On the Go-Board of a Standard Special Circular Sequence

Andrzej Trybulec Warsaw University Białystok

MML Identifier: GOBOARD7.

The articles [21], [24], [5], [23], [9], [2], [19], [17], [1], [4], [3], [7], [22], [10], [11], [18], [25], [6], [8], [12], [13], [15], [20], [16], and [14] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity we adopt the following convention: f will denote a standard special circular sequence, $i, j, k, n, i_1, i_2, j_1, j_2$ will denote natural numbers, r, s, r_1, r_2 will denote real numbers, p, q, p_1 will denote points of $\mathcal{E}_{\mathrm{T}}^2$, and G will denote a Go-board.

The following propositions are true:

- (1) If $|r_1 r_2| > s$, then $r_1 + s < r_2$ or $r_2 + s < r_1$.
- (2) |r-s| = 0 iff r = s.
- (3) For all points p, p_1, q of \mathcal{E}^n_T such that $p + p_1 = q + p_1$ holds p = q.
- (4) For all points p, p_1, q of $\mathcal{E}^n_{\mathrm{T}}$ such that $p_1 + p = p_1 + q$ holds p = q.
- (5) If $p_1 \in \mathcal{L}(p,q)$ and $p_1 = q_1$, then $(p_1)_1 = q_1$.
- (6) If $p_1 \in \mathcal{L}(p,q)$ and $p_2 = q_2$, then $(p_1)_2 = q_2$.
- (7) $\frac{1}{2} \cdot (p+q) \in \mathcal{L}(p,q).$
- (8) If $p_1 = q_1$ and $q_1 = (p_1)_1$ and $p_2 \le q_2$ and $q_2 \le (p_1)_2$, then $q \in \mathcal{L}(p, p_1)$.
- (9) If $p_1 \le q_1$ and $q_1 \le (p_1)_1$ and $p_2 = q_2$ and $q_2 = (p_1)_2$, then $q \in \mathcal{L}(p, p_1)$.
- (10) Let D be a non empty set, and given i, j, and let M be a matrix over D. If $1 \leq i$ and $i \leq \text{len } M$ and $1 \leq j$ and $j \leq \text{width } M$, then $\langle i, j \rangle \in \text{the indices of } M$.

429

C 1996 Warsaw University - Białystok ISSN 1426-2630

- (11) If $1 \leq i$ and $i+1 \leq \operatorname{len} G$ and $1 \leq j$ and $j+1 \leq \operatorname{width} G$, then $\frac{1}{2} \cdot (G_{i,j} + G_{i+1,j+1}) = \frac{1}{2} \cdot (G_{i,j+1} + G_{i+1,j}).$
- (12) Suppose $\mathcal{L}(f,k)$ is horizontal. Then there exists j such that $1 \leq j$ and $j \leq$ width the Go-board of f and for every p such that $p \in \mathcal{L}(f,k)$ holds $p_{\mathbf{2}} = ((\text{the Go-board of } f)_{1,j})_{\mathbf{2}}.$
- (13) Suppose $\mathcal{L}(f,k)$ is vertical. Then there exists *i* such that $1 \leq i$ and $i \leq \text{len the Go-board of } f$ and for every *p* such that $p \in \mathcal{L}(f,k)$ holds $p_{\mathbf{1}} = ((\text{the Go-board of } f)_{i,1})_{\mathbf{1}}.$
- (14) If $i \leq \text{len the Go-board of } f$ and $j \leq \text{width the Go-board of } f$, then Int cell(the Go-board of f, i, j) misses $\widetilde{\mathcal{L}}(f)$.

2. Segments on a Go-Board

Next we state a number of propositions:

- (15) If $1 \leq i$ and $i \leq \text{len } G$ and $1 \leq j$ and $j + 2 \leq \text{width } G$, then $\mathcal{L}(G_{i,j}, G_{i,j+1}) \cap \mathcal{L}(G_{i,j+1}, G_{i,j+2}) = \{G_{i,j+1}\}.$
- (16) If $1 \leq i$ and $i + 2 \leq \text{len } G$ and $1 \leq j$ and $j \leq \text{width } G$, then $\mathcal{L}(G_{i,j}, G_{i+1,j}) \cap \mathcal{L}(G_{i+1,j}, G_{i+2,j}) = \{G_{i+1,j}\}.$
- (17) If $1 \leq i$ and $i+1 \leq \text{len } G$ and $1 \leq j$ and $j+1 \leq \text{width } G$, then $\mathcal{L}(G_{i,j}, G_{i,j+1}) \cap \mathcal{L}(G_{i,j+1}, G_{i+1,j+1}) = \{G_{i,j+1}\}.$
- (18) If $1 \leq i$ and $i+1 \leq \text{len } G$ and $1 \leq j$ and $j+1 \leq \text{width } G$, then $\mathcal{L}(G_{i,j+1}, G_{i+1,j+1}) \cap \mathcal{L}(G_{i+1,j}, G_{i+1,j+1}) = \{G_{i+1,j+1}\}.$
- (19) If $1 \leq i$ and $i+1 \leq \text{len } G$ and $1 \leq j$ and $j+1 \leq \text{width } G$, then $\mathcal{L}(G_{i,j}, G_{i+1,j}) \cap \mathcal{L}(G_{i,j}, G_{i,j+1}) = \{G_{i,j}\}.$
- (20) If $1 \leq i$ and $i+1 \leq \text{len } G$ and $1 \leq j$ and $j+1 \leq \text{width } G$, then $\mathcal{L}(G_{i,j}, G_{i+1,j}) \cap \mathcal{L}(G_{i+1,j}, G_{i+1,j+1}) = \{G_{i+1,j}\}.$
- (21) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \leq i_1$ and $i_1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 + 1 \leq \text{width } G$ and $1 \leq i_2$ and $i_2 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 + 1 \leq \text{width } G$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1})$ meets $\mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1})$. Then $i_1 = i_2$ and $|j_1 - j_2| \leq 1$.
- (22) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \leq i_1$ and $i_1 + 1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 \leq \text{width } G$ and $1 \leq i_2$ and $i_2 + 1 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1+1,j_1})$ meets $\mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2})$. Then $j_1 = j_2$ and $|i_1 - i_2| \leq 1$.
- (23) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \leq i_1$ and $i_1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 + 1 \leq \text{width } G$ and $1 \leq i_2$ and $i_2 + 1 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1})$ meets $\mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2})$. Then $i_1 = i_2$ or $i_1 = i_2 + 1$ but $j_1 = j_2$ or $j_1 + 1 = j_2$.
- (24) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le \text{len } G$ and $1 \le j_1$ and $j_1 + 1 \le \text{width } G$ and $1 \le i_2$ and $i_2 \le \text{len } G$ and $1 \le j_2$ and $j_2 + 1 \le \text{width } G$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1})$ meets $\mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1})$. Then

- (i) $j_1 = j_2$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1}) = \mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1})$, or
- (ii) $j_1 = j_2 + 1$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1}) \cap \mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1}) = \{G_{i_1,j_1}\},$ or
- (iii) $j_1 + 1 = j_2$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1}) \cap \mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1}) = \{G_{i_2,j_2}\}.$
- (25) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \leq i_1$ and $i_1 + 1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 \leq \text{width } G$ and $1 \leq i_2$ and $i_2 + 1 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1+1,j_1})$ meets $\mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2})$. Then
 - (i) $i_1 = i_2$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1+1,j_1}) = \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2})$, or
 - (ii) $i_1 = i_2 + 1$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1+1,j_1}) \cap \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2}) = \{G_{i_1,j_1}\},$ or
 - (iii) $i_1 + 1 = i_2$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1+1,j_1}) \cap \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2}) = \{G_{i_2,j_2}\}.$
- (26) Let i_1, j_1, i_2, j_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le \text{len } G$ and $1 \le j_1$ and $j_1 + 1 \le \text{width } G$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } G$ and $1 \le j_2$ and $j_2 \le \text{width } G$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1})$ meets $\mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2})$. Then $j_1 = j_2$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1}) \cap \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2}) = \{G_{i_1,j_1}\}$ or $j_1 + 1 = j_2$ and $\mathcal{L}(G_{i_1,j_1}, G_{i_1,j_1+1}) \cap \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2}) = \{G_{i_1,j_1+1}\}$.
- (27) Suppose $1 \le i_1$ and $i_1 \le \text{len } G$ and $1 \le j_1$ and $j_1 + 1 \le \text{width } G$ and $1 \le i_2$ and $i_2 \le \text{len } G$ and $1 \le j_2$ and $j_2 + 1 \le \text{width } G$ and $\frac{1}{2} \cdot (G_{i_1,j_1} + G_{i_1,j_1+1}) \in \mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1})$. Then $i_1 = i_2$ and $j_1 = j_2$.
- (28) Suppose $1 \leq i_1$ and $i_1 + 1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 \leq \text{width } G$ and $1 \leq i_2$ and $i_2 + 1 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $\frac{1}{2} \cdot (G_{i_1,j_1} + G_{i_1+1,j_1}) \in \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2})$. Then $i_1 = i_2$ and $j_1 = j_2$.
- (29) Suppose $1 \leq i_1$ and $i_1 + 1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 \leq \text{width } G$. Then it is not true that there exist i_2 , j_2 such that $1 \leq i_2$ and $i_2 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 + 1 \leq \text{width } G$ and $\frac{1}{2} \cdot (G_{i_1,j_1} + G_{i_1+1,j_1}) \in \mathcal{L}(G_{i_2,j_2}, G_{i_2,j_2+1})$.
- (30) Suppose $1 \leq i_1$ and $i_1 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 + 1 \leq \text{width } G$. Then it is not true that there exist i_2 , j_2 such that $1 \leq i_2$ and $i_2 + 1 \leq \text{len } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $\frac{1}{2} \cdot (G_{i_1,j_1} + G_{i_1,j_1+1}) \in \mathcal{L}(G_{i_2,j_2}, G_{i_2+1,j_2}).$

3. STANDARD SPECIAL CIRCULAR SEQUENCES

In the sequel f will be a non constant standard special circular sequence. The following propositions are true:

- (31) For every standard non empty finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that $i \in \mathrm{dom} f$ and $i + 1 \in \mathrm{dom} f$ holds $\pi_i f \neq \pi_{i+1} f$.
- (32) There exists *i* such that $i \in \text{dom } f$ and $(\pi_i f)_1 \neq (\pi_1 f)_1$.
- (33) There exists *i* such that $i \in \text{dom } f$ and $(\pi_i f)_2 \neq (\pi_1 f)_2$.
- (34) len the Go-board of f > 1.
- (35) width the Go-board of f > 1.
- (36) len f > 4.
- (37) Let f be a circular s.c.c. finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose len f > 4. Let i, j be natural numbers. If $1 \leq i$ and i < j and $j < \operatorname{len} f$, then $\pi_i f \neq \pi_j f$.

- (38) For all natural numbers i, j such that $1 \le i$ and i < j and $j < \operatorname{len} f$ holds $\pi_i f \neq \pi_j f$.
- (39) For all natural numbers i, j such that 1 < i and i < j and $j \leq \text{len } f$ holds $\pi_i f \neq \pi_j f$.
- (40) For every natural number *i* such that 1 < i and $i \leq \text{len } f$ and $\pi_i f = \pi_1 f$ holds i = len f.
- (41) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f, and
 - (v) $\frac{1}{2} \cdot ((\text{the Go-board of } f)_{i,j} + (\text{the Go-board of } f)_{i,j+1}) \in \mathcal{L}(f).$ Then there exists k such that $1 \leq k$ and $k+1 \leq \text{len } f$ and $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}) = \mathcal{L}(f,k).$
- (42) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$
- (iii) $1 \leq j$,
- (iv) $j \leq$ width the Go-board of f and
- (v) $\frac{1}{2} \cdot ((\text{the Go-board of } f)_{i,j} + (\text{the Go-board of } f)_{i+1,j}) \in \widetilde{\mathcal{L}}(f).$ Then there exists k such that $1 \leq k$ and $k+1 \leq \text{len } f$ and $\mathcal{L}((\text{the Go-board of } f)_{i,j}) = \mathcal{L}(f,k).$
- (43) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f
 - $(\mathbf{v}) \quad 1 \le k,$
- $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i+1,j}.$
- (44) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) j+1 <width the Go-board of f,
- $(\mathbf{v}) \quad 1 \le k,$
- $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i,j+2}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) = \mathcal{L}(f, k+1).$
 - Then $\pi_k f = (\text{the Go-board of } f)_{i,j+2}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i,j}$.

- (45) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \le j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - $(\mathbf{v}) \quad 1 \le k,$
 - $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f,k), \text{ and}$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i,j}.$
- (46) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - $(\mathbf{v}) \quad 1 \le k,$
 - $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f,k), \text{ and}$ (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f,k+1).$ Then $\pi_k f$ = (the Go-board of $f)_{i+1,j}$ and $\pi_{k+1} f$ = (the Go-board of f)_{i+1,j}
 - $f_{i+1,j+1}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i,j+1}$.
- (47) Suppose that
- (i) $1 \leq i$,
- (ii) i+1 < len the Go-board of f,
- (iii) $1 \leq j$,
- (iv) $j \leq$ width the Go-board of f,
- $(\mathbf{v}) \quad 1 \le k,$
- $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j})$, (the Go-board of $f)_{i+2,j}) = \mathcal{L}(f,k)$, and
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i+1,j}) = \mathcal{L}(f, k+1).$ Then $\pi_k f$ = (the Go-board of $f)_{i+2,j}$ and $\pi_{k+1} f$ = (the Go-board of $f)_{i+1,j}$ and $\pi_{k+2} f$ = (the Go-board of $f)_{i,j}$.
- (48) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - $(\mathbf{v}) \quad 1 \le k,$
 - $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j})$, (the Go-board of $f)_{i+1,j+1}) = \mathcal{L}(f,k)$, and (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j})$, (the Go-board of $f)_{i+1,j}) = \mathcal{L}(f,k+1)$.
 - Then $\pi_k f$ = (the Go-board of f)_{*i*+1,*j*+1} and $\pi_{k+1} f$ = (the Go-board of f)_{*i*+1,*j*} and $\pi_{k+2} f$ = (the Go-board of f)_{*i*,*j*}.

- (49) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - $(\mathbf{v}) \quad 1 \le k,$
 - $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i,j+1}.$
- (50) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) j+1 <width the Go-board of f,
 - (v) $1 \leq k$,
- (vi) $k+1 < \operatorname{len} f$,
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i,j+2}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i,j+2}.$
- (51) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - $(\mathbf{v}) \quad 1 \le k,$
- $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i+1,j+1}.$
- (52) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
- $(\mathbf{v}) \quad 1 \le k,$
- $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i+1,j}.$

- (53) Suppose that
 - (i) $1 \leq i$,
 - (ii) i+1 < len the Go-board of f,
 - (iii) $1 \leq j$,
 - (iv) $j \leq$ width the Go-board of f,
 - $(\mathbf{v}) \quad 1 \le k,$
 - $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j})$, (the Go-board of $f)_{i+1,j}) = \mathcal{L}(f,k)$, and
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+2,j}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i+2,j}.$
- (54) Suppose that
- (i) $1 \leq i$,
- (ii) $i+1 \leq \text{len the Go-board of } f$,
- (iii) $1 \leq j$,
- (iv) $j+1 \leq$ width the Go-board of f,
- $(\mathbf{v}) \quad 1 \le k,$
- $(vi) \quad k+1 < \operatorname{len} f,$
- (vii) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i+1,j}) = \mathcal{L}(f,k), \text{ and }$
- (viii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) = \mathcal{L}(f, k+1).$ Then $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+1} f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{k+2} f = (\text{the Go-board of } f)_{i+1,j+1}.$
- (55) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) j+1 <width the Go-board of f,
 - (v) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) \subseteq \widetilde{\mathcal{L}}(f), \text{ and}$
 - (vi) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i,j+2}) \subseteq \mathcal{L}(f).$ Then
- (vii) $\pi_1 f = (\text{the Go-board of } f)_{i,j+1}$ but $\pi_2 f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{\text{len } f-'1}f = (\text{the Go-board of } f)_{i,j+2}$ or $\pi_2 f = (\text{the Go-board of } f)_{i,j+2}$ and $\pi_{\text{len } f-'1}f = (\text{the Go-board of } f)_{i,j}$, or
- (viii) there exists k such that $1 \leq k$ and k+1 < len f and $\pi_{k+1}f =$ (the Go-board of $f)_{i,j+1}$ and $\pi_k f =$ (the Go-board of $f)_{i,j}$ and $\pi_{k+2}f =$ (the Go-board of $f)_{i,j+2}$ or $\pi_k f =$ (the Go-board of $f)_{i,j+2}$ and $\pi_{k+2}f =$ (the Go-board of $f)_{i,j}$.
- (56) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - (v) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) \subseteq \mathcal{L}(f), \text{ and }$
 - (vi) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) \subseteq \widetilde{\mathcal{L}}(f).$

Then

- (vii) $\pi_1 f$ = (the Go-board of f)_{i,j+1} but $\pi_2 f$ = (the Go-board of f)_{i,j} and $\pi_{\text{len } f-'1}f$ = (the Go-board of f)_{i+1,j+1} or $\pi_2 f$ = (the Go-board of f)_{i+1,j+1} and $\pi_{\text{len } f-'1}f$ = (the Go-board of f)_{i,j}, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $\pi_{k+1}f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i+1,j+1}$ or $\pi_k f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i,j}$.
- (57) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - (v) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) \subseteq \mathcal{L}(f), \text{ and}$
 - (vi) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j+1}, (\text{the Go-board of } f)_{i+1,j}) \subseteq \hat{\mathcal{L}}(f).$ Then
- (vii) $\pi_1 f = (\text{the Go-board of } f)_{i+1,j+1}$ but $\pi_2 f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{\text{len } f-'1} f = (\text{the Go-board of } f)_{i+1,j}$ or $\pi_2 f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{\text{len } f-'1} f = (\text{the Go-board of } f)_{i,j+1}$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $\pi_{k+1}f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_k f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i+1,j}$ or $\pi_k f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i,j+1}$.
- (58) Suppose that
 - (i) $1 \leq i$,
 - (ii) i+1 < len the Go-board of f,
 - (iii) $1 \leq j$,
 - (iv) $j \leq$ width the Go-board of f,
 - (v) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i+1,j}) \subseteq \mathcal{L}(f), \text{ and}$
- (vi) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+2,j}) \subseteq \mathcal{L}(f).$ Then
- (vii) $\pi_1 f = (\text{the Go-board of } f)_{i+1,j}$ but $\pi_2 f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{\text{len } f-'1}f = (\text{the Go-board of } f)_{i+2,j}$ or $\pi_2 f = (\text{the Go-board of } f)_{i+2,j}$ and $\pi_{\text{len } f-'1}f = (\text{the Go-board of } f)_{i,j}$, or
- (viii) there exists k such that $1 \leq k$ and k+1 < len f and $\pi_{k+1}f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i+2,j}$ or $\pi_k f = (\text{the Go-board of } f)_{i+2,j}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i,j}$.
- (59) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \leq j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - (v) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i+1,j}) \subseteq \mathcal{L}(f), \text{ and}$

- (vi) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) \subseteq \widetilde{\mathcal{L}}(f).$ Then
- (vii) $\pi_1 f$ = (the Go-board of f)_{*i*+1,*j*} but $\pi_2 f$ = (the Go-board of f)_{*i*,*j*} and $\pi_{\text{len } f - i1} f$ = (the Go-board of f)_{*i*+1,*j*+1} or $\pi_2 f$ = (the Go-board of f)_{*i*+1,*j*+1} and $\pi_{\text{len } f - i1} f$ = (the Go-board of f)_{*i*,*j*}, or
- (viii) there exists k such that $1 \leq k$ and k+1 < len f and $\pi_{k+1}f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_k f = (\text{the Go-board of } f)_{i,j}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i+1,j+1}$ or $\pi_k f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i,j}$.
- (60) Suppose that
 - (i) $1 \leq i$,
 - (ii) $i+1 \leq \text{len the Go-board of } f$,
 - (iii) $1 \le j$,
 - (iv) $j+1 \leq$ width the Go-board of f,
 - (v) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) \subseteq \mathcal{L}(f), \text{ and}$
 - (vi) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j+1}, (\text{the Go-board of } f)_{i,j+1}) \subseteq \hat{\mathcal{L}}(f).$ Then
- (vii) $\pi_1 f = (\text{the Go-board of } f)_{i+1,j+1}$ but $\pi_2 f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{\text{len } f-'1} f = (\text{the Go-board of } f)_{i,j+1}$ or $\pi_2 f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{\text{len } f-'1} f = (\text{the Go-board of } f)_{i+1,j}$, or
- (viii) there exists k such that $1 \le k$ and k+1 < len f and $\pi_{k+1}f = (\text{the Go-board of } f)_{i+1,j+1}$ and $\pi_k f = (\text{the Go-board of } f)_{i+1,j}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i,j+1}$ or $\pi_k f = (\text{the Go-board of } f)_{i,j+1}$ and $\pi_{k+2}f = (\text{the Go-board of } f)_{i+1,j}$.
- (61) Suppose $1 \le i$ and i < len the Go-board of f and $1 \le j$ and j + 1 < width the Go-board of f. Then
 - (i) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i,j+1}) \not\subseteq \mathcal{L}(f), \text{ or }$
 - (ii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i,j+2}) \not\subseteq \mathcal{L}(f), \text{ or }$
 - (iii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) \not\subseteq \mathcal{L}(f).$
- (62) Suppose $1 \le i$ and i < lenthe Go-board of f and $1 \le j$ and j + 1 < width the Go-board of f. Then
 - (i) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) \not\subseteq \mathcal{L}(f), \text{ or }$
 - (ii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j+1}, (\text{the Go-board of } f)_{i+1,j+2}) \not\subseteq \mathcal{L}(f), \text{ or }$
- (iii) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) \not\subseteq \mathcal{L}(f).$
- (63) Suppose $1 \le j$ and j < width the Go-board of f and $1 \le i$ and i + 1 < len the Go-board of f. Then
 - (i) $\mathcal{L}((\text{the Go-board of } f)_{i,j}, (\text{the Go-board of } f)_{i+1,j}) \not\subseteq \mathcal{L}(f), \text{ or }$
 - (ii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+2,j}) \not\subseteq \mathcal{L}(f), \text{ or }$
 - (iii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j}, (\text{the Go-board of } f)_{i+1,j+1}) \not\subseteq \mathcal{L}(f).$
- (64) Suppose $1 \le j$ and j < width the Go-board of f and $1 \le i$ and i + 1 < len the Go-board of f. Then
 - (i) $\mathcal{L}((\text{the Go-board of } f)_{i,j+1}, (\text{the Go-board of } f)_{i+1,j+1}) \not\subseteq \mathcal{L}(f), \text{ or }$
 - (ii) $\mathcal{L}((\text{the Go-board of } f)_{i+1,j+1}, (\text{the Go-board of } f)_{i+2,j+1}) \not\subseteq \mathcal{L}(f), \text{ or }$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Formalized Mathematics, 5(1):97–102, 1996.
- [16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [20] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317–322, 1996.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [25] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received October 15, 1995