Decomposing a Go-Board into Cells

Yatsuka Nakamura
Shinshu University
Nagano

Andrzej Trybulec
Warsaw University
Białystok

MML Identifier: GOBOARD5.

The articles [20], [23], [6], [22], [9], [2], [14], [17], [18], [24], [1], [5], [3], [4], [21], [10], [11], [16], [15], [7], [8], [12], [13], and [19] provide the terminology and notation for this paper.

For simplicity we follow a convention: q will be a point of $\mathcal{E}_{\mathrm{T}}^{2}, i, i_{1}, i_{2}, j$, j_{1}, j_{2}, k will be natural numbers, r, s will be real numbers, and G will be a Go-board.

We now state the proposition
(1) Let M be a tabular finite sequence and given i, j. If $\langle i, j\rangle \in$ the indices of M, then $1 \leq i$ and $i \leq \operatorname{len} M$ and $1 \leq j$ and $j \leq$ width M.
Let us consider G, i. The functor $\operatorname{vstrip}(G, i)$ yielding a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def.1) (i) $\quad \operatorname{vstrip}(G, i)=\left\{[r, s]:\left(G_{i, 1}\right)_{\mathbf{1}} \leq r \wedge r \leq\left(G_{i+1,1}\right)_{\mathbf{1}}\right\}$ if $1 \leq i$ and $i<\operatorname{len} G$,
(ii) $\operatorname{vstrip}(G, i)=\left\{[r, s]:\left(G_{i, 1}\right)_{\mathbf{1}} \leq r\right\}$ if $i \geq \operatorname{len} G$,
(iii) $\operatorname{vstrip}(G, i)=\left\{[r, s]: r \leq\left(G_{i+1,1}\right)_{\mathbf{1}}\right\}$, otherwise.

The functor hstrip (G, i) yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def.2) (i) $\operatorname{hstrip}(G, i)=\left\{[r, s]:\left(G_{1, i}\right)_{\mathbf{2}} \leq s \wedge s \leq\left(G_{1, i+1}\right)_{\mathbf{2}}\right\}$ if $1 \leq i$ and $i<\operatorname{width} G$,
(ii) $\operatorname{hstrip}(G, i)=\left\{[r, s]:\left(G_{1, i}\right)_{\mathbf{2}} \leq s\right\}$ if $i \geq$ width G,
(iii) $\operatorname{hstrip}(G, i)=\left\{[r, s]: s \leq\left(G_{1, i+1}\right)_{\mathbf{2}}\right\}$, otherwise.

We now state a number of propositions:
(2) If $1 \leq j$ and $j \leq$ width G and $1 \leq i$ and $i \leq \operatorname{len} G$, then $\left(G_{i, j}\right)_{\mathbf{2}}=$ $\left(G_{1, j}\right)_{\mathbf{2}}$.
(3) If $1 \leq j$ and $j \leq$ width G and $1 \leq i$ and $i \leq \operatorname{len} G$, then $\left(G_{i, j}\right)_{\mathbf{1}}=$ $\left(G_{i, 1}\right)_{1}$.
(4) If $1 \leq j$ and $j \leq$ width G and $1 \leq i_{1}$ and $i_{1}<i_{2}$ and $i_{2} \leq \operatorname{len} G$, then $\left(G_{i_{1}, j}\right)_{1}<\left(G_{i_{2}, j}\right)_{1}$.
(5) If $1 \leq j_{1}$ and $j_{1}<j_{2}$ and $j_{2} \leq$ width G and $1 \leq i$ and $i \leq \operatorname{len} G$, then $\left(G_{i, j_{1}}\right)_{\mathbf{2}}<\left(G_{i, j_{2}}\right)_{\mathbf{2}}$.
(6) If $1 \leq j$ and $j<$ width G and $1 \leq i$ and $i \leq \operatorname{len} G$, then hstrip $(G, j)=$ $\left\{[r, s]:\left(G_{i, j}\right)_{\mathbf{2}} \leq s \wedge s \leq\left(G_{i, j+1}\right)_{\mathbf{2}}\right\}$.
(7) If $1 \leq i$ and $i \leq \operatorname{len} G$, then hstrip $(G$, width $G)=\left\{[r, s]:\left(G_{i, \text { width } G}\right)_{\mathbf{2}} \leq\right.$ $s\}$.
(8) If $1 \leq i$ and $i \leq \operatorname{len} G$, then $\operatorname{hstrip}(G, 0)=\left\{[r, s]: s \leq\left(G_{i, 1}\right)_{\mathbf{2}}\right\}$.
(9) If $1 \leq i$ and $i<\operatorname{len} G$ and $1 \leq j$ and $j \leq \operatorname{width} G$, then $\operatorname{vstrip}(G, i)=$ $\left\{[r, s]:\left(G_{i, j}\right)_{\mathbf{1}} \leq r \wedge r \leq\left(G_{i+1, j}\right)_{\mathbf{1}}\right\}$.
(10) If $1 \leq j$ and $j \leq$ width G, then $\operatorname{vstrip}(G, \operatorname{len} G)=\left\{[r, s]:\left(G_{\operatorname{len} G, j}\right)_{1} \leq\right.$ $r\}$.
(11) If $1 \leq j$ and $j \leq \operatorname{width} G$, then $\operatorname{vstrip}(G, 0)=\left\{[r, s]: r \leq\left(G_{1, j}\right)_{1}\right\}$.

Let G be a Go-board and let us consider i, j. The functor $\operatorname{cell}(G, i, j)$ yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def.3) $\quad \operatorname{cell}(G, i, j)=\operatorname{vstrip}(G, i) \cap \operatorname{hstrip}(G, j)$.
A finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is s.c.c. if:
(Def.4) For all i, j such that $i+1<j$ but $i>1$ and $j<$ len it or $j+1<$ len it holds $\mathcal{L}(\mathrm{it}, i) \cap \mathcal{L}(\mathrm{it}, j)=\emptyset$.
A non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is standard if:
(Def.5) It is a sequence which elements belong to the Go-board of it.
One can verify that there exists a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ which is non constant special unfolded circular s.c.c. and standard.

We now state two propositions:
(12) Let f be a standard non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $k \in \operatorname{dom} f$. Then there exist i, j such that $\langle i, j\rangle \in$ the indices of the Go-board of f and $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$.
(13) Let f be a standard non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. Suppose $n \in \operatorname{dom} f$ and $n+1 \in \operatorname{dom} f$. Let m, k, i, j be natural numbers. Suppose that
(i) $\langle m, k\rangle \in$ the indices of the Go-board of f,
(ii) $\langle i, j\rangle \in$ the indices of the Go-board of f,
(iii) $\pi_{n} f=(\text { the Go-board of } f)_{m, k}$, and
(iv) $\pi_{n+1} f=(\text { the Go-board of } f)_{i, j}$.

Then $|m-i|+|k-j|=1$.
A special circular sequence is a special unfolded circular s.c.c. non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$.

In the sequel f is a standard special circular sequence.
Let us consider f, k. Let us assume that $1 \leq k$ and $k+1 \leq \operatorname{len} f$. The functor rightcell (f, k) yielding a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by the condition (Def.6).
(Def.6) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose that
(i) $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of the Go-board of f,
(ii) $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of the Go-board of f,
(iii) $\pi_{k} f=(\text { the Go-board of } f)_{i_{1}, j_{1}}$, and
(iv) $\pi_{k+1} f=(\text { the Go-board of } f)_{i_{2}, j_{2}}$.

Then
(v) $\quad i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and $\operatorname{rightcell}(f, k)=\operatorname{cell}($ the Go-board of f, i_{1}, j_{1}), or
(vi) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and $\operatorname{rightcell}(f, k)=\operatorname{cell}($ the Go-board of f, $i_{1}, j_{1}-^{\prime} 1$), or
(vii) $\quad i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and $\operatorname{rightcell}(f, k)=\operatorname{cell}($ the Go-board of f, i_{2}, j_{2}), or
(viii) $\quad i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and $\operatorname{rightcell}(f, k)=\operatorname{cell}($ the Go-board of f, $\left.i_{1}-^{\prime} 1, j_{2}\right)$.
The functor leftcell (f, k) yielding a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by the condition (Def.7).
(Def.7) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose that
(i) $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of the Go-board of f,
(ii) $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of the Go-board of f,
(iii) $\pi_{k} f=(\text { the Go-board of } f)_{i_{1}, j_{1}}$, and
(iv) $\pi_{k+1} f=(\text { the Go-board of } f)_{i_{2}, j_{2}}$.

Then
(v) $\quad i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and leftcell $(f, k)=\operatorname{cell}($ the Go-board of f, $i_{1}-^{\prime} 1, j_{1}$), or
(vi) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and $\operatorname{leftcell}(f, k)=\operatorname{cell}($ the Go-board of f, i_{1}, j_{1}), or
(vii) $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and $\operatorname{leftcell}(f, k)=\operatorname{cell}($ the Go-board of f, $i_{2}, j_{2}-^{\prime} 1$), or
(viii) $i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and $\operatorname{leftcell}(f, k)=\operatorname{cell}($ the Go-board of f, $\left.i_{1}, j_{2}\right)$.
Next we state a number of propositions:
(14) If $i<\operatorname{len} G$ and $1 \leq j$ and $j<$ width G, then $\mathcal{L}\left(G_{i+1, j}, G_{i+1, j+1}\right) \subseteq$ $\operatorname{vstrip}(G, i)$.
(15) If $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j<$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i, j+1}\right) \subseteq$ $\operatorname{vstrip}(G, i)$.
(16) If $j<$ width G and $1 \leq i$ and $i<\operatorname{len} G$, then $\mathcal{L}\left(G_{i, j+1}, G_{i+1, j+1}\right) \subseteq$ hstrip (G, j).
(17) If $1 \leq j$ and $j \leq$ width G and $1 \leq i$ and $i<\operatorname{len} G$, then $\mathcal{L}\left(G_{i, j}, G_{i+1, j}\right) \subseteq$ hstrip (G, j).
(18) If $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j+1 \leq$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i, j+1}\right) \subseteq \operatorname{hstrip}(G, j)$.
(19) If $i<\operatorname{len} G$ and $1 \leq j$ and $j<$ width G, then $\mathcal{L}\left(G_{i+1, j}, G_{i+1, j+1}\right) \subseteq$ $\operatorname{cell}(G, i, j)$.
(20) If $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j<$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i, j+1}\right) \subseteq$ $\operatorname{cell}(G, i, j)$.
(21) If $1 \leq j$ and $j \leq$ width G and $1 \leq i$ and $i+1 \leq \operatorname{len} G$, then $\mathcal{L}\left(G_{i, j}, G_{i+1, j}\right) \subseteq \operatorname{vstrip}(G, i)$.
(22) If $j<$ width G and $1 \leq i$ and $i<\operatorname{len} G$, then $\mathcal{L}\left(G_{i, j+1}, G_{i+1, j+1}\right) \subseteq$ $\operatorname{cell}(G, i, j)$.
(23) If $1 \leq i$ and $i<\operatorname{len} G$ and $1 \leq j$ and $j \leq$ width G, then $\mathcal{L}\left(G_{i, j}, G_{i+1, j}\right) \subseteq$ $\operatorname{cell}(G, i, j)$.
(24) If $i+1 \leq \operatorname{len} G$, then $\operatorname{vstrip}(G, i) \cap \operatorname{vstrip}(G, i+1)=\left\{q: q_{\mathbf{1}}=\left(G_{i+1,1}\right)_{\mathbf{1}}\right\}$.
(25) If $j+1 \leq$ width G, then $\operatorname{hstrip}(G, j) \cap \operatorname{hstrip}(G, j+1)=\left\{q: q_{2}=\right.$ $\left.\left(G_{1, j+1}\right)_{\mathbf{2}}\right\}$.
(26) For every Go-board G such that $i<\operatorname{len} G$ and $1 \leq j$ and $j<$ width G holds $\operatorname{cell}(G, i, j) \cap \operatorname{cell}(G, i+1, j)=\mathcal{L}\left(G_{i+1, j}, G_{i+1, j+1}\right)$.
(27) For every Go-board G such that $j<$ width G and $1 \leq i$ and $i<\operatorname{len} G$ holds $\operatorname{cell}(G, i, j) \cap \operatorname{cell}(G, i, j+1)=\mathcal{L}\left(G_{i, j+1}, G_{i+1, j+1}\right)$.
(28) Suppose that
(i) $1 \leq k$,
(ii) $k+1 \leq \operatorname{len} f$,
(iii) $\langle i+1, j\rangle \in$ the indices of the Go-board of f,
(iv) $\langle i+1, j+1\rangle \in$ the indices of the Go-board of f,
(v) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i+1, j}$, and
(vi) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$.

Then leftcell $(f, k)=\operatorname{cell}($ the Go-board of $f, i, j)$ and $\operatorname{rightcell}(f, k)=$ cell(the Go-board of $f, i+1, j$).
(29) Suppose that
(i) $1 \leq k$,
(ii) $k+1 \leq \operatorname{len} f$,
(iii) $\langle i, j+1\rangle \in$ the indices of the Go-board of f,
(iv) $\langle i+1, j+1\rangle \in$ the indices of the Go-board of f,
(v) $\quad \pi_{k} f=(\text { the Go-board of } f)_{i, j+1}$, and
(vi) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j+1}$.

Then leftcell $(f, k)=\operatorname{cell}($ the Go-board of $f, i, j+1)$ and $\operatorname{rightcell}(f, k)=$ cell(the Go-board of f, i, j).
(30) Suppose that
(i) $1 \leq k$,
(ii) $k+1 \leq \operatorname{len} f$,
(iii) $\langle i, j+1\rangle \in$ the indices of the Go-board of f,
(iv) $\langle i+1, j+1\rangle \in$ the indices of the Go-board of f,
(v) $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k+1} f=(\text { the Go-board of } f)_{i, j+1}$.

Then leftcell $(f, k)=\operatorname{cell}($ the Go-board of $f, i, j)$ and $\operatorname{rightcell}(f, k)=$ cell(the Go-board of $f, i, j+1$).
(31) Suppose that
(i) $1 \leq k$,
(ii) $k+1 \leq \operatorname{len} f$,
(iii) $\langle i+1, j+1\rangle \in$ the indices of the Go-board of f,
(iv) $\langle i+1, j\rangle \in$ the indices of the Go-board of f,
(v) $\pi_{k} f=(\text { the Go-board of } f)_{i+1, j+1}$, and
(vi) $\pi_{k+1} f=(\text { the Go-board of } f)_{i+1, j}$.

Then leftcell $(f, k)=\operatorname{cell}($ the Go-board of $f, i+1, j)$ and $\operatorname{rightcell}(f, k)=$ cell(the Go-board of f, i, j).
(32) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then leftcell $(f, k) \cap \operatorname{rightcell}(f, k)=\mathcal{L}(f, k)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[11] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[15] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[16] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, $1(\mathbf{2}): 263-264,1990$.
[18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[19] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 26, 1995

