Vertex Sequences Induced by Chains ${ }^{1}$

Yatsuka Nakamura
Shinshu University
Department of Information Engineering
Nagano, Japan
Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton, Alberta, Canada

Abstract

Summary. In the three preliminary sections to the article we define two operations on finite sequences which seem to be of general interest. The first is the cut operation that extracts a contiguous chunk of a finite sequence from a position to a position. The second operation is a glueing catenation that given two finite sequences catenates them with removal of the first element of the second sequence. The main topic of the article is to define an operation which for a given chain in a graph returns the sequence of vertices through which the chain passes. We define the exact conditions when such an operation is uniquely definable. This is done with the help of the so called two-valued alternating finite sequences. We also prove theorems about the existence of simple chains which are subchains of a given chain. In order to do this we define the notion of a finite subsequence of a typed finite sequence.

MML Identifier: GRAPH_2.

The articles [16], [20], [9], [21], [6], [7], [4], [5], [19], [15], [8], [3], [1], [14], [10], [11], [2], [18], [17], [12], and [13] provide the notation and terminology for this paper.

[^0]
1. Preliminaries

We adopt the following convention: p, q are finite sequences, X, Y are sets, and i, k, l, m, n, r are natural numbers.

The scheme FinSegRng deals with natural numbers \mathcal{A}, \mathcal{B}, a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(i): \mathcal{A} \leq i \wedge i \leq \mathcal{B} \wedge \mathcal{P}[i]\}$ is finite
for all values of the parameters.
One can prove the following propositions:
(1) $\quad m+1 \leq k$ and $k \leq n$ iff there exists a natural number i such that $m \leq i$ and $i<n$ and $k=i+1$.
(2) If $q=p$ 「 $\operatorname{Seg} n$, then len $q \leq \operatorname{len} p$ and for every i such that $1 \leq i$ and $i \leq \operatorname{len} q$ holds $p(i)=q(i)$.
(3) If $X \subseteq \operatorname{Seg} k$ and $Y \subseteq \operatorname{dom} \operatorname{Sgm} X$, then $\operatorname{Sgm} X \cdot \operatorname{Sgm} Y=$ $\operatorname{Sgm} \mathrm{rng}(\operatorname{Sgm} X \upharpoonright Y)$.
(4) For all natural numbers m, n holds $\overline{\overline{\{k: m \leq k \wedge k \leq m+n\}}}=n+1$.
(5) For every l such that $1 \leq l$ and $l \leq n$ holds ($\operatorname{Sgm}\left\{k_{1}: k_{1}\right.$ ranges over natural numbers, $\left.\left.m+1 \leq k_{1} \wedge k_{1} \leq m+n\right\}\right)(l)=m+l$.

2. The cut operation for finite sequences

Let p be a finite sequence and let m, n be natural numbers. The functor $\langle p(m), \ldots, p(n)\rangle$ yields a finite sequence and is defined by:
(Def.1) (i) $\quad \operatorname{len}\langle p(m), \ldots, p(n)\rangle+m=n+1$ and for every natural number i such that $i<\operatorname{len}\langle p(m), \ldots, p(n)\rangle$ holds $\langle p(m), \ldots, p(n)\rangle(i+1)=p(m+i)$ if $1 \leq m$ and $m \leq n+1$ and $n \leq \operatorname{len} p$,
(ii) $\langle p(m), \ldots, p(n)\rangle=\varepsilon$, otherwise.

We now state several propositions:
(6) If $1 \leq m$ and $m \leq \operatorname{len} p$, then $\langle p(m), \ldots, p(m)\rangle=\langle p(m)\rangle$.
$\langle p(1), \ldots, p(\operatorname{len} p)\rangle=p$.
(8) If $m \leq n$ and $n \leq r$ and $r \leq \operatorname{len} p$, then $\langle p(m+1), \ldots, p(n)\rangle{ }^{\wedge}\langle p(n+$ 1), $\ldots, p(r)\rangle=\langle p(m+1), \ldots, p(r)\rangle$.
(9) If $1 \leq m$ and $m \leq \operatorname{len} p$, then $\langle p(1), \ldots, p(m)\rangle \wedge\langle p(m+1), \ldots, p(\operatorname{len} p)\rangle=$ p.
(10) If $1 \leq m$ and $m \leq n$ and $n \leq \operatorname{len} p$, then $\langle p(1), \ldots, p(m)\rangle^{\wedge}\langle p(m+$ 1) $, \ldots, p(n)\rangle \wedge\langle p(n+1), \ldots, p(\operatorname{len} p)\rangle=p$.
(11) $\quad \operatorname{rng}\langle p(m), \ldots, p(n)\rangle \subseteq \operatorname{rng} p$.

Let D be a set, let p be a finite sequence of elements of D, and let m, n be natural numbers. Then $\langle p(m), \ldots, p(n)\rangle$ is a finite sequence of elements of D.

Next we state the proposition
(12)

If $p \neq \varepsilon$ and $1 \leq m$ and $m \leq n$ and $n \leq \operatorname{len} p$, then $\langle p(m), \ldots, p(n)\rangle(1)=$ $p(m)$ and $\langle p(m), \ldots, p(n)\rangle(\operatorname{len}\langle p(m), \ldots, p(n)\rangle)=p(n)$.

3. The glueing catenation of finite sequences

Let p, q be finite sequences. The functor $p \propto q$ yielding a finite sequence is defined as follows:
(Def.2) $\quad p \propto q=p^{\wedge}\langle q(2), \ldots, q(\operatorname{len} q)\rangle$.
Next we state several propositions:
(13) If $q \neq \varepsilon$, then $\operatorname{len}(p \propto q)+1=\operatorname{len} p+\operatorname{len} q$.
(14) If $1 \leq k$ and $k \leq \operatorname{len} p$, then $(p \propto q)(k)=p(k)$.
(15) If $1 \leq k$ and $k<\operatorname{len} q$, then $(p \propto q)(\operatorname{len} p+k)=q(k+1)$.
(16) If $1<\operatorname{len} q$, then $(p \propto q)(\operatorname{len}(p \propto q))=q(\operatorname{len} q)$.
(17) $\quad \operatorname{rng}(p \propto q) \subseteq \operatorname{rng} p \cup \operatorname{rng} q$.

Let D be a set and let p, q be finite sequences of elements of D. Then $p \sim q$ is a finite sequence of elements of D.

Next we state the proposition
(18) If $p \neq \varepsilon$ and $q \neq \varepsilon$ and $p(\operatorname{len} p)=q(1)$, then $\operatorname{rng}(p \propto q)=\operatorname{rng} p \cup \operatorname{rng} q$.

4. Two valued alternating finite sequences

A finite sequence is two-valued if:
(Def.3) card rng it $=2$.
The following proposition is true
(19) p is two-valued iff len $p>1$ and there exist arbitrary x, y such that $x \neq y$ and $\operatorname{rng} p=\{x, y\}$.
A finite sequence is alternating if:
(Def.4) For every natural number i such that $1 \leq i$ and $i+1 \leq$ len it holds $\operatorname{it}(i) \neq \operatorname{it}(i+1)$.
One can check that there exists a finite sequence which is two-valued and alternating.

In the sequel a, a_{1}, a_{2} are two-valued alternating finite sequences.
One can prove the following propositions:
(20) If len $a_{1}=\operatorname{len} a_{2}$ and $\operatorname{rng} a_{1}=\operatorname{rng} a_{2}$ and $a_{1}(1)=a_{2}(1)$, then $a_{1}=a_{2}$.
(21) If $a_{1} \neq a_{2}$ and len $a_{1}=\operatorname{len} a_{2}$ and $\operatorname{rng} a_{1}=\operatorname{rng} a_{2}$, then for every i such that $1 \leq i$ and $i \leq \operatorname{len} a_{1}$ holds $a_{1}(i) \neq a_{2}(i)$.
(22) If $a_{1} \neq a_{2}$ and len $a_{1}=\operatorname{len} a_{2}$ and $\operatorname{rng} a_{1}=\operatorname{rng} a_{2}$, then for every a such that len $a=\operatorname{len} a_{1}$ and $\operatorname{rng} a=\operatorname{rng} a_{1}$ holds $a=a_{1}$ or $a=a_{2}$.
(23) If $X \neq Y$ and $n>1$, then there exists a_{1} such that $\operatorname{rng} a_{1}=\{X, Y\}$ and len $a_{1}=n$ and $a_{1}(1)=X$.

5. Finite subsequence of finite sequences

Let us consider X and let f_{1} be a finite sequence of elements of X. A finite subsequence is called a FinSubsequence of f_{1} if:
(Def.5) \quad It $\subseteq f_{1}$.
In the sequel s_{1} will denote a finite subsequence.
The following propositions are true:
(24) If s_{1} is a finite sequence, then Seq $s_{1}=s_{1}$.
(25) If $\operatorname{rng} p \subseteq \operatorname{dom} s_{1}$, then $s_{1} \cdot p$ is a finite sequence.
(26) Let f be a finite subsequence and let $g, h, f_{2}, f_{3}, f_{4}$ be finite sequences. If $\operatorname{rng} g \subseteq \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} f$ and $f_{2}=f \cdot g$ and $f_{3}=f \cdot h$ and $f_{4}=f \cdot(g \wedge h)$, then $f_{4}=f_{2} \wedge f_{3}$.
We follow the rules: f_{1}, f_{5}, f_{6} will be finite sequences of elements of X and f_{7}, f_{8} will be FinSubsequence of f_{1}.

We now state four propositions:
(27) $\quad \operatorname{dom} f_{7} \subseteq \operatorname{dom} f_{1}$ and $\operatorname{rng} f_{7} \subseteq \operatorname{rng} f_{1}$.
(28) f_{1} is a FinSubsequence of f_{1}.
(29) $\quad f_{7} \upharpoonright Y$ is a FinSubsequence of f_{1}.
(30) For every FinSubsequence f_{9} of f_{5} such that Seq $f_{7}=f_{5}$ and Seq $f_{9}=f_{6}$ and $f_{8}=f_{7} \upharpoonright \operatorname{rng}\left(\operatorname{Sgm} \operatorname{dom} f_{7} \upharpoonright \operatorname{dom} f_{9}\right)$ holds $\operatorname{Seq} f_{8}=f_{6}$.

6. Vertex sequences induced by chains

In the sequel G is a graph.
Let us consider G. One can verify that the vertices of G is non empty.
We follow the rules: $v, v_{1}, v_{2}, v_{3}, v_{4}$ will denote elements of the vertices of G and e will be arbitrary.

We now state two propositions:
(31) If e joins v_{1} with v_{2}, then e joins v_{2} with v_{1}.
(32) If e joins v_{1} with v_{2} and e joins v_{3} with v_{4}, then $v_{1}=v_{3}$ and $v_{2}=v_{4}$ or $v_{1}=v_{4}$ and $v_{2}=v_{3}$.
Let us consider G. We see that the chain of G is a finite sequence of elements of the edges of G.

Let us consider G. A path of G is a path-like chain of G.
We follow the rules: v_{5}, v_{6}, v_{7} will denote finite sequences of elements of the vertices of G and c, c_{1}, c_{2} will denote chains of G.

The following proposition is true
(33) ε is a chain of G.

Let us consider G. One can check that there exists a chain of G which is empty.

Let us consider G, X. The functor $(G)-\operatorname{VSet}(X)$ yields a set and is defined as follows:
(Def.6) $(G)-\operatorname{VSet}(X)=\left\{v: \bigvee_{e: \text { element of the edges of } G} e \in X \wedge(v=\right.$ (the source of $G)(e) \vee v=($ the target of $G)(e))\}$.
Let us consider G, v_{5} and let c be a finite sequence. We say that v_{5} is vertex sequence of c if and only if:
(Def.7) len $v_{5}=\operatorname{len} c+1$ and for every n such that $1 \leq n$ and $n \leq \operatorname{len} c$ holds $c(n)$ joins $\pi_{n} v_{5}$ with $\pi_{n+1} v_{5}$.
One can prove the following four propositions:
(34) If $c \neq \varepsilon$ and v_{5} is vertex sequence of c, then $(G)-\operatorname{VSet}(\operatorname{rng} c)=\operatorname{rng} v_{5}$.
(36) There exists v_{5} which is vertex sequence of c.
(37) Suppose $c \neq \varepsilon$ and v_{6} is vertex sequence of c and v_{7} is vertex sequence of c and $v_{6} \neq v_{7}$. Then $v_{6}(1) \neq v_{7}(1)$ and for every v_{5} such that v_{5} is vertex sequence of c holds $v_{5}=v_{6}$ or $v_{5}=v_{7}$.
Let us consider G and let c be a finite sequence. We say that c alternates vertices in G if and only if:
(Def.8) $\quad \operatorname{len} c \geq 1$ and $\overline{\overline{(G)-V S e t(\operatorname{rng} c)}}=2$ and for every n such that $n \in \operatorname{dom} c$ holds (the source of $G)(c(n)) \neq($ the target of $G)(c(n))$.
One can prove the following propositions:
(38) If c alternates vertices in G and v_{5} is vertex sequence of c, then for every k such that $k \in \operatorname{dom} c$ holds $v_{5}(k) \neq v_{5}(k+1)$.
(39) Suppose c alternates vertices in G and v_{5} is vertex sequence of c. Then $\operatorname{rng} v_{5}=\{($ the source of $G)(c(1)),($ the target of $G)(c(1))\}$.
(40) Suppose c alternates vertices in G and v_{5} is vertex sequence of c. Then v_{5} is a two-valued alternating finite sequence.
(41) Suppose c alternates vertices in G. Then there exist v_{6}, v_{7} such that
(i) $v_{6} \neq v_{7}$,
(ii) $\quad v_{6}$ is vertex sequence of c,
(iii) v_{7} is vertex sequence of c, and
(iv) for every v_{5} such that v_{5} is vertex sequence of c holds $v_{5}=v_{6}$ or $v_{5}=v_{7}$.
(42) Suppose v_{5} is vertex sequence of c. Then $\overline{\overline{\text { the vertices of } G}}=1$ or $c \neq \varepsilon$ and c does not alternate vertices in G if and only if for every v_{6} such that v_{6} is vertex sequence of c holds $v_{6}=v_{5}$.
Let us consider G, c. Let us assume that $\overline{\overline{\text { the vertices of } G}}=1$ or $c \neq \varepsilon$ and c does not alternate vertices in G. The functor vertex-seq (c) yielding a finite sequence of elements of the vertices of G is defined as follows:
(Def.9) vertex-seq (c) is vertex sequence of c.
We now state several propositions:
(43) If v_{5} is vertex sequence of c and $c_{1}=c \upharpoonright \operatorname{Seg} n$ and $v_{6}=v_{5} \upharpoonright \operatorname{Seg}(n+1)$, then v_{6} is vertex sequence of c_{1}.
(44) If $1 \leq m$ and $m \leq n$ and $n \leq \operatorname{len} c$ and $q=\langle c(m), \ldots, c(n)\rangle$, then q is a chain of G.
(45) If $1 \leq m$ and $m \leq n$ and $n \leq \operatorname{len} c$ and $c_{1}=\langle c(m), \ldots, c(n)\rangle$ and v_{5} is vertex sequence of c and $v_{6}=\left\langle v_{5}(m), \ldots, v_{5}(n+1)\right\rangle$, then v_{6} is vertex sequence of c_{1}.
(46) If v_{6} is vertex sequence of c_{1} and v_{7} is vertex sequence of c_{2} and $v_{6}\left(\operatorname{len} v_{6}\right)=v_{7}(1)$, then $c_{1}{ }^{\wedge} c_{2}$ is a chain of G.
(47) Suppose v_{6} is vertex sequence of c_{1} and v_{7} is vertex sequence of c_{2} and $v_{6}\left(\operatorname{len} v_{6}\right)=v_{7}(1)$ and $c=c_{1} \curvearrowleft c_{2}$ and $v_{5}=v_{6} \propto v_{7}$. Then v_{5} is vertex sequence of c.

7. Vertex sequences induced by simple chains, paths and ordered CHAINS

Let us consider G. A chain of G is simple if it satisfies the condition (Def.10).
(Def.10) There exists v_{5} such that v_{5} is vertex sequence of it and for all n, m such that $1 \leq n$ and $n<m$ and $m \leq \operatorname{len} v_{5}$ and $v_{5}(n)=v_{5}(m)$ holds $n=1$ and $m=\operatorname{len} v_{5}$.
Let us consider G. One can check that there exists a chain of G which is simple.

In the sequel s_{2} denotes a simple chain of G.
Next we state several propositions:
$(49)^{2} \quad s_{2} \upharpoonright \operatorname{Seg} n$ is a simple chain of G.
(50) If $2<\operatorname{len} s_{2}$ and v_{6} is vertex sequence of s_{2} and v_{7} is vertex sequence of s_{2}, then $v_{6}=v_{7}$.
(51) If v_{5} is vertex sequence of s_{2}, then for all n, m such that $1 \leq n$ and $n<m$ and $m \leq \operatorname{len} v_{5}$ and $v_{5}(n)=v_{5}(m)$ holds $n=1$ and $m=\operatorname{len} v_{5}$.
(52) Suppose c is not a simple chain of G and v_{5} is vertex sequence of c. Then there exists a FinSubsequence f_{10} of c and there exists a FinSubsequence f_{11} of v_{5} and there exist c_{1}, v_{6} such that len $c_{1}<\operatorname{len} c$ and v_{6} is vertex sequence of c_{1} and len $v_{6}<\operatorname{len} v_{5}$ and $v_{5}(1)=v_{6}(1)$ and $v_{5}\left(\operatorname{len} v_{5}\right)=$ $v_{6}\left(\operatorname{len} v_{6}\right)$ and $\operatorname{Seq} f_{10}=c_{1}$ and $\operatorname{Seq} f_{11}=v_{6}$.
(53) Suppose v_{5} is vertex sequence of c. Then there exists a FinSubsequence f_{10} of c and there exists a FinSubsequence f_{11} of v_{5} and there exist s_{2}, v_{6} such that Seq $f_{10}=s_{2}$ and Seq $f_{11}=v_{6}$ and v_{6} is vertex sequence of s_{2} and $v_{5}(1)=v_{6}(1)$ and $v_{5}\left(\operatorname{len} v_{5}\right)=v_{6}\left(\operatorname{len} v_{6}\right)$.

[^1]Let us consider G. One can check that every chain of G which is empty is also path-like.

We now state the proposition
(54) If p is a path of G, then $p \upharpoonright \operatorname{Seg} n$ is a path of G.

Let us consider G. One can verify that there exists a path of G which is simple.

We now state two propositions:
(55) If $2<$ len s_{2}, then s_{2} is a path of G.
(56) s_{2} is a path of G iff len $s_{2}=0$ or len $s_{2}=1$ or $s_{2}(1) \neq s_{2}(2)$.

Let us consider G. Observe that every chain of G which is empty is also oriented.

Let us consider G and let o_{1} be an oriented chain of G. Let us assume that $o_{1} \neq \varepsilon$. The functor vertex-seq $\left(o_{1}\right)$ yields a finite sequence of elements of the vertices of G and is defined as follows:
(Def.11) vertex-seq $\left(o_{1}\right)$ is vertex sequence of o_{1} and (vertex-seq $\left.\left(o_{1}\right)\right)(1)=$ (the source of $G)\left(o_{1}(1)\right)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[20] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 13, 1995

[^0]: ${ }^{1}$ This work was partially supported by Shinshu Endowment for Information Science, NSERC Grant OGP9207 and JSTF award 651-93-S009.

[^1]: ${ }^{2}$ The proposition (48) has been removed.

