$ holds $\sum \sum M = 0_{(V_1)}$.
- (19) For every element x of the carrier of V_1 holds $\langle \langle x \rangle \rangle = \langle \langle x \rangle \rangle^{\mathrm{T}}$.
- (20) For every finite sequence p of elements of the carrier of V_1 such that f is linear holds $f(\sum p) = \sum (f \cdot p)$.
- (21) Let a be a finite sequence of elements of the carrier of K and let p be a finite sequence of elements of the carrier of V_1 . If len p = len a, then if f is linear, then $f \cdot \text{lmlt}(a, p) = \text{lmlt}(a, f \cdot p)$.
- (22) Let a be a finite sequence of elements of the carrier of K. If $\operatorname{len} a = \operatorname{len} b_2$, then if g is linear, then $g(\sum \operatorname{lmlt}(a, b_2)) = \sum \operatorname{lmlt}(a, g \cdot b_2)$.
- (23) Let F, F_1 be finite sequences of elements of the carrier of V_1 , and let K_4 be a linear combination of V_1 , and let p be a permutation of dom F. If $F_1 = F \cdot p$, then $K_4 F_1 = (K_4 F) \cdot p$.
- (24) If F is one-to-one and support $K_4 \subseteq \operatorname{rng} F$, then $\sum (K_4 F) = \sum K_4$.
- (25) Let A be a set and let p be a finite sequence of elements of the carrier of V_1 . Suppose $\operatorname{rng} p \subseteq A$. Suppose f_1 is linear and f_2 is linear and for every v such that $v \in A$ holds $f_1(v) = f_2(v)$. Then $f_1(\sum p) = f_2(\sum p)$.
- (26) If f_1 is linear and f_2 is linear, then for every ordered basis b_1 of V_1 such that $\operatorname{len} b_1 > 0$ holds if $f_1 \cdot b_1 = f_2 \cdot b_1$, then $f_1 = f_2$.

Let D be a non empty set. Observe that every matrix over D is finite sequence yielding.

Let D be a non empty set and let F, G be matrices over D. Then $F \cap G$ is a matrix over D.

Let D be a non empty set, let us consider n, m, k, let M_1 be a matrix over D of dimension $n \times k$, and let M_2 be a matrix over D of dimension $m \times k$. Then $M_1 \cap M_2$ is a matrix over D of dimension $n + m \times k$.

One can prove the following propositions:

- (27) Given *i*, and let M_1 be a matrix over *D* of dimension $n \times k$, and let M_2 be a matrix over *D* of dimension $m \times k$. If $i \in \text{dom } M_1$, then $\text{Line}(M_1 \cap M_2, i) = \text{Line}(M_1, i)$.
- (28) Let M_1 be a matrix over D of dimension $n \times k$ and let M_2 be a matrix over D of dimension $m \times k$. If width M_1 = width M_2 , then width $(M_1 \cap M_2)$ = width M_1 and width $(M_1 \cap M_2)$ = width M_2 .
- (29) Given $i, n, and let M_1$ be a matrix over D of dimension $t \times k$, and let M_2 be a matrix over D of dimension $m \times k$. If $n \in \text{dom } M_2$ and $i = \text{len } M_1 + n$, then $\text{Line}(M_1 \cap M_2, i) = \text{Line}(M_2, n)$.

- (30) Let M_1 be a matrix over D of dimension $n \times k$ and let M_2 be a matrix over D of dimension $m \times k$. If width M_1 = width M_2 , then for every i such that $i \in \text{Seg width } M_1$ holds $(M_1 \cap M_2)_{\Box,i} = ((M_1)_{\Box,i}) \cap ((M_2)_{\Box,i})$.
- (31) Let M_1 be a matrix over the carrier of V_1 of dimension $n \times k$ and let M_2 be a matrix over the carrier of V_1 of dimension $m \times k$. Then $\sum (M_1 \cap M_2) = (\sum M_1) \cap \sum M_2$.
- (32) Let M_1 be a matrix over D of dimension $n \times k$ and let M_2 be a matrix over D of dimension $m \times k$. If width M_1 = width M_2 , then $(M_1 \cap M_2)^{\mathrm{T}} = (M_1^{\mathrm{T}}) \cap M_2^{\mathrm{T}}$.
- (33) For all matrices M_1 , M_2 over the carrier of V_1 holds (the addition of $V_1)^{\circ}(\sum M_1, \sum M_2) = \sum (M_1 \cap M_2).$

Let D be a non empty set, let F be a binary operation on D, and let P_1 , P_2 be finite sequences of elements of D. Then $F^{\circ}(P_1, P_2)$ is a finite sequence of elements of D.

Next we state several propositions:

- (34) Let P_1 , P_2 be finite sequences of elements of the carrier of V_1 . If len $P_1 =$ len P_2 , then $\sum($ (the addition of $V_1)^{\circ}(P_1, P_2)) = \sum P_1 + \sum P_2$.
- (35) For all matrices M_1 , M_2 over the carrier of V_1 such that len $M_1 = \text{len } M_2$ holds $\sum \sum M_1 + \sum \sum M_2 = \sum \sum (M_1 \frown M_2)$.
- (36) For every finite sequence P of elements of the carrier of V_1 holds $\sum \sum \langle P \rangle = \sum \sum (\langle P \rangle^{\mathrm{T}}).$
- (37) For every *n* and for every matrix *M* over the carrier of V_1 such that $\operatorname{len} M = n$ holds $\sum \sum M = \sum \sum (M^{\mathrm{T}})$.
- (38) Let M be a matrix over the carrier of K of dimension $n \times m$. Suppose n > 0 and m > 0. Let p, d be finite sequences of elements of the carrier of K. Suppose len p = n and len d = m and for every j such that $j \in \text{dom } d$ holds $\pi_j d = \sum (p \bullet M_{\Box,j})$. Let b, c be finite sequences of elements of the carrier of V_1 . Suppose len b = m and len c = n and for every i such that $i \in \text{dom } c$ holds $\pi_i c = \sum \text{lmlt}(\text{Line}(M, i), b)$. Then $\sum \text{lmlt}(p, c) = \sum \text{lmlt}(d, b)$.

4. Decomposition of a Vector in Basis

Let K be a field, let V be a finite dimensional vector space over K, let b_1 be an ordered basis of V, and let W be an element of the carrier of V. The functor $W \to b_1$ yielding a finite sequence of elements of the carrier of K is defined by the conditions (Def.9).

(Def.9) (i) $\operatorname{len}(W \to b_1) = \operatorname{len} b_1$, and

(ii) there exists a linear combination K_4 of V such that $W = \sum K_4$ and support $K_4 \subseteq \operatorname{rng} b_1$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len}(W \to b_1)$ holds $\pi_k(W \to b_1) = K_4(\pi_k b_1)$. The following four propositions are true:

- (39) If $v_1 \to b_2 = v_2 \to b_2$, then $v_1 = v_2$.
- (40) $v = \sum \operatorname{lmlt}(v \to b_1, b_1).$
- (41) If len $d = \operatorname{len} b_1$, then $d = \sum \operatorname{lmlt}(d, b_1) \to b_1$.
- (42) Let a be a finite sequence of elements of the carrier of K. Suppose len $a = \text{len } b_2$. Let j be a natural number. Suppose $j \in \text{dom } b_3$. Let d be a finite sequence of elements of the carrier of K. Suppose len $d = \text{len } b_2$ and for every k such that $k \in \text{dom } b_2$ holds $d(k) = \pi_j(g(\pi_k b_2) \to b_3)$. If len $b_2 > 0$ and len $b_3 > 0$, then $\pi_j(\sum \text{lmlt}(a, g \cdot b_2) \to b_3) = \sum (a \bullet d)$.

5. Associated Matrix of Linear Map

Let K be a field, let V_1 , V_2 be finite dimensional vector spaces over K, let f be a function from the carrier of V_1 into the carrier of V_2 , let b_1 be a finite sequence of elements of the carrier of V_1 , and let b_2 be an ordered basis of V_2 . The functor AutMt (f, b_1, b_2) yielding a matrix over K is defined as follows:

(Def.10) len AutMt (f, b_1, b_2) = len b_1 and for every k such that $k \in \text{dom } b_1$ holds $\pi_k \text{AutMt}(f, b_1, b_2) = f(\pi_k b_1) \to b_2$.

One can prove the following propositions:

- (43) If len $b_1 = 0$, then AutMt $(f, b_1, b_2) = \varepsilon$.
- (44) If $\operatorname{len} b_1 > 0$, then width $\operatorname{AutMt}(f, b_1, b_2) = \operatorname{len} b_2$.
- (45) If f_1 is linear and f_2 is linear, then if $\operatorname{AutMt}(f_1, b_1, b_2) = \operatorname{AutMt}(f_2, b_1, b_2)$ and $\operatorname{len} b_1 > 0$, then $f_1 = f_2$.
- (46) If f is linear and g is linear and len $b_1 > 0$ and len $b_2 > 0$ and len $b_3 > 0$, then AutMt $(g \cdot f, b_1, b_3) = \text{AutMt}(f, b_1, b_2) \cdot \text{AutMt}(g, b_2, b_3)$.
- (47) $\operatorname{AutMt}(f_1 + f_2, b_1, b_2) = \operatorname{AutMt}(f_1, b_1, b_2) + \operatorname{AutMt}(f_2, b_1, b_2).$
- (48) If $a \neq 0_K$, then AutMt $(a \cdot f, b_1, b_2) = a \cdot AutMt(f, b_1, b_2)$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.

- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651–656, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
- [16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [17] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
- [18] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579– 585, 1991.
- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [24] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- [25] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [26] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877–882, 1990.
- [27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [28] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [33] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [35] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.
- [36] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

Received June 30, 1995