On the Lattice of Subgroups of a Group

Janusz Ganczarski Warsaw University Białystok

MML Identifier: LATSUBGR.

The articles [15], [3], [16], [8], [4], [2], [17], [13], [7], [10], [12], [9], [11], [14], [1], [6], and [5] provide the terminology and notation for this paper.

The following propositions are true:

- (1) Let G be a group and let H_1 , H_2 be subgroups of G. Then the carrier of $H_1 \cap H_2 =$ (the carrier of $H_1 \cap$ (the carrier of H_2).
- (2) For every group G and for arbitrary h holds $h \in \operatorname{SubGr} G$ iff there exists a strict subgroup H of G such that h = H.
- (3) Let G be a group, and let A be a subset of the carrier of G, and let H be a strict subgroup of G. If A = the carrier of H, then gr(A) = H.
- (4) Let G be a group, and let H_1 , H_2 be subgroups of G, and let A be a subset of the carrier of G. If $A = (\text{the carrier of } H_1) \cup (\text{the carrier of } H_2)$, then $H_1 \sqcup H_2 = \text{gr}(A)$.
- (5) Let G be a group, and let H_1 , H_2 be subgroups of G, and let g be an element of the carrier of G. If $g \in H_1$ or $g \in H_2$, then $g \in H_1 \sqcup H_2$.
- (6) Let G_1 , G_2 be groups, and let f be a homomorphism from G_1 to G_2 , and let H_1 be a subgroup of G_1 . Then there exists a strict subgroup H_2 of G_2 such that the carrier of $H_2 = f^{\circ}$ (the carrier of H_1).
- (7) Let G_1 , G_2 be groups, and let f be a homomorphism from G_1 to G_2 , and let H_2 be a subgroup of G_2 . Then there exists a strict subgroup H_1 of G_1 such that the carrier of $H_1 = f^{-1}$ (the carrier of H_2).
- (8) Let G_1 , G_2 be groups, and let f be a homomorphism from G_1 to G_2 , and let H_1 , H_2 be subgroups of G_1 . Suppose the carrier of $H_1 \subseteq$ the carrier of H_2 . Then f° (the carrier of H_1) $\subseteq f^{\circ}$ (the carrier of H_2).
- (9) Let G_1 , G_2 be groups, and let f be a homomorphism from G_1 to G_2 , and let H_1 , H_2 be subgroups of G_2 . Suppose the carrier of $H_1 \subseteq$ the carrier of H_2 . Then f^{-1} (the carrier of H_1) $\subseteq f^{-1}$ (the carrier of H_2).

C 1996 Warsaw University - Białystok ISSN 1426-2630

- (10) Let G_1 , G_2 be groups, and let f be a homomorphism from G_1 to G_2 , and let H_1 , H_2 be subgroups of G_1 , and let H_3 , H_4 be subgroups of G_2 . Suppose the carrier of $H_3 = f^{\circ}$ (the carrier of H_1) and the carrier of $H_4 = f^{\circ}$ (the carrier of H_2). If H_1 is a subgroup of H_2 , then H_3 is a subgroup of H_4 .
- (11) Let G_1 , G_2 be groups, and let f be a homomorphism from G_1 to G_2 , and let H_1 , H_2 be subgroups of G_2 , and let H_3 , H_4 be subgroups of G_1 . Suppose the carrier of $H_3 = f^{-1}$ (the carrier of H_1) and the carrier of $H_4 = f^{-1}$ (the carrier of H_2). If H_1 is a subgroup of H_2 , then H_3 is a subgroup of H_4 .
- (12) Let G_1 , G_2 be groups, and let f be a function from the carrier of G_1 into the carrier of G_2 , and let A be a subset of the carrier of G_1 . Then $f^{\circ}A \subseteq f^{\circ}$ (the carrier of $\operatorname{gr}(A)$).
- (13) Let G_1 , G_2 be groups, and let H_1 , H_2 be subgroups of G_1 , and let f be a function from the carrier of G_1 into the carrier of G_2 , and let A be a subset of the carrier of G_1 . Suppose $A = (\text{the carrier of } H_1) \cup (\text{the carrier$ $of } H_2)$. Then $f^{\circ}(\text{the carrier of } H_1 \sqcup H_2) = f^{\circ}(\text{the carrier of gr}(A))$.
- (14) For every group G and for every subset A of the carrier of G such that $A = \{1_G\}$ holds $gr(A) = \{1\}_G$.
- (15) For all non empty sets X, Y and for all subsets A_1 , A_2 of Y and for every function f from X into Y holds $f^{-1}(A_1 \cup A_2) = f^{-1}A_1 \cup f^{-1}A_2$.
- (16) For all non empty sets X, Y and for all subsets A_1 , A_2 of X and for every function f from X into Y holds $f^{\circ}(A_1 \cup A_2) = f^{\circ}A_1 \cup f^{\circ}A_2$.

Let G be a group. The functor \overline{G} yields a function from SubGrG into $2^{\text{the carrier of }G}$ and is defined as follows:

(Def.1) For every element h of SubGr G and for every subgroup H of G such that h = H holds $\overline{G}(h)$ = the carrier of H.

Next we state several propositions:

- (17) Let G be a group, and let h be an element of SubGr G, and let H be a subgroup of G. If h = H, then $\overline{G}(h) =$ the carrier of H.
- (18) Let G be a group, and let H be a strict subgroup of G, and let x be an element of the carrier of G. Then $x \in \overline{G}(H)$ if and only if $x \in H$.
- (19) For every group G and for every strict subgroup H of G holds $1_G \in \overline{G}(H)$.
- (20) For every group G and for every strict subgroup H of G holds $\overline{G}(H) \neq \emptyset$.
- (21) Let G be a group, and let H be a strict subgroup of G, and let g_1 , g_2 be elements of the carrier of G. If $g_1 \in \overline{G}(H)$ and $g_2 \in \overline{G}(H)$, then $g_1 \cdot g_2 \in \overline{G}(H)$.
- (22) Let G be a group, and let H be a strict subgroup of G, and let g be an element of the carrier of G. If $g \in \overline{G}(H)$, then $g^{-1} \in \overline{G}(H)$.
- (23) For every group G and for all strict subgroups H_1 , H_2 of G holds the carrier of $H_1 \cap H_2 = \overline{G}(H_1) \cap \overline{G}(H_2)$.

(24) For every group G and for all strict subgroups H_1 , H_2 of G holds $\overline{G}(H_1 \cap H_2) = \overline{G}(H_1) \cap \overline{G}(H_2)$.

Let G be a group and let F be a non empty subset of SubGr G. The functor $\bigcap F$ yielding a strict subgroup of G is defined by:

(Def.2) The carrier of $\bigcap F = \bigcap (\overline{G}^{\circ} F)$.

Next we state several propositions:

- (25) For every group G and for every non empty subset F of SubGrG such that $\{\mathbf{1}\}_G \in F$ holds $\bigcap F = \{\mathbf{1}\}_G$.
- (26) For every group G and for every element h of SubGr G and for every non empty subset F of SubGr G such that $F = \{h\}$ holds $\bigcap F = h$.
- (27) Let G be a group, and let H_1 , H_2 be subgroups of G, and let h_1 , h_2 be elements of the carrier of \mathbb{L}_G . If $h_1 = H_1$ and $h_2 = H_2$, then $h_1 \sqcup h_2 = H_1 \sqcup H_2$.
- (28) Let G be a group, and let H_1 , H_2 be subgroups of G, and let h_1 , h_2 be elements of the carrier of \mathbb{L}_G . If $h_1 = H_1$ and $h_2 = H_2$, then $h_1 \sqcap h_2 = H_1 \cap H_2$.
- (29) Let G be a group, and let p be an element of the carrier of \mathbb{L}_G , and let H be a subgroup of G. If p = H, then H is a strict subgroup of G.
- (30) Let G be a group, and let H_1 , H_2 be subgroups of G, and let p, q be elements of the carrier of \mathbb{L}_G . Suppose $p = H_1$ and $q = H_2$. Then $p \sqsubseteq q$ if and only if the carrier of $H_1 \subseteq$ the carrier of H_2 .
- (31) Let G be a group, and let H_1 , H_2 be subgroups of G, and let p, q be elements of the carrier of \mathbb{L}_G . If $p = H_1$ and $q = H_2$, then $p \sqsubseteq q$ iff H_1 is a subgroup of H_2 .
- (32) For every group G holds \mathbb{L}_G is complete.

Let G_1 , G_2 be groups and let f be a function from the carrier of G_1 into the carrier of G_2 . The functor FuncLatt(f) yielding a function from the carrier of $\mathbb{L}_{(G_1)}$ into the carrier of $\mathbb{L}_{(G_2)}$ is defined by the condition (Def.3).

(Def.3) Let H be a strict subgroup of G_1 and let A be a subset of the carrier of G_2 . If $A = f^{\circ}$ (the carrier of H), then (FuncLatt(f))(H) = gr(A).

One can prove the following propositions:

- (33) Let G be a group and let f be a function from the carrier of G into the carrier of G. If $f = id_{(\text{the carrier of } G)}$, then $\text{FuncLatt}(f) = id_{(\text{the carrier of } L_G)}$.
- (34) For all groups G_1 , G_2 and for every homomorphism f from G_1 to G_2 such that f is one-to-one holds FuncLatt(f) is one-to-one.
- (35) For all groups G_1 , G_2 and for every homomorphism f from G_1 to G_2 holds (FuncLatt(f))($\{\mathbf{1}\}_{(G_1)}$) = $\{\mathbf{1}\}_{(G_2)}$.
- (36) Let G_1 , G_2 be groups and let f be a homomorphism from G_1 to G_2 . Suppose f is one-to-one. Then $\operatorname{FuncLatt}(f)$ is a lower homomorphism between $\mathbb{L}_{(G_1)}$ and $\mathbb{L}_{(G_2)}$.

- (37) Let G_1 , G_2 be groups and let f be a homomorphism from G_1 to G_2 . Then FuncLatt(f) is an upper homomorphism between $\mathbb{L}_{(G_1)}$ and $\mathbb{L}_{(G_2)}$.
- (38) Let G_1 , G_2 be groups and let f be a homomorphism from G_1 to G_2 . If f is one-to-one, then FuncLatt(f) is a homomorphism from $\mathbb{L}_{(G_1)}$ to $\mathbb{L}_{(G_2)}$.

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Andrzej Iwaniuk. On the lattice of subspaces of a vector space. Formalized Mathematics, 5(3):305-308, 1996.
- Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955–962, 1990.
- [10] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [11] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41–47, 1991.
- [12] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855–864, 1990.
- [13] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [14] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Formalized Mathematics*, 2(4):573–578, 1991.
- [15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [17] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received May 23, 1995