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The articles [20], [23], [6], [22], [9], [2], [14], [17], [18], [24], [1], [5], [3], [4], [21],
[10], [11], [16], [15], [7], [8], [12], [13], and [19] provide the terminology and
notation for this paper.

For simplicity we follow a convention: q will be a point of E 2
T, i, i1, i2, j,

j1, j2, k will be natural numbers, r, s will be real numbers, and G will be a
Go-board.

We now state the proposition

(1) Let M be a tabular finite sequence and given i, j. If 〈〈i, j〉〉 ∈ the indices
of M , then 1 ≤ i and i ≤ len M and 1 ≤ j and j ≤ width M.

Let us consider G, i. The functor vstrip(G, i) yielding a subset of the carrier
of E2

T is defined as follows:

(Def.1) (i) vstrip(G, i) = {[r, s] : (Gi,1)1 ≤ r ∧ r ≤ (Gi+1,1)1} if 1 ≤ i and
i < len G,

(ii) vstrip(G, i) = {[r, s] : (Gi,1)1 ≤ r} if i ≥ len G,

(iii) vstrip(G, i) = {[r, s] : r ≤ (Gi+1,1)1}, otherwise.

The functor hstrip(G, i) yields a subset of the carrier of E 2
T and is defined by:

(Def.2) (i) hstrip(G, i) = {[r, s] : (G1,i)2 ≤ s ∧ s ≤ (G1,i+1)2} if 1 ≤ i and
i < width G,

(ii) hstrip(G, i) = {[r, s] : (G1,i)2 ≤ s} if i ≥ widthG,

(iii) hstrip(G, i) = {[r, s] : s ≤ (G1,i+1)2}, otherwise.

We now state a number of propositions:

(2) If 1 ≤ j and j ≤ widthG and 1 ≤ i and i ≤ len G, then (Gi,j)2 =
(G1,j)2.

(3) If 1 ≤ j and j ≤ widthG and 1 ≤ i and i ≤ len G, then (Gi,j)1 =
(Gi,1)1.

(4) If 1 ≤ j and j ≤ widthG and 1 ≤ i1 and i1 < i2 and i2 ≤ len G, then
(Gi1,j)1 < (Gi2,j)1.
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(5) If 1 ≤ j1 and j1 < j2 and j2 ≤ width G and 1 ≤ i and i ≤ len G, then
(Gi,j1)2 < (Gi,j2)2.

(6) If 1 ≤ j and j < widthG and 1 ≤ i and i ≤ len G, then hstrip(G, j) =
{[r, s] : (Gi,j)2 ≤ s ∧ s ≤ (Gi,j+1)2}.

(7) If 1 ≤ i and i ≤ len G, then hstrip(G,width G) = {[r, s] : (Gi,width G)2 ≤
s}.

(8) If 1 ≤ i and i ≤ len G, then hstrip(G, 0) = {[r, s] : s ≤ (Gi,1)2}.

(9) If 1 ≤ i and i < len G and 1 ≤ j and j ≤ widthG, then vstrip(G, i) =
{[r, s] : (Gi,j)1 ≤ r ∧ r ≤ (Gi+1,j)1}.

(10) If 1 ≤ j and j ≤ width G, then vstrip(G, len G) = {[r, s] : (Glen G,j)1 ≤
r}.

(11) If 1 ≤ j and j ≤ widthG, then vstrip(G, 0) = {[r, s] : r ≤ (G1,j)1}.

Let G be a Go-board and let us consider i, j. The functor cell(G, i, j) yields
a subset of the carrier of E2

T and is defined as follows:

(Def.3) cell(G, i, j) = vstrip(G, i) ∩ hstrip(G, j).

A finite sequence of elements of E2
T is s.c.c. if:

(Def.4) For all i, j such that i + 1 < j but i > 1 and j < len it or j + 1 < len it
holds L(it, i) ∩ L(it, j) = ∅.

A non empty finite sequence of elements of E 2
T is standard if:

(Def.5) It is a sequence which elements belong to the Go-board of it.

One can verify that there exists a non empty finite sequence of elements of
E2

T which is non constant special unfolded circular s.c.c. and standard.
We now state two propositions:

(12) Let f be a standard non empty finite sequence of elements of E 2
T. Sup-

pose k ∈ dom f. Then there exist i, j such that 〈〈i, j〉〉 ∈ the indices of the
Go-board of f and πkf = (the Go-board of f)i,j.

(13) Let f be a standard non empty finite sequence of elements of E 2
T and

let n be a natural number. Suppose n ∈ dom f and n + 1 ∈ dom f. Let
m, k, i, j be natural numbers. Suppose that

(i) 〈〈m, k〉〉 ∈ the indices of the Go-board of f ,
(ii) 〈〈i, j〉〉 ∈ the indices of the Go-board of f ,
(iii) πnf = (the Go-board of f)m,k, and
(iv) πn+1f = (the Go-board of f)i,j.

Then |m − i| + |k − j| = 1.

A special circular sequence is a special unfolded circular s.c.c. non empty
finite sequence of elements of E2

T.
In the sequel f is a standard special circular sequence.
Let us consider f , k. Let us assume that 1 ≤ k and k+1 ≤ len f. The functor

rightcell(f, k) yielding a subset of the carrier of E 2
T is defined by the condition

(Def.6).

(Def.6) Let i1, j1, i2, j2 be natural numbers. Suppose that
(i) 〈〈i1, j1〉〉 ∈ the indices of the Go-board of f ,
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(ii) 〈〈i2, j2〉〉 ∈ the indices of the Go-board of f ,
(iii) πkf = (the Go-board of f)i1,j1, and
(iv) πk+1f = (the Go-board of f)i2,j2.

Then
(v) i1 = i2 and j1 + 1 = j2 and rightcell(f, k) = cell(the Go-board of f ,

i1, j1), or
(vi) i1 + 1 = i2 and j1 = j2 and rightcell(f, k) = cell(the Go-board of f ,

i1, j1 −
′ 1), or

(vii) i1 = i2 + 1 and j1 = j2 and rightcell(f, k) = cell(the Go-board of f ,
i2, j2), or

(viii) i1 = i2 and j1 = j2 + 1 and rightcell(f, k) = cell(the Go-board of f ,
i1 −

′ 1, j2).

The functor leftcell(f, k) yielding a subset of the carrier of E 2
T is defined by the

condition (Def.7).

(Def.7) Let i1, j1, i2, j2 be natural numbers. Suppose that
(i) 〈〈i1, j1〉〉 ∈ the indices of the Go-board of f ,
(ii) 〈〈i2, j2〉〉 ∈ the indices of the Go-board of f ,
(iii) πkf = (the Go-board of f)i1,j1, and
(iv) πk+1f = (the Go-board of f)i2,j2.

Then
(v) i1 = i2 and j1 + 1 = j2 and leftcell(f, k) = cell(the Go-board of f ,

i1 −
′ 1, j1), or

(vi) i1 + 1 = i2 and j1 = j2 and leftcell(f, k) = cell(the Go-board of f ,
i1, j1), or

(vii) i1 = i2 + 1 and j1 = j2 and leftcell(f, k) = cell(the Go-board of f ,
i2, j2 −

′ 1), or
(viii) i1 = i2 and j1 = j2 + 1 and leftcell(f, k) = cell(the Go-board of f ,

i1, j2).

Next we state a number of propositions:

(14) If i < len G and 1 ≤ j and j < widthG, then L(Gi+1,j , Gi+1,j+1) ⊆
vstrip(G, i).

(15) If 1 ≤ i and i ≤ len G and 1 ≤ j and j < widthG, then L(Gi,j , Gi,j+1) ⊆
vstrip(G, i).

(16) If j < width G and 1 ≤ i and i < len G, then L(Gi,j+1, Gi+1,j+1) ⊆
hstrip(G, j).

(17) If 1 ≤ j and j ≤ width G and 1 ≤ i and i < len G, then L(Gi,j , Gi+1,j) ⊆
hstrip(G, j).

(18) If 1 ≤ i and i ≤ len G and 1 ≤ j and j + 1 ≤ widthG, then
L(Gi,j , Gi,j+1) ⊆ hstrip(G, j).

(19) If i < len G and 1 ≤ j and j < widthG, then L(Gi+1,j , Gi+1,j+1) ⊆
cell(G, i, j).

(20) If 1 ≤ i and i ≤ len G and 1 ≤ j and j < widthG, then L(Gi,j , Gi,j+1) ⊆
cell(G, i, j).
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(21) If 1 ≤ j and j ≤ width G and 1 ≤ i and i + 1 ≤ len G, then
L(Gi,j, Gi+1,j) ⊆ vstrip(G, i).

(22) If j < width G and 1 ≤ i and i < len G, then L(Gi,j+1, Gi+1,j+1) ⊆
cell(G, i, j).

(23) If 1 ≤ i and i < len G and 1 ≤ j and j ≤ widthG, then L(Gi,j , Gi+1,j) ⊆
cell(G, i, j).

(24) If i+1 ≤ len G, then vstrip(G, i)∩vstrip(G, i+1) = {q : q1 = (Gi+1,1)1}.

(25) If j + 1 ≤ widthG, then hstrip(G, j) ∩ hstrip(G, j + 1) = {q : q2 =
(G1,j+1)2}.

(26) For every Go-board G such that i < len G and 1 ≤ j and j < width G

holds cell(G, i, j) ∩ cell(G, i + 1, j) = L(Gi+1,j , Gi+1,j+1).

(27) For every Go-board G such that j < width G and 1 ≤ i and i < len G

holds cell(G, i, j) ∩ cell(G, i, j + 1) = L(Gi,j+1, Gi+1,j+1).

(28) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,

(iii) 〈〈i + 1, j〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i + 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i+1,j, and
(vi) πk+1f = (the Go-board of f)i+1,j+1.

Then leftcell(f, k) = cell(the Go-board of f , i, j) and rightcell(f, k) =
cell(the Go-board of f , i + 1, j).

(29) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,

(iii) 〈〈i, j + 1〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i + 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i,j+1, and
(vi) πk+1f = (the Go-board of f)i+1,j+1.

Then leftcell(f, k) = cell(the Go-board of f , i, j + 1) and rightcell(f, k) =
cell(the Go-board of f , i, j).

(30) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,

(iii) 〈〈i, j + 1〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i + 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i+1,j+1, and
(vi) πk+1f = (the Go-board of f)i,j+1.

Then leftcell(f, k) = cell(the Go-board of f , i, j) and rightcell(f, k) =
cell(the Go-board of f , i, j + 1).

(31) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,
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(iii) 〈〈i + 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i + 1, j〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i+1,j+1, and
(vi) πk+1f = (the Go-board of f)i+1,j.

Then leftcell(f, k) = cell(the Go-board of f , i + 1, j) and rightcell(f, k) =
cell(the Go-board of f , i, j).

(32) If 1 ≤ k and k + 1 ≤ len f, then leftcell(f, k) ∩ rightcell(f, k) = L(f, k).
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