
FORMALIZED MATHEMATICS

Volume 5, Number 3, 1996

Warsaw University - Bia lystok

Indexed Category

Grzegorz Bancerek

Institute of Mathematics

Polish Academy of Sciences

Summary. The concept of indexing of a category (a part of in-
dexed category, see [18]) is introduced as a pair formed by a many sorted
category and a many sorted functor. The indexing of a category C against
to [18] is not a functor but it can be treated as a functor from C into
some categorial category (see [1]). The goal of the article is to work out
the notation necessary to define institutions (see [13]).

MML Identifier: INDEX 1.

The articles [23], [25], [11], [24], [26], [4], [5], [19], [9], [7], [22], [20], [21], [15], [16],
[14], [3], [6], [12], [8], [2], [10], [17], and [1] provide the notation and terminology
for this paper.

1. Category-yielding Functions

Let A be a non empty set. One can check that there exists a many sorted
set indexed by A which is non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexed
by A which is non-empty is also non empty yielding.

Let C be a categorial category and let f be a morphism of C. Then f2 is a
functor from f1,1 to f1,2.

We now state two propositions:

(1) For every categorial category C and for all morphisms f , g of C such
that dom g = cod f holds g · f = 〈〈〈〈 dom f, cod g〉〉, g2 · f2〉〉.

(2) Let C be a category, and let D, E be categorial categories, and let F

be a functor from C to D, and let G be a functor from C to E. If F = G,

then ObjF = ObjG.

A function is category-yielding if:

329
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



330 grzegorz bancerek

(Def.1) For arbitrary x such that x ∈ dom it holds it(x) is a category.

Let us note that there exists a function which is category-yielding.
Let X be a set. Observe that there exists a many sorted set indexed by X

which is category-yielding.
Let A be a set. A many sorted category indexed by A is a category-yielding

many sorted set indexed by A.
Let C be a category. A many sorted set indexed by C is a many sorted set

indexed by the objects of C. A many sorted category indexed by C is a many
sorted category indexed by the objects of C.

Let X be a set and let x be a category. One can verify that X 7−→ x is
category-yielding.

Let X be a set and let x be a function. One can check that X 7−→ x is
function yielding.

Let X be a non empty set. One can check that every many sorted set indexed
by X is non empty.

Let f be a non empty function. One can check that rng f is non empty.
Let f be a category-yielding function. Observe that rng f is categorial.
Let X be a non empty set, let f be a many sorted category indexed by X,

and let x be an element of X. Then f(x) is a category.
Let B be a set, let A be a non empty set, let f be a function from B into

A, and let g be a many sorted category indexed by A. Observe that g · f is
category-yielding.

Let F be a category-yielding function. The functor Objs(F ) yields a non-
empty function and is defined by the conditions (Def.2).

(Def.2) (i) dom Objs(F ) = domF, and
(ii) for every set x such that x ∈ domF and for every category C such

that C = F (x) holds (Objs(F ))(x) = the objects of C.

The functor Mphs(F ) yields a non-empty function and is defined by the condi-
tions (Def.3).

(Def.3) (i) dom Mphs(F ) = domF, and
(ii) for every set x such that x ∈ domF and for every category C such

that C = F (x) holds (Mphs(F ))(x) = the morphisms of C.

Let A be a non empty set and let F be a many sorted category indexed by A.
Then Objs(F ) is a non-empty many sorted set indexed by A. Then Mphs(F ) is
a non-empty many sorted set indexed by A.

The following proposition is true

(3) For every set X and for every category C holds Objs(X 7−→ C) =
X 7−→ the objects of C and Mphs(X 7−→ C) = X 7−→ the morphisms of
C.



indexed category 331

2. Pairs of Many Sorted Sets

Let A, B be sets. Pair of many sorted sets indexed by A and B is defined
by:

(Def.4) There exists a many sorted set f indexed by A and there exists a many
sorted set g indexed by B such that it = 〈〈f, g〉〉.

Let A, B be sets, let f be a many sorted set indexed by A, and let g be a
many sorted set indexed by B. Then 〈〈f, g〉〉 is a pair of many sorted sets indexed
by A and B.

Let A, B be sets and let X be a pair of many sorted sets indexed by A and
B. Then X1 is a many sorted set indexed by A. Then X2 is a many sorted set
indexed by B.

Let A, B be sets. A pair of many sorted sets indexed by A and B is category-
yielding on first if:

(Def.5) it1 is category-yielding.

A pair of many sorted sets indexed by A and B is function-yielding on second
if:

(Def.6) it2 is function yielding.

Let A, B be sets. One can check that there exists a pair of many sorted sets
indexed by A and B which is category-yielding on first and function-yielding on
second.

Let A, B be sets and let X be a category-yielding on first pair of many sorted
sets indexed by A and B. Then X1 is a many sorted category indexed by A.

Let A, B be sets and let X be a function-yielding on second pair of many
sorted sets indexed by A and B. Then X2 is a many sorted function of B.

Let f be a function yielding function. One can check that rng f is functional.
Let A, B be sets, let f be a many sorted category indexed by A, and let

g be a many sorted function of B. Then 〈〈f, g〉〉 is a category-yielding on first
function-yielding on second pair of many sorted sets indexed by A and B.

Let A be a non empty set and let F , G be many sorted categories indexed
by A. A many sorted function of A is called a many sorted functor from F to
G if:

(Def.7) For every element a of A holds it(a) is a functor from F (a) to G(a).

The scheme LambdaMSFr deals with a non empty set A, many sorted cat-
egories B, C indexed by A, and a unary functor F yielding a set, and states
that:

There exists a many sorted functor F from B to C such that for
every element a of A holds F (a) = F(a)

provided the parameters meet the following requirement:
• For every element a of A holds F(a) is a functor from B(a) to C(a).
Let A be a non empty set, let F , G be many sorted categories indexed by

A, let f be a many sorted functor from F to G, and let a be an element of A.
Then f(a) is a functor from F (a) to G(a).



332 grzegorz bancerek

3. Indexing

Let A, B be non empty sets and let F , G be functions from B into A. A
category-yielding on first pair of many sorted sets indexed by A and B is said
to be an indexing of F and G if:

(Def.8) it2 is a many sorted functor from it1 · F to it1 · G.

Next we state two propositions:

(4) Let A, B be non empty sets, and let F , G be functions from B into A,
and let I be an indexing of F and G, and let m be an element of B. Then
I2(m) is a functor from I1(F (m)) to I1(G(m)).

(5) Let C be a category, and let I be an indexing of the dom-map of C

and the cod-map of C, and let m be a morphism of C. Then I2(m) is a
functor from I1(domm) to I1(cod m).

Let A, B be non empty sets, let F , G be functions from B into A, and let
I be an indexing of F and G. Then I2 is a many sorted functor from I1 · F to
I1 · G.

Let A, B be non empty sets, let F , G be functions from B into A, and let I

be an indexing of F and G. A categorial category is called a target category of
I if it satisfies the conditions (Def.9).

(Def.9) (i) For every element a of A holds I1(a) is an object of it, and
(ii) for every element b of B holds 〈〈〈〈I1(F (b)), I1(G(b))〉〉, I2(b)〉〉 is a mor-

phism of it.

Let A, B be non empty sets, let F , G be functions from B into A, and let I

be an indexing of F and G. One can verify that there exists a target category
of I which is full and strict.

Let A, B be non empty sets, let F , G be functions from B into A, let c be
a partial function from [:B, B :] to B, and let i be a function from A into B.
Let us assume that there exists a category C such that C = 〈A,B,F,G, c, i〉.
An indexing of F and G is called an indexing of F , G, c and i if it satisfies the
conditions (Def.10).

(Def.10) (i) For every element a of A holds it2(i(a)) = idit1(a), and

(ii) for all elements m1, m2 of B such that F (m2) = G(m1) holds it2(c(〈〈m2,

m1〉〉)) = it2(m2) · it2(m1).

Let C be a category. An indexing of C is an indexing of the dom-map of C,
the cod-map of C, the composition of C and the id-map of C. A coindexing of
C is an indexing of the cod-map of C, the dom-map of C, 	 (the composition
of C) and the id-map of C.

One can prove the following propositions:

(6) Let C be a category and let I be an indexing of the dom-map of C and
the cod-map of C. Then I is an indexing of C if and only if the following
conditions are satisfied:

(i) for every object a of C holds I2(ida) = idI1(a), and



indexed category 333

(ii) for all morphisms m1, m2 of C such that domm2 = cod m1 holds
I2(m2 · m1) = I2(m2) · I2(m1).

(7) Let C be a category and let I be an indexing of the cod-map of C and
the dom-map of C. Then I is a coindexing of C if and only if the following
conditions are satisfied:

(i) for every object a of C holds I2(ida) = idI1(a), and

(ii) for all morphisms m1, m2 of C such that domm2 = cod m1 holds
I2(m2 · m1) = I2(m1) · I2(m2).

(8) For every category C and for every set x holds x is a coindexing of C

iff x is an indexing of Cop.

(9) Let C be a category, and let I be an indexing of C, and let c1, c2 be
objects of C. Suppose hom(c1, c2) is non empty. Let m be a morphism
from c1 to c2. Then I2(m) is a functor from I1(c1) to I1(c2).

(10) Let C be a category, and let I be a coindexing of C, and let c1, c2 be
objects of C. Suppose hom(c1, c2) is non empty. Let m be a morphism
from c1 to c2. Then I2(m) is a functor from I1(c2) to I1(c1).

Let C be a category, let I be an indexing of C, and let T be a target category
of I. The functor I -functor(C,T ) yielding a functor from C to T is defined as
follows:

(Def.11) For every morphism f of C holds (I -functor(C,T ))(f) = 〈〈〈〈I1(dom f),
I1(cod f)〉〉, I2(f)〉〉.

We now state three propositions:

(11) Let C be a category, and let I be an indexing of C, and let T1, T2

be target categories of I. Then I -functor(C,T1) = I -functor(C,T2) and
Obj(I -functor(C,T1)) = Obj(I -functor(C,T2)).

(12) For every category C and for every indexing I of C and for every target
category T of I holds Obj(I -functor(C,T )) = I1.

(13) Let C be a category, and let I be an indexing of C, and let T be a target
category of I, and let x be an object of C. Then (I -functor(C,T ))(x) =
I1(x).

Let C be a category and let I be an indexing of C. The functor rng I yielding
a strict target category of I is defined by:

(Def.12) For every target category T of I holds rng I = Im(I -functor(C,T )).

Next we state the proposition

(14) Let C be a category, and let I be an indexing of C, and let D be a
categorial category. Then rng I is a subcategory of D if and only if D is
a target category of I.

Let C be a category, let I be an indexing of C, and let m be a morphism of
C. The functor I(m) yielding a functor from I1(domm) to I1(cod m) is defined
by:

(Def.13) I(m) = I2(m).



334 grzegorz bancerek

Let C be a category, let I be a coindexing of C, and let m be a morphism of
C. The functor I(m) yielding a functor from I1(cod m) to I1(domm) is defined
as follows:

(Def.14) I(m) = I2(m).

The following proposition is true

(15) Let C, D be categories. Then
(i) 〈〈(the objects of C) 7−→ (D), (the morphisms of C) 7−→ idD〉〉 is an

indexing of C, and
(ii) 〈〈(the objects of C) 7−→ (D), (the morphisms of C) 7−→ idD〉〉 is a

coindexing of C.

4. Indexing vs Functors

Let A be a set and let B be a non empty set. We see that the function from
A into B is a many sorted set indexed by A.

Let C, D be categories and let F be a function from the morphisms of C

into the morphisms of D. Then ObjF is a function from the objects of C into
the objects of D.

Let C be a category, let D be a categorial category, and let F be a functor
from C to D. Note that ObjF is category-yielding.

Let C be a category, let D be a categorial category, and let F be a functor
from C to D. Then pr2(F ) is a many sorted functor from ObjF · (the dom-map
of C) to ObjF · (the cod-map of C).

Next we state the proposition

(16) Let C be a category, and let D be a categorial category, and let F be a
functor from C to D. Then 〈〈ObjF, pr2(F )〉〉 is an indexing of C.

Let C be a category, let D be a categorial category, and let F be a functor
from C to D. The functor F -indexing of C yields an indexing of C and is
defined by:

(Def.15) F -indexing of C = 〈〈ObjF, pr2(F )〉〉.

One can prove the following propositions:

(17) Let C be a category, and let D be a categorial category, and let F be a
functor from C to D. Then D is a target category of F -indexing of C.

(18) Let C be a category, and let D be a categorial category, and let F be a
functor from C to D, and let T be a target category of F -indexing of C.

Then F = F -indexing of C -functor(C,T ).

(19) Let C be a category, and let D, E be categorial categories, and let F

be a functor from C to D, and let G be a functor from C to E. If F = G,

then F -indexing of C = G-indexing of C.

(20) For every category C and for every indexing I of C and for every target
category T of I holds pr2(I -functor(C,T )) = I2.



indexed category 335

(21) For every category C and for every indexing I of C and for every target
category T of I holds (I -functor(C,T ))-indexing of C = I.

5. Composing Indexings and Functors

Let C, D, E be categories, let F be a functor from C to D, and let I be an
indexing of E. Let us assume that Im F is a subcategory of E. The functor I ·F
yielding an indexing of C is defined by:

(Def.16) For every functor F ′ from C to E such that F ′ = F holds I · F =
((I -functor(E, rng I)) · F ′)-indexing of C.

Next we state several propositions:

(22) Let C, D1, D2, E be categories, and let I be an indexing of E, and
let F be a functor from C to D1, and let G be a functor from C to D2.
Suppose ImF is a subcategory of E and ImG is a subcategory of E and
F = G. Then I · F = I · G.

(23) Let C, D be categories, and let F be a functor from C to D, and
let I be an indexing of D, and let T be a target category of I. Then
I · F = ((I -functor(D,T )) · F )-indexing of C.

(24) Let C, D be categories, and let F be a functor from C to D, and let I

be an indexing of D. Then every target category of I is a target category
of I · F.

(25) Let C, D be categories, and let F be a functor from C to D, and let I

be an indexing of D, and let T be a target category of I. Then rng(I ·F )
is a subcategory of T .

(26) Let C, D, E be categories, and let F be a functor from C to D, and
let G be a functor from D to E, and let I be an indexing of E. Then
(I · G) · F = I · (G · F ).

Let C be a category, let I be an indexing of C, and let D be a categorial
category. Let us assume that D is a target category of I. Let E be a categorial
category and let F be a functor from D to E. The functor F · I yielding an
indexing of C is defined as follows:

(Def.17) For every target category T of I and for every functor G from
T to E such that T = D and G = F holds F · I = (G ·
(I -functor(C,T )))-indexing of C.

One can prove the following propositions:

(27) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D, E be categorial categories, and let F be
a functor from T to D, and let G be a functor from T to E. If F = G,

then F · I = G · I.

(28) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F be a
functor from T to D. Then ImF is a target category of F · I.



336 grzegorz bancerek

(29) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F be a
functor from T to D. Then D is a target category of F · I.

(30) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F be a
functor from T to D. Then rng(F · I) is a subcategory of ImF.

(31) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D, E be categorial categories, and let F

be a functor from T to D, and let G be a functor from D to E. Then
(G · F ) · I = G · (F · I).

Let C, D be categories, let I1 be an indexing of C, and let I2 be an indexing
of D. The functor I2 · I1 yielding an indexing of C is defined as follows:

(Def.18) I2 · I1 = I2 · (I1 -functor(C, rng I1)).

We now state several propositions:

(32) Let C be a category, and let D be a categorial category, and let I1

be an indexing of C, and let I2 be an indexing of D, and let T be a
target category of I1. If D is a target category of I1, then I2 · I1 =
I2 · (I1 -functor(C,T )).

(33) Let C be a category, and let D be a categorial category, and let I1

be an indexing of C, and let I2 be an indexing of D, and let T be a
target category of I2. If D is a target category of I1, then I2 · I1 =
(I2 -functor(D,T )) · I1.

(34) Let C, D be categories, and let F be a functor from C to D, and let
I be an indexing of D, and let T be a target category of I, and let E

be a categorial category, and let G be a functor from T to E. Then
(G · I) · F = G · (I · F ).

(35) Let C be a category, and let I be an indexing of C, and let T be a target
category of I, and let D be a categorial category, and let F be a functor
from T to D, and let J be an indexing of D. Then (J ·F ) · I = J · (F · I).

(36) Let C be a category, and let I be an indexing of C, and let T1 be a
target category of I, and let J be an indexing of T1, and let T2 be a target
category of J , and let D be a categorial category, and let F be a functor
from T2 to D. Then (F · J) · I = F · (J · I).

(37) Let C, D be categories, and let F be a functor from C to D, and let I

be an indexing of D, and let T be a target category of I, and let J be an
indexing of T . Then (J · I) · F = J · (I · F ).

(38) Let C be a category, and let I be an indexing of C, and let D be a
target category of I, and let J be an indexing of D, and let E be a target
category of J , and let K be an indexing of E. Then (K ·J) ·I = K ·(J ·I).



indexed category 337

References

[1] Grzegorz Bancerek. Categorial categories and slice categories. Formalized Mathematics,
5(2):157–165, 1996.

[2] Grzegorz Bancerek and Agata Darmochwa l. Comma category. Formalized Mathematics,
2(5):679–681, 1991.

[3] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized
Mathematics, 4(1):91–101, 1993.

[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.

[5] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czes law Byliński. Introduction to categories and functors. Formalized Mathematics,
1(2):409–420, 1990.

[7] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[8] Czes law Byliński. Opposite categories and contravariant functors. Formalized Mathe-
matics, 2(3):419–424, 1991.

[9] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[10] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[11] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Czes law Byliński. Subcategories and products of categories. Formalized Mathematics,

1(4):725–732, 1990.
[13] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. Lecture Notes in

Computer Science, 164:221–256, 1984.
[14] Ma lgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-

ematics, 5(1):61–65, 1996.
[15] Jaros law Kotowicz, Beata Madras, and Ma lgorzata Korolkiewicz. Basic notation of

universal algebra. Formalized Mathematics, 3(2):251–253, 1992.
[16] Beata Madras. Product of family of universal algebras. Formalized Mathematics,

4(1):103–108, 1993.
[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[18] Andrzej Tarlecki, Rod M. Burstall, and A. Goguen, Joseph. Some fundamental algebraic

tools for the semantics of computation: part 3. indexed categories. Theoretical Computer
Science, 91:239–264, 1991.

[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[20] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,
1(3):495–500, 1990.

[21] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[22] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.

[25] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 8, 1995


