More on Segments on a Go-Board

Andrzej Trybulec
Warsaw University
Białystok

Summary. We continue the preparatory work for the Jordan Curve Theorem.

MML Identifier: GOBOARD8.

The terminology and notation used here are introduced in the following articles: [20], [23], [22], [8], [2], [18], [16], [1], [4], [3], [6], [21], [9], [10], [17], [24], [5], [7], [11], [12], [14], [19], [15], and [13].

We adopt the following rules: i, j, k will be natural numbers, p will be a point of $\mathcal{E}_{\mathrm{T}}^{2}$, and f will be a non constant standard special circular sequence.

One can prove the following propositions:
(1) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+1, j}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+1, j+2}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+1, j+2}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i, j+1}+(\text { the Go-board of } f)_{i+1, j+2}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(2) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\quad \pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=(\text { the Go-board of } f)_{i+2, j+1}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+1, j+2}$ or $\pi_{k+2} f=$ (the Go-board of $\left.f\right)_{i+2, j+1}$ and $\pi_{k} f=$ (the Goboard of $f)_{i+1, j+2}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.\left.f)_{i, j+1}+(\text { the Go-board of } f)_{i+1, j+2}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(3) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+2, j+1}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+1, j}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i+2, j+1}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+1, j}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.\left.f)_{i, j+1}+(\text { the Go-board of } f)_{i+1, j+2}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(4) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i, j+1}$, and
(vi) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+2}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i, j+2}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right)^{\frac{1}{2}} \cdot((\right.$ the Go-board of $\left.f)_{i, j+1}+(\text { the Go-board of } f)_{i+1, j+2}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(5) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j+1}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+1, j+2}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+1, j+2}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i+1, j}+(\text { the Go-board of } f)_{i+2, j+1}\right), \frac{1}{2} \cdot((\right.$ the
Go-board of $\left.f)_{i+1, j+1}+(\text { the Go-board of } f)_{i+2, j+2}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(6) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+2 \leq$ width the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j}$. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i+1, j}+(\text { the Go-board of } f)_{i+2, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.\left.f)_{i+1, j+1}+(\text { the Go-board of } f)_{i+2, j+2}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(7) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1,1}$, and
(iv) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i+2,1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1,2}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i+2,1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i+1,2}$. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, 1}+(\text { the Go-board of } f)_{i+1,1}\right)-[0,1], \frac{1}{2}\right.$. $\left.\left((\text { the Go-board of } f)_{i, 1}+(\text { the Go-board of } f)_{i+1,2}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(8) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1,1}$, and
(iv) $\pi_{k} f=(\text { the Go-board of } f)_{i, 1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1,2}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i, 1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i+1,2}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i+1,1}+(\text { the Go-board of } f)_{i+2,1}\right)-[0\right.$, 1], $\left.\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i+1,1}+(\text { the Go-board of } f)_{i+2,2}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(9) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1 \text {, width the Go-board of } f}$, and
(iv) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+2 \text {, width the Go-board of } f \text { and } \pi_{k+2} f=}=$ (the Go-board of $f)_{i+1, \text { width the Go-board of } f-11}$ or $\pi_{k+2} f=$ (the Goboard of $f)_{i+2 \text {, width the Go-board of } f}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+1, \text { width the }}$ Go-board of $f-^{\prime} 1$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i \text {,width the Go-board of } f-^{\prime} 1}+(\right.\right.$ the Go-board of $\left.f)_{i+1 \text {,width the Go-board of } f}\right), \frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i \text {,width the }}\right.$ Go-board of $f+$ (the Go-board of $\left.f)_{i+1 \text {, width the Go-board of } f}\right)+[0,1]$) misses $\widetilde{\mathcal{L}}(f)$.
(10) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i. Suppose that
(i) $1 \leq i$,
(ii) $i+2 \leq$ len the Go-board of f,
(iii) $\quad \pi_{k+1} f=(\text { the Go-board of } f)_{i+1 \text {, width the Go-board of } f}$, and
(iv) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i \text {,width the Go-board of } f \text { and } \pi_{k+2} f=}=$ (the Go-board of $f)_{i+1 \text {, width the Go-board of } f-^{\prime} 1}$ or $\pi_{k+2} f=$ (the Goboard of $f)_{i \text {,width the Go-board of } f}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+1 \text {, width the }}$ Go-board of $f-^{\prime} 1$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i+1 \text {, width the }}\right.\right.$ Go-board of $f-^{\prime} 1+($ the Go-board of $\left.f)_{i+2 \text {, width the Go-board of } f}\right), \frac{1}{2}$. ($(\text { the Go-board of } f)_{i+1, \text { width the Go-board of } f} \widetilde{\sim}$ (the Go-board of $\left.f)_{i+2 \text {, width the Go-board of } f}\right)+[0,1]$) misses $\widetilde{\mathcal{L}}(f)$.
(11) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given i, j. Suppose that
(i) $1 \leq j$,
(ii) $j+1 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j+1}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+2, j+1}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+2, j+1}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i+1, j}+(\text { the Go-board of } f)_{i+2, j+1}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(12) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+1, j+2}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+2, j+1}$ or $\pi_{k+2} f=$ (the Go-board of $\left.f\right)_{i+1, j+2}$ and $\pi_{k} f=$ (the Goboard of $f)_{i+2, j+1}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i+1, j}+(\text { the Go-board of } f)_{i+2, j+1}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(13) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+1, j+2}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i, j+1}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j+2}$ and $\pi_{k} f=$ (the Go-board of $f)_{i, j+1}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i+1, j}+(\text { the Go-board of } f)_{i+2, j+1}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(14) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+1 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j}$, and
(vi) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+2, j}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i+2, j}$. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j+1}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i+1, j}+(\text { the Go-board of } f)_{i+2, j+1}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(15) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+1, j}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+2, j+1}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k} f=$ (the Go-board of $f)_{i+2, j+1}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j+1}+(\text { the Go-board of } f)_{i+1, j+2}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i+1, j+1}+(\text { the Go-board of } f)_{i+2, j+2}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(16) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j, i. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $1 \leq i$,
(iv) $i+2 \leq$ len the Go-board of f,
(v) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+1}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i, j+1}$. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j+1}+(\text { the Go-board of } f)_{i+1, j+2}\right), \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{i+1, j+1}+(\text { the Go-board of } f)_{i+2, j+2}\right)$) misses $\widetilde{\mathcal{L}}(f)$.
(17) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{1, j+1}$, and
(iv) $\quad \pi_{k} f=(\text { the Go-board of } f)_{1, j+2}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{2, j+1}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{1, j+2}$ and $\pi_{k} f=(\text { the Go-board of } f)_{2, j+1}$. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1, j}+(\text { the Go-board of } f)_{1, j+1}\right)-[1,0], \frac{1}{2}\right.$. $\left.\left((\text { the Go-board of } f)_{1, j}+(\text { the Go-board of } f)_{2, j+1}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(18) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{1, j+1}$, and
(iv) $\pi_{k} f=(\text { the Go-board of } f)_{1, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{2, j+1}$ or $\pi_{k+2} f=(\text { the Go-board of } f)_{1, j}$ and $\pi_{k} f=(\text { the Go-board of } f)_{2, j+1}$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1, j+1}+(\text { the Go-board of } f)_{1, j+2}\right)-[1\right.$, $\left.0], \frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1, j+1}+(\text { the Go-board of } f)_{2, j+2}\right)\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(19) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{\text {len the Go-board of } f, j+1}$, and
(iv) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{\text {len the Go-board of } f, j+2}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{\text {len the Go-board of } f-^{\prime} 1, j+1}$ or $\pi_{k+2} f=$ (the Go-
board of $f)_{\text {len the Go-board of } f, j+2}$ and $\pi_{k} f=$ (the Go-board of $f)_{\text {len the }}$ Go-board of $f-^{\prime} 1, j+1$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the Go-board of } f-^{\prime} 1, j}+(\right.\right.$ the Go-board of $\left.f)_{\text {len the Go-board of } f, j+1}\right), \frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the Go-board of } f, j}+(\right.$ the

(20) Given k. Suppose $1 \leq k$ and $k+2 \leq \operatorname{len} f$. Given j. Suppose that
(i) $1 \leq j$,
(ii) $j+2 \leq$ width the Go-board of f,
(iii) $\pi_{k+1} f=(\text { the Go-board of } f)_{\text {len the Go-board of } f, j+1}$, and
(iv) $\pi_{k} f=$ (the Go-board of $\left.f\right)_{\text {len the Go-board of } f, j}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{\text {len the Go-board of } f-^{\prime} 1, j+1}$ or $\pi_{k+2} f=$ (the Goboard of $f)_{\text {len the Go-board of } f, j}$ and $\pi_{k} f=$ (the Go-board of $f)_{\text {len the }}$ Go-board of $f-^{\prime} 1, j+1$.
Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the Go-board of } f-^{\prime} 1, j+1}+\right.\right.$ (the Go-board
 (the Go-board of $f)_{\text {len the Go-board of } f, j+2)}+[1,0]$) misses $\widetilde{\mathcal{L}}(f)$.
In the sequel P will be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$.
We now state a number of propositions:
(21) If for every p such that $p \in P$ holds $p_{\mathbf{1}}<\left((\text { the Go-board of } f)_{1,1}\right)_{\mathbf{1}}$, then P misses $\widetilde{\mathcal{L}}(f)$.
(22) If for every p such that $p \in P$ holds
$p_{\mathbf{1}}>\left((\text { the Go-board of } f)_{\text {len the Go-board of } f, 1)_{\mathbf{1}}}\right.$, then P misses $\widetilde{\mathcal{L}}(f)$.
(23) If for every p such that $p \in P$ holds $p_{\mathbf{2}}<\left((\text { the Go-board of } f)_{1,1}\right)_{\mathbf{2}}$, then P misses $\widetilde{\mathcal{L}}(f)$.
(24) If for every p such that $p \in P$ holds
$p_{\mathbf{2}}>\left((\text { the Go-board of } f)_{1, \text { width the Go-board of } f}\right)_{\mathbf{2}}$, then P misses $\widetilde{\mathcal{L}}(f)$.
(25) Given i. Suppose $1 \leq i$ and $i+2 \leq$ len the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, 1}+(\text { the Go-board of } f)_{i+1,1}\right)-[0,1], \frac{1}{2} \cdot((\right.$ the Go-board of $\left.\left.f)_{i+1,1}+(\text { the Go-board of } f)_{i+2,1}\right)-[0,1]\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(26) $\mathcal{L}\left((\text { the Go-board of } f)_{1,1}-[1,1], \frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1,1}+(\right.\right.$ the Goboard of $\left.\left.f)_{2,1}\right)-[0,1]\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(27) $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the Go-board of } f-\mathcal{A}^{\prime} 1,1}+\right.\right.$ (the Go-board of $\left.f)_{\text {len the Go-board of } f, 1}\right)-[0,1]$, (the Go-board of $\left.f\right)_{\text {len the Go-board of } f, 1}+[1$, -1]) misses $\widetilde{\mathcal{L}}(f)$.
(28) Given i. Suppose $1 \leq i$ and $i+2 \leq$ len the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i \text {,width the Go-board of } f}+\right.\right.$ (the Go-board of $\left.f)_{i+1, \text { width the Go-board of } f}\right)+[0,1], \frac{1}{2} \cdot(($ the Go-board of $f)_{i+1, \text { width the }}\left(\right.$ o-board of $\left.f+(\text { the Go-board of } f)_{i+2, \text { width the Go-board of } f}\right)+[0$, 1]) misses $\widetilde{\mathcal{L}}(f)$.
(29) $\quad \mathcal{L}\left((\text { the Go-board of } f)_{1, \text { width the Go-board of } f}+[-1,1], \frac{1}{2} \cdot((\right.$ the Go-board of $\left.f)_{1, \text { width the Go-board of } f}+(\text { the Go-board of } f)_{2 \text {,width the Go-board of } f}\right)+[0$,

1]) misses $\widetilde{\mathcal{L}}(f)$.
(30) $\quad \mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the }}\right.\right.$ Go-board of $f-{ }^{\prime} 1$, width the Go-board of $f+($ the
 board of $f)_{\text {len the }}$ Go-board of f, width the Go-board of $\left.f+[1,1]\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(31) Given j. Suppose $1 \leq j$ and $j+2 \leq$ width the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1, j}+(\text { the Go-board of } f)_{1, j+1}\right)-[1,0], \frac{1}{2} \cdot((\right.$ the Go-board of $\left.\left.f)_{1, j+1}+(\text { the Go-board of } f)_{1, j+2}\right)-[1,0]\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(32) $\mathcal{L}\left((\text { the Go-board of } f)_{1,1}-[1,1], \frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1,1}+(\right.\right.$ the Goboard of $\left.f)_{1,2}\right)-[1,0]$) misses $\widetilde{\mathcal{L}}(f)$.
(33) $\quad \mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{1, \text { width the Go-board of } f-^{\prime} 1}+\right.\right.$ (the Go-board of $\left.f)_{1, \text { width the Go-board of } f}\right)-[1,0]$, (the Go-board of $\left.f\right)_{1 \text {,width the Go-board of } f}+$ $[-1,1])$ misses $\widetilde{\mathcal{L}}(f)$.
(34) Given j. Suppose $1 \leq j$ and $j+2 \leq$ width the Go-board of f. Then $\mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the Go-board of } f, j}+\right.\right.$ (the Go-board of $\left.f)_{\text {len the Go-board of } f, j+1}\right)+[1,0], \frac{1}{2} \cdot(($ the Go-board of $f)_{\text {len the Go-board of } f, j+1}+(\text { the Go-board of } f)_{\text {len the Go-board of } f, j+2)}+[1$, $0])$ misses $\widetilde{\mathcal{L}}(f)$.
(35) $\mathcal{L}\left((\text { the Go-board of } f)_{\text {len the }}\right.$ Go-board of $f, 1+[1,-1], \frac{1}{2} \cdot(($ the Go-board of $\left.\left.f)_{\text {len the Go-board of } f, 1}+(\text { the Go-board of } f)_{\text {len the Go-board of } f, 2}\right)+[1,0]\right)$ misses $\widetilde{\mathcal{L}}(f)$.
(36) $\quad \mathcal{L}\left(\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{\text {len the Go-board of } f \text {, width the Go-board of } f-^{\prime} 1+}+\right.\right.$

(37) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{leftcell}(f, k)$ misses $\widetilde{\mathcal{L}}(f)$.
(38) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{rightcell}(f, k)$ misses $\widetilde{\mathcal{L}}(f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[6] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[13] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[14] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Formalized Mathematics, 5(1):97-102, 1996.
[15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[18] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[19] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[24] Mirosław Wysocki and Agata Darmochwat. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received October 17, 1995

