Associated Matrix of Linear Map

Robert Milewski
Warsaw University
Białystok

MML Identifier: MATRLIN.

The notation and terminology used in this paper are introduced in the following articles: [13], [2], [11], [17], [18], [33], [21], [32], [3], [34], [8], [9], [4], [14], [15], [35], [36], [23], [31], [16], [30], [26], [24], [12], [29], [19], [27], [1], [7], [25], [6], [10], [5], [22], [28], and [20].

1. Preliminaries

For simplicity we follow the rules: k, t, i, j, m, n are natural numbers, x is arbitrary, A is a set, and D is a non empty set.

We now state two propositions:
(1) For every finite sequence p of elements of D and for every i holds $p_{\lceil i}$ is a finite sequence of elements of D.
(2) For every i and for every finite sequence p holds $\operatorname{rng}\left(p_{\vdash i}\right) \subseteq \operatorname{rng} p$.

Let D be a non empty set. A matrix over D is a tabular finite sequence of elements of D^{*}.

Let K be a field. A matrix over K is a matrix over the carrier of K.
Let D be a non empty set, let us consider k, and let M be a matrix over D. Then $M_{\uparrow k}$ is a matrix over D.

Next we state four propositions:
(3) For every finite sequence M of elements of D such that len $M=n+1$ holds len $\left(M_{\lceil n+1}\right)=n$.
(4) Let M be a matrix over D of dimension $n+1 \times m$ and let M_{1} be a matrix over D. Then if $n>0$, then width $M=\operatorname{width}\left(M_{\upharpoonright n+1}\right)$ and if $M_{1}=\langle M(n+1)\rangle$, then width $M=$ width M_{1}.
(5) For every matrix M over D of dimension $n+1 \times m$ holds $M_{\upharpoonright n+1}$ is a matrix over D of dimension $n \times m$.
(6) For every finite sequence M of elements of D such that len $M=n+1$ holds $M=\left(M_{\text {Plen } M}\right)^{\wedge}\langle M(\operatorname{len} M)\rangle$.
Let us consider D and let P be a finite sequence of elements of D. Then $\langle P\rangle$ is a matrix over D of dimension $1 \times$ len P.

2. More on Finite Sequence

One can prove the following propositions:
(7) For every set A and for every finite sequence F holds $\left(\operatorname{Sgm}\left(F^{-1} A\right)\right)^{\wedge}$ $\operatorname{Sgm}\left(F^{-1}(\operatorname{rng} F \backslash A)\right)$ is a permutation of $\operatorname{dom} F$.
(8) Let F be a finite sequence and let A be a subset of $\operatorname{rng} F$. Suppose F is one-to-one. Then there exists a permutation p of $\operatorname{dom} F$ such that $\left(F-A^{c}\right) \wedge(F-A)=F \cdot p$.
A function is finite sequence yielding if:
(Def.1) For every x such that $x \in \operatorname{dom}$ it holds $\operatorname{it}(x)$ is a finite sequence.
Let us observe that there exists a function which is finite sequence yielding.
Let F, G be finite sequence yielding functions. The functor $F \frown G$ yields a finite sequence yielding function and is defined by the conditions (Def.2).
(Def.2) (i) $\quad \operatorname{dom}(F \frown G)=\operatorname{dom} F \cap \operatorname{dom} G$, and
(ii) for arbitrary i such that $i \in \operatorname{dom}(F \frown G)$ and for all finite sequences f, g such that $f=F(i)$ and $g=G(i)$ holds $(F \frown G)(i)=f \frown g$.

3. Matrices and Finite Sequences in Vector Space

For simplicity we adopt the following convention: K denotes a field, V denotes a vector space over K, a denotes an element of the carrier of K, W denotes an element of the carrier of V, K_{1}, K_{2}, K_{3} denote linear combinations of V, and X denotes a subset of the carrier of V.

Next we state four propositions:
(9) If X is linearly independent and support $K_{1} \subseteq X$ and support $K_{2} \subseteq X$ and $\sum K_{1}=\sum K_{2}$, then $K_{1}=K_{2}$.
(10) If X is linearly independent and support $K_{1} \subseteq X$ and support $K_{2} \subseteq X$ and support $K_{3} \subseteq X$ and $\sum K_{1}=\sum K_{2}+\sum K_{3}$, then $K_{1}=K_{2}+K_{3}$.
(11) If X is linearly independent and support $K_{1} \subseteq X$ and support $K_{2} \subseteq X$ and $a \neq 0_{K}$ and $\sum K_{1}=a \cdot \sum K_{2}$, then $K_{1}=a \cdot K_{2}$.
(12) For every basis b_{2} of V there exists a linear combination K_{4} of V such that $W=\sum K_{4}$ and support $K_{4} \subseteq b_{2}$.
Let K be a field and let V be a vector space over K. We say that V is finite dimensional if and only if:
(Def.3) There exists finite subset of the carrier of V which is a basis of V.

Let K be a field. Note that there exists a vector space over K which is strict and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A finite sequence of elements of the carrier of V is called an ordered basis of V if: (Def.4) It is one-to-one and rng it is a basis of V.

For simplicity we adopt the following convention: p will denote a finite sequence, M_{1} will denote a matrix over D of dimension $n \times m, M_{2}$ will denote a matrix over D of dimension $k \times m, V_{1}, V_{2}, V_{3}$ will denote finite dimensional vector spaces over K, f, f_{1}, f_{2} will denote maps from V_{1} into V_{2}, g will denote a map from V_{2} into V_{3}, b_{1} will denote an ordered basis of V_{1}, b_{2} will denote an ordered basis of V_{2}, b_{3} will denote an ordered basis of V_{3}, b will denote a basis of V_{1}, v_{1}, v_{2} will denote vectors of V_{2}, v will denote an element of the carrier of V_{1}, p_{2}, F will denote finite sequences of elements of the carrier of V_{1}, p_{1}, d will denote finite sequences of elements of the carrier of K, and K_{4} will denote a linear combination of V_{1}.

Let us consider K, let us consider V_{1}, V_{2}, and let us consider f_{1}, f_{2}. The functor $f_{1}+f_{2}$ yielding a map from V_{1} into V_{2} is defined as follows:
(Def.5) For every element v of the carrier of V_{1} holds $\left(f_{1}+f_{2}\right)(v)=f_{1}(v)+f_{2}(v)$.
Let us consider K, let us consider V_{1}, V_{2}, let us consider f, and let a be an element of the carrier of K. The functor $a \cdot f$ yielding a map from V_{1} into V_{2} is defined as follows:
(Def.6) For every element v of the carrier of V_{1} holds $(a \cdot f)(v)=a \cdot f(v)$.
The following propositions are true:
(13) Let a be an element of the carrier of V_{1}, and let F be a finite sequence of elements of the carrier of V_{1}, and let G be a finite sequence of elements of the carrier of K. Suppose len $F=\operatorname{len} G$ and for every k and for every element v of the carrier of K such that $k \in \operatorname{dom} F$ and $v=G(k)$ holds $F(k)=v \cdot a$. Then $\sum F=\sum G \cdot a$.
(14) Let a be an element of the carrier of V_{1}, and let F be a finite sequence of elements of the carrier of K, and let G be a finite sequence of elements of the carrier of V_{1}. If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{dom} F$ holds $G(k)=\pi_{k} F \cdot a$, then $\sum G=\sum F \cdot a$.
(15) If for every k such that $k \in \operatorname{dom} F$ holds $\pi_{k} F=0_{\left(V_{1}\right)}$, then $\sum F=0_{\left(V_{1}\right)}$.

Let us consider K, let us consider V_{1}, and let us consider p_{1}, p_{2}. The functor $\operatorname{lmlt}\left(p_{1}, p_{2}\right)$ yielding a finite sequence of elements of the carrier of V_{1} is defined as follows:
(Def.7) $\quad \operatorname{lmlt}\left(p_{1}, p_{2}\right)=\left(\text { the left multiplication of } V_{1}\right)^{\circ}\left(p_{1}, p_{2}\right)$.
Next we state the proposition
(16) If $\operatorname{dom} p_{1}=\operatorname{dom} p_{2}$, then $\operatorname{dom} \operatorname{lmlt}\left(p_{1}, p_{2}\right)=\operatorname{dom} p_{1}$ and $\operatorname{dom} \operatorname{lmlt}\left(p_{1}, p_{2}\right)=\operatorname{dom} p_{2}$.
Let us consider K, let us consider V_{1}, and let M be a matrix over the carrier of V_{1}. The functor $\sum M$ yields a finite sequence of elements of the carrier of V_{1} and is defined as follows:
(Def.8) len $\sum M=\operatorname{len} M$ and for every k such that $k \in \operatorname{dom} \sum M$ holds $\pi_{k} \sum M=\sum \operatorname{Line}(M, k)$.
The following propositions are true:
(17) For every matrix M over the carrier of V_{1} such that len $M=0$ holds $\sum \sum M=0_{\left(V_{1}\right)}$.
(18) For every matrix M over the carrier of V_{1} of dimension $m+1 \times 0$ holds $\sum \sum M=0_{\left(V_{1}\right)}$.
(19) For every element x of the carrier of V_{1} holds $\langle\langle x\rangle\rangle=\langle\langle x\rangle\rangle^{\mathrm{T}}$.
(20) For every finite sequence p of elements of the carrier of V_{1} such that f is linear holds $f\left(\sum p\right)=\sum(f \cdot p)$.
(21) Let a be a finite sequence of elements of the carrier of K and let p be a finite sequence of elements of the carrier of V_{1}. If len $p=\operatorname{len} a$, then if f is linear, then $f \cdot \operatorname{lmlt}(a, p)=\operatorname{lmlt}(a, f \cdot p)$.
(22) Let a be a finite sequence of elements of the carrier of K. If len $a=$ len b_{2}, then if g is linear, then $g\left(\sum \operatorname{lmlt}\left(a, b_{2}\right)\right)=\sum \operatorname{lmlt}\left(a, g \cdot b_{2}\right)$.
(23) Let F, F_{1} be finite sequences of elements of the carrier of V_{1}, and let K_{4} be a linear combination of V_{1}, and let p be a permutation of $\operatorname{dom} F$. If $F_{1}=F \cdot p$, then $K_{4} F_{1}=\left(K_{4} F\right) \cdot p$.
(24) If F is one-to-one and support $K_{4} \subseteq \operatorname{rng} F$, then $\sum\left(K_{4} F\right)=\sum K_{4}$.

Let A be a set and let p be a finite sequence of elements of the carrier of V_{1}. Suppose $\operatorname{rng} p \subseteq A$. Suppose f_{1} is linear and f_{2} is linear and for every v such that $v \in A$ holds $f_{1}(v)=f_{2}(v)$. Then $f_{1}\left(\sum p\right)=f_{2}\left(\sum p\right)$.
(26) If f_{1} is linear and f_{2} is linear, then for every ordered basis b_{1} of V_{1} such that len $b_{1}>0$ holds if $f_{1} \cdot b_{1}=f_{2} \cdot b_{1}$, then $f_{1}=f_{2}$.
Let D be a non empty set. Observe that every matrix over D is finite sequence yielding.

Let D be a non empty set and let F, G be matrices over D. Then $F \frown G$ is a matrix over D.

Let D be a non empty set, let us consider n, m, k, let M_{1} be a matrix over D of dimension $n \times k$, and let M_{2} be a matrix over D of dimension $m \times k$. Then $M_{1} \wedge M_{2}$ is a matrix over D of dimension $n+m \times k$.

One can prove the following propositions:
(27) Given i, and let M_{1} be a matrix over D of dimension $n \times k$, and let M_{2} be a matrix over D of dimension $m \times k$. If $i \in \operatorname{dom} M_{1}$, then $\operatorname{Line}\left(M_{1} \wedge M_{2}, i\right)=\operatorname{Line}\left(M_{1}, i\right)$.
(28) Let M_{1} be a matrix over D of dimension $n \times k$ and let M_{2} be a matrix over D of dimension $m \times k$. If width $M_{1}=\operatorname{width} M_{2}$, then $\operatorname{width}\left(M_{1} \wedge\right.$ $\left.M_{2}\right)=\operatorname{width} M_{1}$ and $\operatorname{width}\left(M_{1} \wedge M_{2}\right)=\operatorname{width} M_{2}$.
(29) Given i, n, and let M_{1} be a matrix over D of dimension $t \times k$, and let M_{2} be a matrix over D of dimension $m \times k$. If $n \in \operatorname{dom} M_{2}$ and $i=\operatorname{len} M_{1}+n$, then $\operatorname{Line}\left(M_{1} \wedge M_{2}, i\right)=\operatorname{Line}\left(M_{2}, n\right)$.
(30) Let M_{1} be a matrix over D of dimension $n \times k$ and let M_{2} be a matrix over D of dimension $m \times k$. If width $M_{1}=$ width M_{2}, then for every i such that $i \in \operatorname{Seg}$ width M_{1} holds $\left(M_{1} \wedge M_{2}\right)_{\square, i}=\left(\left(M_{1}\right)_{\square, i}\right)^{\wedge}\left(\left(M_{2}\right)_{\square, i}\right)$.
(31) Let M_{1} be a matrix over the carrier of V_{1} of dimension $n \times k$ and let M_{2} be a matrix over the carrier of V_{1} of dimension $m \times k$. Then $\sum\left(M_{1} \wedge M_{2}\right)=\left(\sum M_{1}\right) \wedge \sum M_{2}$.
(32) Let M_{1} be a matrix over D of dimension $n \times k$ and let M_{2} be a matrix over D of dimension $m \times k$. If width $M_{1}=$ width M_{2}, then $\left(M_{1} \wedge M_{2}\right)^{\mathrm{T}}=$ $\left(M_{1}{ }^{\mathrm{T}}\right) \frown M_{2}{ }^{\mathrm{T}}$.
(33) For all matrices M_{1}, M_{2} over the carrier of V_{1} holds (the addition of $\left.V_{1}\right)^{\circ}\left(\sum M_{1}, \sum M_{2}\right)=\sum\left(M_{1} \frown M_{2}\right)$.
Let D be a non empty set, let F be a binary operation on D, and let P_{1}, P_{2} be finite sequences of elements of D. Then $F^{\circ}\left(P_{1}, P_{2}\right)$ is a finite sequence of elements of D.

Next we state several propositions:
(34) Let P_{1}, P_{2} be finite sequences of elements of the carrier of V_{1}. If len $P_{1}=$ len P_{2}, then $\sum\left(\left(\text { the addition of } V_{1}\right)^{\circ}\left(P_{1}, P_{2}\right)\right)=\sum P_{1}+\sum P_{2}$.
(35) For all matrices M_{1}, M_{2} over the carrier of V_{1} such that len $M_{1}=\operatorname{len} M_{2}$ holds $\sum \sum M_{1}+\sum \sum M_{2}=\sum \sum\left(M_{1} \frown M_{2}\right)$.
(36) For every finite sequence P of elements of the carrier of V_{1} holds $\sum \sum\langle P\rangle=\sum \sum\left(\langle P\rangle^{\mathrm{T}}\right)$.
(37) For every n and for every matrix M over the carrier of V_{1} such that len $M=n$ holds $\sum \sum M=\sum \sum\left(M^{\mathrm{T}}\right)$.
(38) Let M be a matrix over the carrier of K of dimension $n \times m$. Suppose $n>0$ and $m>0$. Let p, d be finite sequences of elements of the carrier of K. Suppose len $p=n$ and len $d=m$ and for every j such that $j \in \operatorname{dom} d$ holds $\pi_{j} d=\sum\left(p \bullet M_{\square, j}\right)$. Let b, c be finite sequences of elements of the carrier of V_{1}. Suppose len $b=m$ and len $c=n$ and for every i such that $i \in \operatorname{dom} c$ holds $\pi_{i} c=\sum \operatorname{lmlt}(\operatorname{Line}(M, i), b)$. Then $\sum \operatorname{lmlt}(p, c)=$ $\sum \operatorname{lmlt}(d, b)$.

4. Decomposition of a Vector in Basis

Let K be a field, let V be a finite dimensional vector space over K, let b_{1} be an ordered basis of V, and let W be an element of the carrier of V. The functor $W \rightarrow b_{1}$ yielding a finite sequence of elements of the carrier of K is defined by the conditions (Def.9).
(Def.9) (i) $\operatorname{len}\left(W \rightarrow b_{1}\right)=\operatorname{len} b_{1}$, and
(ii) there exists a linear combination K_{4} of V such that $W=\sum K_{4}$ and support $K_{4} \subseteq \operatorname{rng} b_{1}$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len}\left(W \rightarrow b_{1}\right)$ holds $\pi_{k}\left(W \rightarrow b_{1}\right)=K_{4}\left(\pi_{k} b_{1}\right)$.

The following four propositions are true:

$$
\begin{align*}
& \text { If } v_{1} \rightarrow b_{2}=v_{2} \rightarrow b_{2} \text {, then } v_{1}=v_{2} . \tag{39}\\
& v=\sum \operatorname{lmlt}\left(v \rightarrow b_{1}, b_{1}\right) . \tag{40}\\
& \text { If len } d=\operatorname{len} b_{1} \text {, then } d=\sum \operatorname{lmlt}\left(d, b_{1}\right) \rightarrow b_{1} . \tag{41}
\end{align*}
$$

Let a be a finite sequence of elements of the carrier of K. Suppose len $a=\operatorname{len} b_{2}$. Let j be a natural number. Suppose $j \in \operatorname{dom} b_{3}$. Let d be a finite sequence of elements of the carrier of K. Suppose len $d=\operatorname{len} b_{2}$ and for every k such that $k \in \operatorname{dom} b_{2}$ holds $d(k)=\pi_{j}\left(g\left(\pi_{k} b_{2}\right) \rightarrow b_{3}\right)$. If len $b_{2}>0$ and len $b_{3}>0$, then $\pi_{j}\left(\sum \operatorname{lmlt}\left(a, g \cdot b_{2}\right) \rightarrow b_{3}\right)=\sum(a \bullet d)$.

5. Associated Matrix of Linear Map

Let K be a field, let V_{1}, V_{2} be finite dimensional vector spaces over K, let f be a function from the carrier of V_{1} into the carrier of V_{2}, let b_{1} be a finite sequence of elements of the carrier of V_{1}, and let b_{2} be an ordered basis of V_{2}. The functor $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)$ yielding a matrix over K is defined as follows:
(Def.10) len $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\operatorname{len} b_{1}$ and for every k such that $k \in \operatorname{dom} b_{1}$ holds $\pi_{k} \operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=f\left(\pi_{k} b_{1}\right) \rightarrow b_{2}$.
One can prove the following propositions:
(43) If len $b_{1}=0$, then $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\varepsilon$.
(44) If len $b_{1}>0$, then width $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\operatorname{len} b_{2}$.
(45) If f_{1} is linear and f_{2} is linear, then if $\operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)=$ $\operatorname{AutMt}\left(f_{2}, b_{1}, b_{2}\right)$ and len $b_{1}>0$, then $f_{1}=f_{2}$.
(46) If f is linear and g is linear and len $b_{1}>0$ and len $b_{2}>0$ and len $b_{3}>0$, then $\operatorname{AutMt}\left(g \cdot f, b_{1}, b_{3}\right)=\operatorname{AutMt}\left(f, b_{1}, b_{2}\right) \cdot \operatorname{AutMt}\left(g, b_{2}, b_{3}\right)$.
(47) $\operatorname{AutMt}\left(f_{1}+f_{2}, b_{1}, b_{2}\right)=\operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)+\operatorname{AutMt}\left(f_{2}, b_{1}, b_{2}\right)$.
(48) If $a \neq 0_{K}$, then $\operatorname{AutMt}\left(a \cdot f, b_{1}, b_{2}\right)=a \cdot \operatorname{AutMt}\left(f, b_{1}, b_{2}\right)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 55-65,1990$.
[9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[17] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
[18] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579585, 1991.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[24] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[25] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[26] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[28] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[33] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[35] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.
[36] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

