On the Go-Board of a Standard Special Circular Sequence

Andrzej Trybulec
Warsaw University
Białystok

MML Identifier: GOBOARD7.

The articles [21], [24], [5], [23], [9], [2], [19], [17], [1], [4], [3], [7], [22], [10], [11], [18], [25], [6], [8], [12], [13], [15], [20], [16], and [14] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity we adopt the following convention: f will denote a standard special circular sequence, $i, j, k, n, i_{1}, i_{2}, j_{1}, j_{2}$ will denote natural numbers, r, s, r_{1}, r_{2} will denote real numbers, p, q, p_{1} will denote points of $\mathcal{E}_{\mathrm{T}}^{2}$, and G will denote a Go-board.

The following propositions are true:
(1) If $\left|r_{1}-r_{2}\right|>s$, then $r_{1}+s<r_{2}$ or $r_{2}+s<r_{1}$.
(2) $|r-s|=0$ iff $r=s$.
(3) For all points p, p_{1}, q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p+p_{1}=q+p_{1}$ holds $p=q$.
(4) For all points p, p_{1}, q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p_{1}+p=p_{1}+q$ holds $p=q$.
(5) If $p_{1} \in \mathcal{L}(p, q)$ and $p_{\mathbf{1}}=q_{\mathbf{1}}$, then $\left(p_{1}\right)_{\mathbf{1}}=q_{\mathbf{1}}$.
(6) If $p_{1} \in \mathcal{L}(p, q)$ and $p_{\mathbf{2}}=q_{\mathbf{2}}$, then $\left(p_{1}\right)_{\mathbf{2}}=q_{\mathbf{2}}$.
(7) $\frac{1}{2} \cdot(p+q) \in \mathcal{L}(p, q)$.
(8) If $p_{\mathbf{1}}=q_{\mathbf{1}}$ and $q_{\mathbf{1}}=\left(p_{1}\right)_{\mathbf{1}}$ and $p_{\mathbf{2}} \leq q_{\mathbf{2}}$ and $q_{\mathbf{2}} \leq\left(p_{1}\right)_{\mathbf{2}}$, then $q \in \mathcal{L}\left(p, p_{1}\right)$.
(9) If $p_{\mathbf{1}} \leq q_{\mathbf{1}}$ and $q_{\mathbf{1}} \leq\left(p_{1}\right)_{\mathbf{1}}$ and $p_{\mathbf{2}}=q_{\mathbf{2}}$ and $q_{\mathbf{2}}=\left(p_{1}\right)_{\mathbf{2}}$, then $q \in \mathcal{L}\left(p, p_{1}\right)$.
(10) Let D be a non empty set, and given i, j, and let M be a matrix over D. If $1 \leq i$ and $i \leq \operatorname{len} M$ and $1 \leq j$ and $j \leq$ width M, then $\langle i, j\rangle \in$ the indices of M.

If $1 \leq i$ and $i+1 \leq \operatorname{len} G$ and $1 \leq j$ and $j+1 \leq$ width G, then $\frac{1}{2} \cdot\left(G_{i, j}+G_{i+1, j+1}\right)=\frac{1}{2} \cdot\left(G_{i, j+1}+G_{i+1, j}\right)$.
 $j \leq$ width the Go-board of f and for every p such that $p \in \mathcal{L}(f, k)$ holds $p_{\mathbf{2}}=\left((\text { the Go-board of } f)_{1, j}\right)_{\mathbf{2}}$.
Suppose $\mathcal{L}(f, k)$ is vertical. Then there exists i such that $1 \leq i$ and $i \leq$ len the Go-board of f and for every p such that $p \in \mathcal{L}(f, k)$ holds $p_{\mathbf{1}}=\left((\text { the Go-board of } f)_{i, 1}\right)_{\mathbf{1}}$.
(14) If $i \leq$ len the Go-board of f and $j \leqq$ width the Go-board of f, then Int cell(the Go-board of $f, i, j)$ misses $\widetilde{\mathcal{L}}(f)$.

2. Segments on a Go-Board

Next we state a number of propositions:
(15) If $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j+2 \leq$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i, j+1}\right) \cap \mathcal{L}\left(G_{i, j+1}, G_{i, j+2}\right)=\left\{G_{i, j+1}\right\}$.
(16) If $1 \leq i$ and $i+2 \leq$ len G and $1 \leq j$ and $j \leq$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i+1, j}\right) \cap \mathcal{L}\left(G_{i+1, j}, G_{i+2, j}\right)=\left\{G_{i+1, j}\right\}$.
(17) If $1 \leq i$ and $i+1 \leq \operatorname{len} G$ and $1 \leq j$ and $j+1 \leq$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i, j+1}\right) \cap \mathcal{L}\left(G_{i, j+1}, G_{i+1, j+1}\right)=\left\{G_{i, j+1}\right\}$.
(18) If $1 \leq i$ and $i+1 \leq \operatorname{len} G$ and $1 \leq j$ and $j+1 \leq$ width G, then $\mathcal{L}\left(G_{i, j+1}, G_{i+1, j+1}\right) \cap \mathcal{L}\left(G_{i+1, j}, G_{i+1, j+1}\right)=\left\{G_{i+1, j+1}\right\}$. $\mathcal{L}\left(G_{i, j}, G_{i+1, j}\right) \cap \mathcal{L}\left(G_{i, j}, G_{i, j+1}\right)=\left\{G_{i, j}\right\}$.
(20) If $1 \leq i$ and $i+1 \leq \operatorname{len} G$ and $1 \leq j$ and $j+1 \leq$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i+1, j}\right) \cap \mathcal{L}\left(G_{i+1, j}, G_{i+1, j+1}\right)=\left\{G_{i+1, j}\right\}$.
(21) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $1 \leq i_{1}$ and $i_{1} \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1}+1 \leq$ width G and $1 \leq i_{2}$ and $i_{2} \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2}+1 \leq$ width G and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right)$ meets $\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right)$. Then $i_{1}=i_{2}$ and $\left|j_{1}-j_{2}\right| \leq 1$.
(22) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $1 \leq i_{1}$ and $i_{1}+1 \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1} \leq$ width G and $1 \leq i_{2}$ and $i_{2}+1 \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2} \leq$ width G and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}+1, j_{1}}\right)$ meets $\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$. Then $j_{1}=j_{2}$ and $\left|i_{1}-i_{2}\right| \leq 1$.
(23) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $1 \leq i_{1}$ and $i_{1} \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1}+1 \leq$ width G and $1 \leq i_{2}$ and $i_{2}+1 \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2} \leq$ width G and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right)$ meets $\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$. Then $i_{1}=i_{2}$ or $i_{1}=i_{2}+1$ but $j_{1}=j_{2}$ or $j_{1}+1=j_{2}$.
(24) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $1 \leq i_{1}$ and $i_{1} \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1}+1 \leq$ width G and $1 \leq i_{2}$ and $i_{2} \leq$ len G and $1 \leq j_{2}$ and $j_{2}+1 \leq$ width G and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right)$ meets $\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right)$. Then

$$
\begin{equation*}
j_{1}=j_{2} \text { and } \mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right)=\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right) \text {, or } \tag{i}
\end{equation*}
$$

(ii) $j_{1}=j_{2}+1$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right) \cap \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right)=\left\{G_{i_{1}, j_{1}}\right\}$, or
(iii) $j_{1}+1=j_{2}$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right) \cap \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right)=\left\{G_{i_{2}, j_{2}}\right\}$.
(25) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $1 \leq i_{1}$ and $i_{1}+1 \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1} \leq$ width G and $1 \leq i_{2}$ and $i_{2}+1 \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2} \leq$ width G and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}+1, j_{1}}\right)$ meets $\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$. Then
(i) $i_{1}=i_{2}$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}+1, j_{1}}\right)=\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$, or
(ii) $i_{1}=i_{2}+1$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}+1, j_{1}}\right) \cap \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)=\left\{G_{i_{1}, j_{1}}\right\}$, or
(iii) $i_{1}+1=i_{2}$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}+1, j_{1}}\right) \cap \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)=\left\{G_{i_{2}, j_{2}}\right\}$.
(26) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $1 \leq i_{1}$ and $i_{1} \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1}+1 \leq$ width G and $1 \leq i_{2}$ and $i_{2}+1 \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2} \leq$ width G and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right)$ meets $\mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$. Then $j_{1}=j_{2}$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right) \cap \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)=\left\{G_{i_{1}, j_{1}}\right\}$ or $j_{1}+1=j_{2}$ and $\mathcal{L}\left(G_{i_{1}, j_{1}}, G_{i_{1}, j_{1}+1}\right) \cap \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)=\left\{G_{i_{1}, j_{1}+1}\right\}$.
(27) Suppose $1 \leq i_{1}$ and $i_{1} \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1}+1 \leq$ width G and $1 \leq i_{2}$ and $i_{2} \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2}+1 \leq$ width G and $\frac{1}{2} \cdot\left(G_{i_{1}, j_{1}}+\right.$ $\left.G_{i_{1}, j_{1}+1}\right) \in \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right)$. Then $i_{1}=i_{2}$ and $j_{1}=j_{2}$.
(28) Suppose $1 \leq i_{1}$ and $i_{1}+1 \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1} \leq$ width G and $1 \leq i_{2}$ and $i_{2}+1 \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2} \leq$ width G and $\frac{1}{2} \cdot\left(G_{i_{1}, j_{1}}+\right.$ $\left.G_{i_{1}+1, j_{1}}\right) \in \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$. Then $i_{1}=i_{2}$ and $j_{1}=j_{2}$.
(29) Suppose $1 \leq i_{1}$ and $i_{1}+1 \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1} \leq$ width G. Then it is not true that there exist i_{2}, j_{2} such that $1 \leq i_{2}$ and $i_{2} \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2}+1 \leq$ width G and $\frac{1}{2} \cdot\left(G_{i_{1}, j_{1}}+G_{i_{1}+1, j_{1}}\right) \in \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}, j_{2}+1}\right)$.
Suppose $1 \leq i_{1}$ and $i_{1} \leq \operatorname{len} G$ and $1 \leq j_{1}$ and $j_{1}+1 \leq$ width G. Then it is not true that there exist i_{2}, j_{2} such that $1 \leq i_{2}$ and $i_{2}+1 \leq \operatorname{len} G$ and $1 \leq j_{2}$ and $j_{2} \leq$ width G and $\frac{1}{2} \cdot\left(G_{i_{1}, j_{1}}+G_{i_{1}, j_{1}+1}\right) \in \mathcal{L}\left(G_{i_{2}, j_{2}}, G_{i_{2}+1, j_{2}}\right)$.

3. Standard Special Circular Sequences

In the sequel f will be a non constant standard special circular sequence.
The following propositions are true:
(31) For every standard non empty finite sequence f of elements of $\mathcal{E}_{\text {T }}^{2}$ such that $i \in \operatorname{dom} f$ and $i+1 \in \operatorname{dom} f$ holds $\pi_{i} f \neq \pi_{i+1} f$.
There exists i such that $i \in \operatorname{dom} f$ and $\left(\pi_{i} f\right)_{\mathbf{1}} \neq\left(\pi_{1} f\right)_{\mathbf{1}}$.
There exists i such that $i \in \operatorname{dom} f$ and $\left(\pi_{i} f\right)_{\mathbf{2}} \neq\left(\pi_{1} f\right)_{\mathbf{2}}$.
len the Go-board of $f>1$.
width the Go-board of $f>1$.
len $f>4$.
Let f be a circular s.c.c. finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose len $f>4$. Let i, j be natural numbers. If $1 \leq i$ and $i<j$ and $j<\operatorname{len} f$, then $\pi_{i} f \neq \pi_{j} f$.
(38) For all natural numbers i, j such that $1 \leq i$ and $i<j$ and $j<\operatorname{len} f$ holds $\pi_{i} f \neq \pi_{j} f$.
(39) For all natural numbers i, j such that $1<i$ and $i<j$ and $j \leq \operatorname{len} f$ holds $\pi_{i} f \neq \pi_{j} f$.
(40) For every natural number i such that $1<i$ and $i \leq \operatorname{len} f$ and $\pi_{i} f=\pi_{1} f$ holds $i=\operatorname{len} f$.
(41) Suppose that
(i) $1 \leq i$,
(ii) $i \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f, and
(v) $\frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i, j+1}\right) \in \widetilde{\mathcal{L}}(f)$.

Then there exists k such that $1 \leq k$ and $k+1 \leq \operatorname{len} f$ and $\mathcal{L}(($ the Go-board of $f)_{i, j}$, (the Go-board of $\left.\left.f\right)_{i, j+1}\right)=\mathcal{L}(f, k)$.
(42) Suppose that
(i) $1 \leq i$,
(ii) $\quad i+1 \leq$ len the Go-board of f
(iii) $1 \leq j$,
(iv) $j \leq$ width the Go-board of f and
(v) $\quad \frac{1}{2} \cdot\left((\text { the Go-board of } f)_{i, j}+(\text { the Go-board of } f)_{i+1, j}\right) \in \widetilde{\mathcal{L}}(f)$.

Then there exists k such that $1 \leq k$ and $k+1 \leq$ len f and $\mathcal{L}(($ the Go-board of $f)_{i, j}$, (the Go-board of $\left.\left.f\right)_{i+1, j}\right)=\mathcal{L}(f, k)$.
(43) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j}, \text { (the Go-board of } f\right)_{i+1, j+1}\right)=\mathcal{L}(f, k+1)$. Then $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j+1}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j}$.
(44) Suppose that
(i) $1 \leq i$,
(ii) $i \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1<$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i, j+2}\right)=\mathcal{L}(f, k)$, and
(viii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i, j+1}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j+2}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j}$.
(45) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i, j+1}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j+1}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j}$.
(46) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j+1},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k+1)$. Then $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+1, j}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+1}$.
(47) Suppose that
(i) $1 \leq i$,
(ii) $i+1<$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j} \text {, (the Go-board of } f\right)_{i+2, j}\right)=\mathcal{L}(f, k)$, and
(viii) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j},(\text { the Go-board of } f)_{i+1, j}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+2, j}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j}$.
(48) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i+1, j}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j+1}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j}$.
(49) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right)=\mathcal{L}(f, k+1)$. Then $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i+1, j}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+1}$.
(50) Suppose that
(i) $1 \leq i$,
(ii) $i \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1<$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1},(\text { the Go-board of } f)_{i, j+2}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+1} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i, j+2}$.
(51) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k+1)$. Then $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+1} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j+1}$.
(52) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k)$, and
(viii) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k+1)$. Then $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j+1}$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j+1}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j}$.
(53) Suppose that
(i) $1 \leq i$,
(ii) $i+1<$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j},(\text { the Go-board of } f)_{i+1, j}\right)=\mathcal{L}(f, k)$, and
(viii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j}, \text { (the Go-board of } f\right)_{i+2, j}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+2, j}$.
(54) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $1 \leq k$,
(vi) $k+1<\operatorname{len} f$,
(vii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i+1, j}\right)=\mathcal{L}(f, k)$, and
(viii) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right)=\mathcal{L}(f, k+1)$.

Then $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k+2} f=(\text { the Go-board of } f)_{i+1, j+1}$.
(55) Suppose that
(i) $1 \leq i$,
(ii) $i \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1<$ width the Go-board of f,
(v) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j},(\text { the Go-board of } f)_{i, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$, and
(vi) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1},(\text { the Go-board of } f)_{i, j+2}\right) \subseteq \widetilde{\mathcal{L}}(f)$.

Then
(vii) $\quad \pi_{1} f=(\text { the Go-board of } f)_{i, j+1}$ but $\pi_{2} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{\text {len } f-^{\prime} 1} f=(\text { the Go-board of } f)_{i, j+2}$ or $\pi_{2} f=(\text { the Go-board of } f)_{i, j+2}$ and $\pi_{\operatorname{len} f-^{\prime} 1} f=(\text { the Go-board of } f)_{i, j}$, or
(viii) there exists k such that $1 \leq k$ and $k+1<\operatorname{len} f$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i, j+1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j+2}$ or $\pi_{k} f=(\text { the Go-board of } f)_{i, j+2}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j}$.
(56) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $\mathcal{L}\left((\text { the Go-board of } f)_{i, j},(\text { the Go-board of } f)_{i, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$, and
(vi) $\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j+1},(\text { the Go-board of } f)_{i+1, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$.

Then
(vii) $\quad \pi_{1} f=(\text { the Go-board of } f)_{i, j+1}$ but $\pi_{2} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{\text {len } f-^{\prime} 1} f=(\text { the Go-board of } f)_{i+1, j+1}$ or $\pi_{2} f=$ (the Go-board of $f)_{i+1, j+1}$ and $\pi_{\text {len } f-{ }_{1}} f=(\text { the Go-board of } f)_{i, j}$, or
(viii) there exists k such that $1 \leq k$ and $k+1<\operatorname{len} f$ and $\pi_{k+1} f=$ (the Goboard of $f)_{i, j+1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{k+2} f=$ (the Goboard of $f)_{i+1, j+1}$ or $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j+1}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j}$.
(57) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$, and
(vi) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j+1},(\text { the Go-board of } f)_{i+1, j}\right) \subseteq \widetilde{\mathcal{L}}(f)$.

Then
(vii) $\quad \pi_{1} f=(\text { the Go-board of } f)_{i+1, j+1}$ but $\pi_{2} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{\text {len } f-^{\prime} 1} f=$ (the Go-board of $\left.f\right)_{i+1, j}$ or $\pi_{2} f=$ (the Go-board of $f)_{i+1, j}$ and $\pi_{\text {len } f-^{\prime} 1} f=$ (the Go-board of $\left.f\right)_{i, j+1}$, or
(viii) there exists k such that $1 \leq k$ and $k+1<\operatorname{len} f$ and $\pi_{k+1} f=$ (the Goboard of $f)_{i+1, j+1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i+1, j}$ or $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j+1}$.
(58) Suppose that
(i) $1 \leq i$,
(ii) $i+1<$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j \leq$ width the Go-board of f,
(v) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i+1, j}\right) \subseteq \widetilde{\mathcal{L}}(f)$, and
(vi) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i+1, j}, \text { (the Go-board of } f\right)_{i+2, j}\right) \subseteq \widetilde{\mathcal{L}}(f)$.

Then
(vii) $\quad \pi_{1} f=(\text { the Go-board of } f)_{i+1, j}$ but $\pi_{2} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{\text {len } f-^{\prime} 1} f=(\text { the Go-board of } f)_{i+2, j}$ or $\pi_{2} f=(\text { the Go-board of } f)_{i+2, j}$ and $\pi_{\operatorname{len} f-^{\prime} 1} f=(\text { the Go-board of } f)_{i, j}$, or
(viii) there exists k such that $1 \leq k$ and $k+1<\operatorname{len} f$ and $\pi_{k+1} f=$ (the Go-board of $f)_{i+1, j}$ and $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j}$ and $\pi_{k+2} f=$ (the Go-board of $f)_{i+2, j}$ or $\pi_{k} f=(\text { the Go-board of } f)_{i+2, j}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j}$.
(59) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j}, \text { (the Go-board of } f\right)_{i+1, j}\right) \subseteq \widetilde{\mathcal{L}}(f)$, and
(vi) $\quad \mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$.

Then
(vii) $\quad \pi_{1} f=(\text { the Go-board of } f)_{i+1, j}$ but $\pi_{2} f=(\text { the Go-board of } f)_{i, j}$ and $\pi_{\text {len } f-{ }^{\prime} 1} f=(\text { the Go-board of } f)_{i+1, j+1}$ or $\pi_{2} f=$ (the Go-board of $f)_{i+1, j+1}$ and $\pi_{\text {len } f-^{\prime} 1} f=(\text { the Go-board of } f)_{i, j}$, or
(viii) there exists k such that $1 \leq k$ and $k+1<\operatorname{len} f$ and $\pi_{k+1} f=$ (the Goboard of $f)_{i+1, j}$ and $\pi_{k} f=$ (the Go-board of $\left.f\right)_{i, j}$ and $\pi_{k+2} f=$ (the Goboard of $f)_{i+1, j+1}$ or $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j+1}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j}$.
(60) Suppose that
(i) $1 \leq i$,
(ii) $i+1 \leq$ len the Go-board of f,
(iii) $1 \leq j$,
(iv) $j+1 \leq$ width the Go-board of f,
(v) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$, and
(vi) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j+1} \text {, (the Go-board of } f\right)_{i, j+1}\right) \subseteq \widetilde{\mathcal{L}}(f)$.

Then
(vii) $\quad \pi_{1} f=(\text { the Go-board of } f)_{i+1, j+1}$ but $\pi_{2} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{\operatorname{len} f-^{\prime} 1} f=$ (the Go-board of $\left.f\right)_{i, j+1}$ or $\pi_{2} f=$ (the Go-board of $f)_{i, j+1}$ and $\pi_{\operatorname{len} f-^{\prime} 1} f=(\text { the Go-board of } f)_{i+1, j}$, or
(viii) there exists k such that $1 \leq k$ and $k+1<\operatorname{len} f$ and $\pi_{k+1} f=$ (the Goboard of $f)_{i+1, j+1}$ and $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i, j+1}$ or $\pi_{k} f=(\text { the Go-board of } f)_{i, j+1}$ and $\pi_{k+2} f=($ the Go-board of $f)_{i+1, j}$.
(61) Suppose $1 \leq i$ and $i<$ len the Go-board of f and $1 \leq j$ and $j+1<$ width the Go-board of f. Then
(i) $\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j},(\text { the Go-board of } f)_{i, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(ii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i, j+2}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(iii) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$.
(62) Suppose $1 \leq i$ and $i<$ len the Go-board of f and $1 \leq j$ and $j+1<$ width the Go-board of f. Then
(i) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j} \text {, (the Go-board of } f\right)_{i+1, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(ii) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i+1, j+1} \text {, (the Go-board of } f\right)_{i+1, j+2}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(iii) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$.
(63) Suppose $1 \leq j$ and $j<$ width the Go-board of f and $1 \leq i$ and $i+1<$ len the Go-board of f. Then
(i) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j} \text {, (the Go-board of } f\right)_{i+1, j}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(ii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j} \text {, (the Go-board of } f\right)_{i+2, j}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(iii) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i+1, j} \text {, (the Go-board of } f\right)_{i+1, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$.
(64) Suppose $1 \leq j$ and $j<$ width the Go-board of f and $1 \leq i$ and $i+1<$ len the Go-board of f. Then
(i) $\left.\quad \mathcal{L}\left((\text { the Go-board of } f)_{i, j+1} \text {, (the Go-board of } f\right)_{i+1, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(ii) $\left.\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j+1} \text {, (the Go-board of } f\right)_{i+2, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$, or
(iii) $\mathcal{L}\left((\text { the Go-board of } f)_{i+1, j},(\text { the Go-board of } f)_{i+1, j+1}\right) \nsubseteq \widetilde{\mathcal{L}}(f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Agata Darmochwat. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[14] Rafat Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Formalized Mathematics, 5(1):97-102, 1996.
[16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[18] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[20] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[25] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received October 15, 1995

