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Summary. In the three preliminary sections to the article we
define two operations on finite sequences which seem to be of general
interest. The first is the cut operation that extracts a contiguous chunk
of a finite sequence from a position to a position. The second operation is
a glueing catenation that given two finite sequences catenates them with
removal of the first element of the second sequence. The main topic of the
article is to define an operation which for a given chain in a graph returns
the sequence of vertices through which the chain passes. We define the
exact conditions when such an operation is uniquely definable. This is
done with the help of the so called two-valued alternating finite sequences.
We also prove theorems about the existence of simple chains which are
subchains of a given chain. In order to do this we define the notion of a
finite subsequence of a typed finite sequence.
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1. Preliminaries

We adopt the following convention: p, q are finite sequences, X, Y are sets,
and i, k, l, m, n, r are natural numbers.

The scheme FinSegRng deals with natural numbers A, B, a unary functor F
yielding a set, and a unary predicate P, and states that:

{F(i) : A ≤ i ∧ i ≤ B ∧ P[i]} is finite
for all values of the parameters.

One can prove the following propositions:

(1) m+1 ≤ k and k ≤ n iff there exists a natural number i such that m ≤ i

and i < n and k = i + 1.

(2) If q = p
�
Seg n, then len q ≤ len p and for every i such that 1 ≤ i and

i ≤ len q holds p(i) = q(i).

(3) If X ⊆ Seg k and Y ⊆ dom SgmX, then SgmX · Sgm Y =
Sgmrng(Sgm X

�
Y ).

(4) For all natural numbers m, n holds {k : m ≤ k ∧ k ≤ m + n} = n+1.

(5) For every l such that 1 ≤ l and l ≤ n holds (Sgm{k1 : k1 ranges over
natural numbers, m + 1 ≤ k1 ∧ k1 ≤ m + n})(l) = m + l.

2. The cut operation for finite sequences

Let p be a finite sequence and let m, n be natural numbers. The functor
〈p(m), . . . , p(n)〉 yields a finite sequence and is defined by:

(Def.1) (i) len〈p(m), . . . , p(n)〉+m = n+1 and for every natural number i such
that i < len〈p(m), . . . , p(n)〉 holds 〈p(m), . . . , p(n)〉(i + 1) = p(m + i) if
1 ≤ m and m ≤ n + 1 and n ≤ len p,

(ii) 〈p(m), . . . , p(n)〉 = ε, otherwise.

We now state several propositions:

(6) If 1 ≤ m and m ≤ len p, then 〈p(m), . . . , p(m)〉 = 〈p(m)〉.

(7) 〈p(1), . . . , p(len p)〉 = p.

(8) If m ≤ n and n ≤ r and r ≤ len p, then 〈p(m + 1), . . . , p(n)〉 � 〈p(n +
1), . . . , p(r)〉 = 〈p(m + 1), . . . , p(r)〉.

(9) If 1 ≤ m and m ≤ len p, then 〈p(1), . . . , p(m)〉 � 〈p(m+1), . . . , p(len p)〉 =
p.

(10) If 1 ≤ m and m ≤ n and n ≤ len p, then 〈p(1), . . . , p(m)〉 � 〈p(m +
1), . . . , p(n)〉 � 〈p(n + 1), . . . , p(len p)〉 = p.

(11) rng〈p(m), . . . , p(n)〉 ⊆ rng p.

Let D be a set, let p be a finite sequence of elements of D, and let m, n be
natural numbers. Then 〈p(m), . . . , p(n)〉 is a finite sequence of elements of D.

Next we state the proposition
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(12) If p 6= ε and 1 ≤ m and m ≤ n and n ≤ len p, then 〈p(m), . . . , p(n)〉(1) =
p(m) and 〈p(m), . . . , p(n)〉(len〈p(m), . . . , p(n)〉) = p(n).

3. The glueing catenation of finite sequences

Let p, q be finite sequences. The functor p ��� q yielding a finite sequence is
defined as follows:

(Def.2) p ��� q = p � 〈q(2), . . . , q(len q)〉.

Next we state several propositions:

(13) If q 6= ε, then len(p ��� q) + 1 = len p + len q.

(14) If 1 ≤ k and k ≤ len p, then (p ��� q)(k) = p(k).

(15) If 1 ≤ k and k < len q, then (p ��� q)(len p + k) = q(k + 1).

(16) If 1 < len q, then (p ��� q)(len(p ��� q)) = q(len q).

(17) rng(p ��� q) ⊆ rng p ∪ rng q.

Let D be a set and let p, q be finite sequences of elements of D. Then p ��� q

is a finite sequence of elements of D.
Next we state the proposition

(18) If p 6= ε and q 6= ε and p(len p) = q(1), then rng(p ��� q) = rng p∪ rng q.

4. Two valued alternating finite sequences

A finite sequence is two-valued if:

(Def.3) card rng it = 2.

The following proposition is true

(19) p is two-valued iff len p > 1 and there exist arbitrary x, y such that
x 6= y and rng p = {x, y}.

A finite sequence is alternating if:

(Def.4) For every natural number i such that 1 ≤ i and i + 1 ≤ len it holds
it(i) 6= it(i + 1).

One can check that there exists a finite sequence which is two-valued and
alternating.

In the sequel a, a1, a2 are two-valued alternating finite sequences.
One can prove the following propositions:

(20) If len a1 = len a2 and rng a1 = rng a2 and a1(1) = a2(1), then a1 = a2.

(21) If a1 6= a2 and len a1 = len a2 and rng a1 = rng a2, then for every i such
that 1 ≤ i and i ≤ len a1 holds a1(i) 6= a2(i).

(22) If a1 6= a2 and len a1 = len a2 and rng a1 = rng a2, then for every a such
that len a = len a1 and rng a = rng a1 holds a = a1 or a = a2.



300 yatsuka nakamura and piotr rudnicki

(23) If X 6= Y and n > 1, then there exists a1 such that rng a1 = {X,Y }
and len a1 = n and a1(1) = X.

5. Finite subsequence of finite sequences

Let us consider X and let f1 be a finite sequence of elements of X. A finite
subsequence is called a FinSubsequence of f1 if:

(Def.5) It ⊆ f1.

In the sequel s1 will denote a finite subsequence.
The following propositions are true:

(24) If s1 is a finite sequence, then Seq s1 = s1.

(25) If rng p ⊆ dom s1, then s1 · p is a finite sequence.

(26) Let f be a finite subsequence and let g, h, f2, f3, f4 be finite sequences.
If rng g ⊆ dom f and rng h ⊆ dom f and f2 = f · g and f3 = f · h and
f4 = f · (g � h), then f4 = f2 � f3.

We follow the rules: f1, f5, f6 will be finite sequences of elements of X and
f7, f8 will be FinSubsequence of f1.

We now state four propositions:

(27) dom f7 ⊆ dom f1 and rng f7 ⊆ rng f1.

(28) f1 is a FinSubsequence of f1.

(29) f7

�
Y is a FinSubsequence of f1.

(30) For every FinSubsequence f9 of f5 such that Seq f7 = f5 and Seq f9 = f6

and f8 = f7

�
rng(Sgm dom f7

�
dom f9) holds Seq f8 = f6.

6. Vertex sequences induced by chains

In the sequel G is a graph.
Let us consider G. One can verify that the vertices of G is non empty.
We follow the rules: v, v1, v2, v3, v4 will denote elements of the vertices of

G and e will be arbitrary.
We now state two propositions:

(31) If e joins v1 with v2, then e joins v2 with v1.

(32) If e joins v1 with v2 and e joins v3 with v4, then v1 = v3 and v2 = v4 or
v1 = v4 and v2 = v3.

Let us consider G. We see that the chain of G is a finite sequence of elements
of the edges of G.

Let us consider G. A path of G is a path-like chain of G.
We follow the rules: v5, v6, v7 will denote finite sequences of elements of the

vertices of G and c, c1, c2 will denote chains of G.
The following proposition is true
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(33) ε is a chain of G.

Let us consider G. One can check that there exists a chain of G which is
empty.

Let us consider G, X. The functor (G) -VSet(X) yields a set and is defined
as follows:

(Def.6) (G) -VSet(X) = {v :
∨

e : element of the edges of G
e ∈ X ∧ (v = (the source

of G)(e) ∨ v = (the target of G)(e))}.

Let us consider G, v5 and let c be a finite sequence. We say that v5 is vertex
sequence of c if and only if:

(Def.7) len v5 = len c + 1 and for every n such that 1 ≤ n and n ≤ len c holds
c(n) joins πnv5 with πn+1v5.

One can prove the following four propositions:

(34) If c 6= ε and v5 is vertex sequence of c, then (G) -VSet(rng c) = rng v5.

(35) 〈v〉 is vertex sequence of ε.

(36) There exists v5 which is vertex sequence of c.

(37) Suppose c 6= ε and v6 is vertex sequence of c and v7 is vertex sequence
of c and v6 6= v7. Then v6(1) 6= v7(1) and for every v5 such that v5 is
vertex sequence of c holds v5 = v6 or v5 = v7.

Let us consider G and let c be a finite sequence. We say that c alternates
vertices in G if and only if:

(Def.8) len c ≥ 1 and (G) -VSet(rng c) = 2 and for every n such that n ∈ dom c

holds (the source of G)(c(n)) 6= (the target of G)(c(n)).

One can prove the following propositions:

(38) If c alternates vertices in G and v5 is vertex sequence of c, then for every
k such that k ∈ dom c holds v5(k) 6= v5(k + 1).

(39) Suppose c alternates vertices in G and v5 is vertex sequence of c. Then
rng v5 = {(the source of G)(c(1)), (the target of G)(c(1))}.

(40) Suppose c alternates vertices in G and v5 is vertex sequence of c. Then
v5 is a two-valued alternating finite sequence.

(41) Suppose c alternates vertices in G. Then there exist v6, v7 such that
(i) v6 6= v7,

(ii) v6 is vertex sequence of c,
(iii) v7 is vertex sequence of c, and
(iv) for every v5 such that v5 is vertex sequence of c holds v5 = v6 or

v5 = v7.

(42) Suppose v5 is vertex sequence of c. Then the vertices of G = 1 or c 6= ε

and c does not alternate vertices in G if and only if for every v6 such that
v6 is vertex sequence of c holds v6 = v5.

Let us consider G, c. Let us assume that the vertices of G = 1 or c 6= ε and
c does not alternate vertices in G. The functor vertex-seq(c) yielding a finite
sequence of elements of the vertices of G is defined as follows:
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(Def.9) vertex-seq(c) is vertex sequence of c.

We now state several propositions:

(43) If v5 is vertex sequence of c and c1 = c
�
Seg n and v6 = v5

�
Seg(n + 1),

then v6 is vertex sequence of c1.

(44) If 1 ≤ m and m ≤ n and n ≤ len c and q = 〈c(m), . . . , c(n)〉, then q is a
chain of G.

(45) If 1 ≤ m and m ≤ n and n ≤ len c and c1 = 〈c(m), . . . , c(n)〉 and v5

is vertex sequence of c and v6 = 〈v5(m), . . . , v5(n + 1)〉, then v6 is vertex
sequence of c1.

(46) If v6 is vertex sequence of c1 and v7 is vertex sequence of c2 and
v6(len v6) = v7(1), then c1 � c2 is a chain of G.

(47) Suppose v6 is vertex sequence of c1 and v7 is vertex sequence of c2 and
v6(len v6) = v7(1) and c = c1 � c2 and v5 = v6 ��� v7. Then v5 is vertex
sequence of c.

7. Vertex sequences induced by simple chains, paths and ordered

chains

Let us consider G. A chain of G is simple if it satisfies the condition (Def.10).

(Def.10) There exists v5 such that v5 is vertex sequence of it and for all n, m

such that 1 ≤ n and n < m and m ≤ len v5 and v5(n) = v5(m) holds
n = 1 and m = len v5.

Let us consider G. One can check that there exists a chain of G which is
simple.

In the sequel s2 denotes a simple chain of G.
Next we state several propositions:

(49)2 s2

�
Seg n is a simple chain of G.

(50) If 2 < len s2 and v6 is vertex sequence of s2 and v7 is vertex sequence
of s2, then v6 = v7.

(51) If v5 is vertex sequence of s2, then for all n, m such that 1 ≤ n and
n < m and m ≤ len v5 and v5(n) = v5(m) holds n = 1 and m = len v5.

(52) Suppose c is not a simple chain of G and v5 is vertex sequence of c. Then
there exists a FinSubsequence f10 of c and there exists a FinSubsequence
f11 of v5 and there exist c1, v6 such that len c1 < len c and v6 is vertex
sequence of c1 and len v6 < len v5 and v5(1) = v6(1) and v5(len v5) =
v6(len v6) and Seq f10 = c1 and Seq f11 = v6.

(53) Suppose v5 is vertex sequence of c. Then there exists a FinSubsequence
f10 of c and there exists a FinSubsequence f11 of v5 and there exist s2, v6

such that Seq f10 = s2 and Seq f11 = v6 and v6 is vertex sequence of s2

and v5(1) = v6(1) and v5(len v5) = v6(len v6).

2The proposition (48) has been removed.
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Let us consider G. One can check that every chain of G which is empty is
also path-like.

We now state the proposition

(54) If p is a path of G, then p
�
Seg n is a path of G.

Let us consider G. One can verify that there exists a path of G which is
simple.

We now state two propositions:

(55) If 2 < len s2, then s2 is a path of G.

(56) s2 is a path of G iff len s2 = 0 or len s2 = 1 or s2(1) 6= s2(2).

Let us consider G. Observe that every chain of G which is empty is also
oriented.

Let us consider G and let o1 be an oriented chain of G. Let us assume that
o1 6= ε. The functor vertex-seq(o1) yields a finite sequence of elements of the
vertices of G and is defined as follows:

(Def.11) vertex-seq(o1) is vertex sequence of o1 and (vertex-seq(o1))(1) = (the
source of G)(o1(1)).
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