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1. Directed Sets

One can check that there exists a coherent space which is finite. Let us
observe that a set is binary complete if:

(Def.1) For every set A such that for all sets a, b such that a ∈ A and b ∈ A
holds a ∪ b ∈ it holds

⋃
A ∈ it.

Let X be a set. The functor FlatCoh(X) yielding a set is defined as follows:

(Def.2) FlatCoh(X) = CohSp(△X).

The functor SubFin(X) yielding a subset of X is defined by:

(Def.3) For every set x holds x ∈ SubFin(X) iff x ∈ X and x is finite.

One can prove the following three propositions:

(1) For all sets X, x holds x ∈ FlatCoh(X) iff x = ∅ or there exists a set y
such that x = {y} and y ∈ X.

(2) For every set X holds
⋃

FlatCoh(X) = X.

(3) For every finite down-closed set X holds SubFin(X) = X.

One can check that {∅} is down-closed and binary complete. Let X be a set.
One can check that 2X is down-closed and binary complete and FlatCoh(X) is
non empty down-closed and binary complete.
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Let C be a non empty down-closed set. Observe that SubFin(C) is non
empty and down-closed.

We now state the proposition

(4) Web({∅}) = ∅.

The scheme MinimalElement wrt Incl concerns sets A, B and a unary pred-
icate P, and states that:

There exists a set a such that a ∈ B and P[a] and for every set b
such that b ∈ B and P[b] and b ⊆ a holds b = a

provided the following requirements are met:
• A ∈ B,
• P[A],
• A is finite.
Let X be a set. One can check that there exists a subset of X which is finite.
Let C be a coherent space. Observe that there exists an element of C which

is finite.
Let X be a set. We say that X is ∪-directed if and only if:

(Def.4) For every finite subset Y of X there exists a set a such that
⋃

Y ⊆ a
and a ∈ X.

We say that X is ∩-directed if and only if:

(Def.5) For every finite subset Y of X there exists a set a such that for every
set y such that y ∈ Y holds a ⊆ y and a ∈ X.

Let us note that every set which is ∪-directed is also non empty and every
set which is ∩-directed is also non empty.

We now state several propositions:

(5) Let X be a set. Suppose X is ∪-directed. Let a, b be sets. If a ∈ X
and b ∈ X, then there exists a set c such that a ∪ b ⊆ c and c ∈ X.

(6) Let X be a non empty set. Suppose that for all sets a, b such that
a ∈ X and b ∈ X there exists a set c such that a∪ b ⊆ c and c ∈ X. Then
X is ∪-directed.

(7) Let X be a set. Suppose X is ∩-directed. Let a, b be sets. If a ∈ X
and b ∈ X, then there exists a set c such that c ⊆ a ∩ b and c ∈ X.

(8) Let X be a non empty set. Suppose that for all sets a, b such that
a ∈ X and b ∈ X there exists a set c such that c ⊆ a∩ b and c ∈ X. Then
X is ∩-directed.

(9) For every set x holds {x} is ∪-directed and ∩-directed.

(10) For all sets x, y holds {x, y, x ∪ y} is ∪-directed.

(11) For all sets x, y holds {x, y, x ∩ y} is ∩-directed.

Let us observe that there exists a set which is ∪-directed ∩-directed and
finite.

Let C be a non empty set. Observe that there exists a subset of C which is
∪-directed ∩-directed and finite.

We now state the proposition
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(12) For every set X holds Fin X is ∪-directed and ∩-directed.

Let X be a set. Observe that Fin X is ∪-directed and ∩-directed.
Let C be a down-closed non empty set. Note that there exists a subset of C

which is preboolean and non empty.
Let C be a down-closed non empty set and let a be an element of C. Then

Fin a is a preboolean non empty subset of C.
One can prove the following proposition

(13) Let X be a non empty set and let Y be a set. Suppose X is ∪-directed
and Y ⊆

⋃
X and Y is finite. Then there exists a set Z such that Z ∈ X

and Y ⊆ Z.

Let X be a set. We say that X is ∩-closed if and only if:

(Def.6) For all sets x, y such that x ∈ X and y ∈ X holds x ∩ y ∈ X.

We say that X is closed under directed unions if and only if:

(Def.7) For every subset A of X such that A is ∪-directed holds
⋃

A ∈ X.

One can check that every set which is down-closed is also ∩-closed.
Next we state two propositions:

(14) For every coherent space C and for all elements x, y of C holds x∩y ∈ C.

(15) For every coherent space C and for every ∪-directed subset A of C holds
⋃

A ∈ C.

Let us note that every coherent space is closed under directed unions.
Let us note that there exists a coherent space which is ∩-closed and closed

under directed unions.
Let C be a closed under directed unions non empty set and let A be a ∪-

directed subset of C. Then
⋃

A is an element of C.
Let X, Y be sets. We say that X includes lattice of Y if and only if:

(Def.8) For all sets a, b such that a ∈ Y and b ∈ Y holds a∩b ∈ X and a∪b ∈ X.

The following proposition is true

(16) For every non empty set X such that X includes lattice of X holds X
is ∪-directed and ∩-directed.

Let X, x, y be sets. We say that X includes lattice of x, y if and only if:

(Def.9) X includes lattice of {x, y}.

One can prove the following proposition

(17) For all sets X, x, y holds X includes lattice of x, y iff x ∈ X and y ∈ X
and x ∩ y ∈ X and x ∪ y ∈ X.

2. Continuous, Stable, and Linear Functions

Let f be a function. We say that f is preserving arbitrary unions if and only
if:

(Def.10) For every subset A of dom f such that
⋃

A ∈ dom f holds f(
⋃

A) =
⋃

(f◦A).
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We say that f is preserving directed unions if and only if:

(Def.11) For every subset A of dom f such that A is ∪-directed and
⋃

A ∈ dom f
holds f(

⋃
A) =

⋃
(f◦A).

Let f be a function. We say that f is ⊆-monotone if and only if:

(Def.12) For all sets a, b such that a ∈ dom f and b ∈ dom f and a ⊆ b holds
f(a) ⊆ f(b).

We say that f is preserving binary intersections if and only if:

(Def.13) For all sets a, b such that dom f includes lattice of a, b holds f(a∩ b) =
f(a) ∩ f(b).

Let us note that every function which is preserving directed unions is also
⊆-monotone and every function which is preserving arbitrary unions is also
preserving directed unions.

Next we state two propositions:

(18) Let f be a function. Suppose f is preserving arbitrary unions. Let
x, y be sets. If x ∈ dom f and y ∈ dom f and x ∪ y ∈ dom f, then
f(x ∪ y) = f(x) ∪ f(y).

(19) For every function f such that f is preserving arbitrary unions holds
f(∅) = ∅.

Let C1, C2 be coherent spaces. Note that there exists a function from C1 into
C2 which is preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. One can verify that there exists a many sorted
set indexed by C which is preserving arbitrary unions and preserving binary
intersections.

Let f be a function. We say that f is continuous if and only if:

(Def.14) dom f is closed under directed unions and f is preserving directed
unions.

Let f be a function. We say that f is stable if and only if:

(Def.15) dom f is ∩-closed and f is continuous and preserving binary intersec-
tions.

Let f be a function. We say that f is linear if and only if:

(Def.16) f is stable and preserving arbitrary unions.

One can check the following observations:

∗ every function which is continuous is also preserving directed unions,

∗ every function which is stable is also preserving binary intersections and
continuous, and

∗ every function which is linear is also preserving arbitrary unions and
stable.

Let X be a closed under directed unions set. Note that every many sorted
set indexed by X which is preserving directed unions is also continuous.

Let X be a ∩-closed set. Observe that every many sorted set indexed by X
which is continuous and preserving binary intersections is also stable.
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Let us note that every function which is stable and preserving arbitrary
unions is also linear.

Note that there exists a function which is linear. Let C be a coherent space.
One can check that there exists a many sorted set indexed by C which is linear.
Let B be a coherent space. One can check that there exists a function from B
into C which is linear.

Let f be a continuous function. One can verify that dom f is closed under
directed unions.

Let f be a stable function. One can verify that dom f is ∩-closed.
We now state several propositions:

(20) For every set X holds
⋃

Fin X = X.

(21) For every continuous function f such that dom f is down-closed and for
every set a such that a ∈ dom f holds f(a) =

⋃
(f◦ Fin a).

(22) Let f be a function. Suppose dom f is down-closed. Then f is contin-
uous if and only if the following conditions are satisfied:

(i) dom f is closed under directed unions,
(ii) f is ⊆-monotone, and
(iii) for all sets a, y such that a ∈ dom f and y ∈ f(a) there exists a set b

such that b is finite and b ⊆ a and y ∈ f(b).

(23) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is stable if and only if the following conditions
are satisfied:

(i) f is ⊆-monotone, and
(ii) for all sets a, y such that a ∈ dom f and y ∈ f(a) there exists a set b

such that b is finite and b ⊆ a and y ∈ f(b) and for every set c such that
c ⊆ a and y ∈ f(c) holds b ⊆ c.

(24) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is linear if and only if the following conditions
are satisfied:

(i) f is ⊆-monotone, and
(ii) for all sets a, y such that a ∈ dom f and y ∈ f(a) there exists a set x

such that x ∈ a and y ∈ f({x}) and for every set b such that b ⊆ a and
y ∈ f(b) holds x ∈ b.

3. Graph of Continuous Function

Let f be a function. The functor graph(f) yielding a set is defined as follows:

(Def.17) For every set x holds x ∈ graph(f) iff there exists a finite set y and
there exists a set z such that x = 〈〈y, z〉〉 and y ∈ dom f and z ∈ f(y).

Let C1, C2 be non empty sets and let f be a function from C1 into C2. Then
graph(f) is a subset of [: C1,

⋃
C2 :].

Let f be a function. Note that graph(f) is relation-like.
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Next we state several propositions:

(25) For every function f and for all sets x, y holds 〈〈x, y〉〉 ∈ graph(f) iff x
is finite and x ∈ dom f and y ∈ f(x).

(26) Let f be a ⊆-monotone function and let a, b be sets. Suppose b ∈ dom f
and a ⊆ b and b is finite. Let y be a set. If 〈〈a, y〉〉 ∈ graph(f), then 〈〈b,
y〉〉 ∈ graph(f).

(27) Let C1, C2 be coherent spaces, and let f be a function from C1 into C2,
and let a be an element of C1, and let y1, y2 be sets. If 〈〈a, y1〉〉 ∈ graph(f)
and 〈〈a, y2〉〉 ∈ graph(f), then {y1, y2} ∈ C2.

(28) Let C1, C2 be coherent spaces, and let f be a ⊆-monotone function
from C1 into C2, and let a, b be elements of C1. Suppose a ∪ b ∈ C1.
Let y1, y2 be sets. If 〈〈a, y1〉〉 ∈ graph(f) and 〈〈b, y2〉〉 ∈ graph(f), then
{y1, y2} ∈ C2.

(29) For all coherent spaces C1, C2 and for all continuous functions f , g from
C1 into C2 such that graph(f) = graph(g) holds f = g.

(30) Let C1, C2 be coherent spaces and let X be a subset of [: C1,
⋃

C2 :].
Suppose that

(i) for every set x such that x ∈ X holds x1 is finite,
(ii) for all finite elements a, b of C1 such that a ⊆ b and for every set y

such that 〈〈a, y〉〉 ∈ X holds 〈〈b, y〉〉 ∈ X, and
(iii) for every finite element a of C1 and for all sets y1, y2 such that 〈〈a,

y1〉〉 ∈ X and 〈〈a, y2〉〉 ∈ X holds {y1, y2} ∈ C2.
Then there exists a continuous function f from C1 into C2 such that
X = graph(f).

(31) Let C1, C2 be coherent spaces, and let f be a continuous function from
C1 into C2, and let a be an element of C1. Then f(a) = (graph(f))◦ Fin a.

4. Trace of Stable Function

Let f be a function. The functor Trace(f) yields a set and is defined by the
condition (Def.18).

(Def.18) Let x be a set. Then x ∈ Trace(f) if and only if there exist sets a, y
such that x = 〈〈a, y〉〉 and a ∈ dom f and y ∈ f(a) and for every set b such
that b ∈ dom f and b ⊆ a and y ∈ f(b) holds a = b.

Next we state the proposition

(32) Let f be a function and let a, y be sets. Then 〈〈a, y〉〉 ∈ Trace(f) if and
only if the following conditions are satisfied:

(i) a ∈ dom f,
(ii) y ∈ f(a), and
(iii) for every set b such that b ∈ dom f and b ⊆ a and y ∈ f(b) holds a = b.

Let C1, C2 be non empty sets and let f be a function from C1 into C2. Then
Trace(f) is a subset of [: C1,

⋃
C2 :].
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Let f be a function. One can check that Trace(f) is relation-like.

Next we state a number of propositions:

(33) For every continuous function f such that dom f is down-closed holds
Trace(f) ⊆ graph(f).

(34) Let f be a continuous function. Suppose dom f is down-closed. Let a,
y be sets. If 〈〈a, y〉〉 ∈ Trace(f), then a is finite.

(35) Let C1, C2 be coherent spaces, and let f be a ⊆-monotone function from
C1 into C2, and let a1, a2 be sets. Suppose a1 ∪ a2 ∈ C1. Let y1, y2 be
sets. If 〈〈a1, y1〉〉 ∈ Trace(f) and 〈〈a2, y2〉〉 ∈ Trace(f), then {y1, y2} ∈ C2.

(36) Let C1, C2 be coherent spaces, and let f be a preserving binary inter-
sections function from C1 into C2, and let a1, a2 be sets. If a1 ∪ a2 ∈ C1,
then for every set y such that 〈〈a1, y〉〉 ∈ Trace(f) and 〈〈a2, y〉〉 ∈ Trace(f)
holds a1 = a2.

(37) Let C1, C2 be coherent spaces and let f , g be stable functions from C1

into C2. If Trace(f) ⊆ Trace(g), then for every element a of C1 holds
f(a) ⊆ g(a).

(38) For all coherent spaces C1, C2 and for all stable functions f , g from C1

into C2 such that Trace(f) = Trace(g) holds f = g.

(39) Let C1, C2 be coherent spaces and let X be a subset of [:C1,
⋃

C2 :].
Suppose that

(i) for every set x such that x ∈ X holds x1 is finite,

(ii) for all elements a, b of C1 such that a ∪ b ∈ C1 and for all sets y1, y2

such that 〈〈a, y1〉〉 ∈ X and 〈〈b, y2〉〉 ∈ X holds {y1, y2} ∈ C2, and

(iii) for all elements a, b of C1 such that a∪ b ∈ C1 and for every set y such
that 〈〈a, y〉〉 ∈ X and 〈〈b, y〉〉 ∈ X holds a = b.

Then there exists a stable function f from C1 into C2 such that X =
Trace(f).

(40) Let C1, C2 be coherent spaces, and let f be a stable function from C1

into C2, and let a be an element of C1. Then f(a) = (Trace(f))◦ Fin a.

(41) Let C1, C2 be coherent spaces, and let f be a stable function from C1

into C2, and let a be an element of C1, and let y be a set. Then y ∈ f(a)
if and only if there exists an element b of C1 such that 〈〈b, y〉〉 ∈ Trace(f)
and b ⊆ a.

(42) For all coherent spaces C1, C2 there exists a stable function f from C1

into C2 such that Trace(f) = ∅.

(43) Let C1, C2 be coherent spaces, and let a be a finite element of C1, and
let y be a set. If y ∈

⋃
C2, then there exists a stable function f from C1

into C2 such that Trace(f) = {〈〈a, y〉〉}.

(44) Let C1, C2 be coherent spaces, and let a be an element of C1, and let y
be a set. Suppose y ∈

⋃
C2. Let f be a stable function from C1 into C2.

Suppose Trace(f) = {〈〈a, y〉〉}. Let b be an element of C1. Then if a ⊆ b,
then f(b) = {y} and if a 6⊆ b, then f(b) = ∅.
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(45) Let C1, C2 be coherent spaces, and let f be a stable function from C1

into C2, and let X be a subset of Trace(f). Then there exists a stable
function g from C1 into C2 such that Trace(g) = X.

(46) Let C1, C2 be coherent spaces and let A be a set. Suppose that for all
sets x, y such that x ∈ A and y ∈ A there exists a stable function f from
C1 into C2 such that x∪y = Trace(f). Then there exists a stable function
f from C1 into C2 such that

⋃
A = Trace(f).

Let C1, C2 be coherent spaces. The functor StabCoh(C1, C2) yielding a set
is defined as follows:

(Def.19) For every set x holds x ∈ StabCoh(C1, C2) iff there exists a stable
function f from C1 into C2 such that x = Trace(f).

Let C1, C2 be coherent spaces. Note that StabCoh(C1, C2) is non empty
down-closed and binary complete.

We now state three propositions:

(47) For all coherent spaces C1, C2 and for every stable function f from C1

into C2 holds Trace(f) ⊆ [: SubFin(C1),
⋃

C2 :].

(48) For all coherent spaces C1, C2 holds
⋃

StabCoh(C1, C2) = [: SubFin(C1),⋃
C2 :].

(49) Let C1, C2 be coherent spaces, and let a, b be finite elements of C1, and
let y1, y2 be sets. Then 〈〈〈〈a, y1〉〉, 〈〈b, y2〉〉〉〉 ∈ Web(StabCoh(C1, C2)) if and
only if one of the following conditions is satisfied:

(i) a ∪ b /∈ C1 and y1 ∈
⋃

C2 and y2 ∈
⋃

C2, or
(ii) 〈〈y1, y2〉〉 ∈ Web(C2) and if y1 = y2, then a = b.

5. Trace of Linear Function

The following proposition is true

(50) Let C1, C2 be coherent spaces and let f be a stable function from C1

into C2. Then f is linear if and only if for all sets a, y such that 〈〈a,
y〉〉 ∈ Trace(f) there exists a set x such that a = {x}.

Let f be a function. The functor LinTrace(f) yielding a set is defined as
follows:

(Def.20) For every set x holds x ∈ LinTrace(f) iff there exist sets y, z such that
x = 〈〈y, z〉〉 and 〈〈{y}, z〉〉 ∈ Trace(f).

Next we state three propositions:

(51) For every function f and for all sets x, y holds 〈〈x, y〉〉 ∈ LinTrace(f) iff
〈〈{x}, y〉〉 ∈ Trace(f).

(52) For every function f such that f(∅) = ∅ and for all sets x, y such that
{x} ∈ dom f and y ∈ f({x}) holds 〈〈x, y〉〉 ∈ LinTrace(f).

(53) For every function f and for all sets x, y such that 〈〈x, y〉〉 ∈ LinTrace(f)
holds {x} ∈ dom f and y ∈ f({x}).
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Let C1, C2 be non empty sets and let f be a function from C1 into C2. Then
LinTrace(f) is a subset of [:

⋃
C1,

⋃
C2 :].

Let f be a function. One can verify that LinTrace(f) is relation-like.

Let C1, C2 be coherent spaces. The functor LinCoh(C1, C2) yielding a set is
defined as follows:

(Def.21) For every set x holds x ∈ LinCoh(C1, C2) iff there exists a linear function
f from C1 into C2 such that x = LinTrace(f).

Next we state a number of propositions:

(54) Let C1, C2 be coherent spaces, and let f be a ⊆-monotone function
from C1 into C2, and let x1, x2 be sets. Suppose {x1, x2} ∈ C1. Let y1,
y2 be sets. If 〈〈x1, y1〉〉 ∈ LinTrace(f) and 〈〈x2, y2〉〉 ∈ LinTrace(f), then
{y1, y2} ∈ C2.

(55) Let C1, C2 be coherent spaces, and let f be a preserving binary
intersections function from C1 into C2, and let x1, x2 be sets. If
{x1, x2} ∈ C1, then for every set y such that 〈〈x1, y〉〉 ∈ LinTrace(f) and
〈〈x2, y〉〉 ∈ LinTrace(f) holds x1 = x2.

(56) For all coherent spaces C1, C2 and for all linear functions f , g from C1

into C2 such that LinTrace(f) = LinTrace(g) holds f = g.

(57) Let C1, C2 be coherent spaces and let X be a subset of [:
⋃

C1,
⋃

C2 :].
Suppose that

(i) for all sets a, b such that {a, b} ∈ C1 and for all sets y1, y2 such that
〈〈a, y1〉〉 ∈ X and 〈〈b, y2〉〉 ∈ X holds {y1, y2} ∈ C2, and

(ii) for all sets a, b such that {a, b} ∈ C1 and for every set y such that 〈〈a,
y〉〉 ∈ X and 〈〈b, y〉〉 ∈ X holds a = b.

Then there exists a linear function f from C1 into C2 such that X =
LinTrace(f).

(58) Let C1, C2 be coherent spaces, and let f be a linear function from C1

into C2, and let a be an element of C1. Then f(a) = (LinTrace(f))◦a.

(59) For all coherent spaces C1, C2 there exists a linear function f from C1

into C2 such that LinTrace(f) = ∅.

(60) Let C1, C2 be coherent spaces, and let x be a set, and let y be a set.
Suppose x ∈

⋃
C1 and y ∈

⋃
C2. Then there exists a linear function f

from C1 into C2 such that LinTrace(f) = {〈〈x, y〉〉}.

(61) Let C1, C2 be coherent spaces, and let x be a set, and let y be a set.
Suppose x ∈

⋃
C1 and y ∈

⋃
C2. Let f be a linear function from C1 into

C2. Suppose LinTrace(f) = {〈〈x, y〉〉}. Let a be an element of C1. Then if
x ∈ a, then f(a) = {y} and if x /∈ a, then f(a) = ∅.

(62) Let C1, C2 be coherent spaces, and let f be a linear function from C1

into C2, and let X be a subset of LinTrace(f). Then there exists a linear
function g from C1 into C2 such that LinTrace(g) = X.

(63) Let C1, C2 be coherent spaces and let A be a set. Suppose that for
all sets x, y such that x ∈ A and y ∈ A there exists a linear function f
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from C1 into C2 such that x∪y = LinTrace(f). Then there exists a linear
function f from C1 into C2 such that

⋃
A = LinTrace(f).

Let C1, C2 be coherent spaces. One can check that LinCoh(C1, C2) is non
empty down-closed and binary complete.

One can prove the following propositions:

(64) For all coherent spaces C1, C2 holds
⋃

LinCoh(C1, C2) = [:
⋃

C1,
⋃

C2 :].

(65) Let C1, C2 be coherent spaces, and let x1, x2 be sets, and let y1, y2 be
sets. Then 〈〈〈〈x1, y1〉〉, 〈〈x2, y2〉〉〉〉 ∈ Web(LinCoh(C1, C2)) if and only if the
following conditions are satisfied:

(i) x1 ∈
⋃

C1,

(ii) x2 ∈
⋃

C1, and

(iii) 〈〈x1, x2〉〉 /∈ Web(C1) and y1 ∈
⋃

C2 and y2 ∈
⋃

C2 or 〈〈y1, y2〉〉 ∈
Web(C2) and if y1 = y2, then x1 = x2.

6. Negation of Coherence Spaces

Let C be a coherent space. The functor ¬C yielding a set is defined by:

(Def.22) ¬C = {a : a ranges over subsets of
⋃

C,
∧

b : element of C

∨
x : set a ∩ b ⊆

{x}}.

One can prove the following proposition

(66) Let C be a coherent space and let x be a set. Then x ∈ ¬C if and only
if the following conditions are satisfied:

(i) x ⊆
⋃

C, and

(ii) for every element a of C there exists a set z such that x ∩ a ⊆ {z}.

Let C be a coherent space. Observe that ¬C is non empty down-closed and
binary complete.

Next we state several propositions:

(67) For every coherent space C holds
⋃
¬C =

⋃
C.

(68) For every coherent space C and for all sets x, y such that x 6= y and
{x, y} ∈ C holds {x, y} /∈ ¬C.

(69) For every coherent space C and for all sets x, y such that {x, y} ⊆
⋃

C
and {x, y} /∈ C holds {x, y} ∈ ¬C.

(70) For every coherent space C and for all sets x, y holds 〈〈x, y〉〉 ∈ Web(¬C)
iff x ∈

⋃
C but y ∈

⋃
C but x = y or 〈〈x, y〉〉 /∈ Web(C).

(71) For every coherent space C holds ¬¬C = C.

(72) ¬{∅} = {∅}.

(73) For every set X holds ¬FlatCoh(X) = 2X and ¬(2X) = FlatCoh(X).
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7. Product and Coproduct on Coherence Spaces

Let x, y be sets. The functor x ⊎ y yielding a set is defined by:

(Def.23) x ⊎ y =
⋃

disjoint〈x, y〉.

We now state a number of propositions:

(74) For all sets x, y holds x ⊎ y = [:x, {1} :] ∪ [: y, {2} :].

(75) For every set x holds x ⊎ ∅ = [:x, {1} :] and ∅ ⊎ x = [: x, {2} :].

(76) For all sets x, y, z such that z ∈ x ⊎ y holds z = 〈〈z1, z2〉〉 but z2 = 1
and z1 ∈ x or z2 = 2 and z1 ∈ y.

(77) For all sets x, y, z holds 〈〈z, 1〉〉 ∈ x ⊎ y iff z ∈ x.

(78) For all sets x, y, z holds 〈〈z, 2〉〉 ∈ x ⊎ y iff z ∈ y.

(79) For all sets x1, y1, x2, y2 holds x1⊎y1 ⊆ x2⊎y2 iff x1 ⊆ x2 and y1 ⊆ y2.

(80) For all sets x, y, z such that z ⊆ x ⊎ y there exist sets x1, y1 such that
z = x1 ⊎ y1 and x1 ⊆ x and y1 ⊆ y.

(81) For all sets x1, y1, x2, y2 holds x1⊎y1 = x2⊎y2 iff x1 = x2 and y1 = y2.

(82) For all sets x1, y1, x2, y2 holds (x1 ⊎ y1)∪ (x2 ⊎ y2) = x1 ∪ x2 ⊎ y1 ∪ y2.

(83) For all sets x1, y1, x2, y2 holds (x1 ⊎ y1)∩ (x2 ⊎ y2) = x1 ∩ x2 ⊎ y1 ∩ y2.

Let C1, C2 be coherent spaces. The functor C1⊓C2 yields a set and is defined
by:

(Def.24) C1 ⊓ C2 = {a ⊎ b : a ranges over elements of C1, b ranges over elements
of C2}.

The functor C1 ⊔ C2 yielding a set is defined as follows:

(Def.25) C1 ⊔C2 = {a⊎ ∅ : a ranges over elements of C1} ∪ {∅ ⊎ b : b ranges over
elements of C2}.

The following propositions are true:

(84) Let C1, C2 be coherent spaces and let x be a set. Then x ∈ C1 ⊓ C2 if
and only if there exists an element a of C1 and there exists an element b
of C2 such that x = a ⊎ b.

(85) For all coherent spaces C1, C2 and for all sets x, y holds x⊎y ∈ C1⊓C2

iff x ∈ C1 and y ∈ C2.

(86) For all coherent spaces C1, C2 holds
⋃

(C1 ⊓ C2) =
⋃

C1 ⊎
⋃

C2.

(87) For all coherent spaces C1, C2 and for all sets x, y holds x⊎y ∈ C1⊔C2

iff x ∈ C1 and y = ∅ or x = ∅ and y ∈ C2.

(88) Let C1, C2 be coherent spaces and let x be a set. Suppose x ∈ C1 ⊔C2.
Then there exists an element a of C1 and there exists an element b of C2

such that x = a ⊎ b but a = ∅ or b = ∅.

(89) For all coherent spaces C1, C2 holds
⋃

(C1 ⊔ C2) =
⋃

C1 ⊎
⋃

C2.

Let C1, C2 be coherent spaces. Observe that C1 ⊓ C2 is non empty down-
closed and binary complete and C1 ⊔ C2 is non empty down-closed and binary
complete.
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In the sequel C1, C2 will be coherent spaces.
We now state several propositions:

(90) For all sets x, y holds 〈〈〈〈x, 1〉〉, 〈〈y, 1〉〉〉〉 ∈ Web(C1 ⊓ C2) iff 〈〈x, y〉〉 ∈
Web(C1).

(91) For all sets x, y holds 〈〈〈〈x, 2〉〉, 〈〈y, 2〉〉〉〉 ∈ Web(C1 ⊓ C2) iff 〈〈x, y〉〉 ∈
Web(C2).

(92) For all sets x, y such that x ∈
⋃

C1 and y ∈
⋃

C2 holds 〈〈〈〈x, 1〉〉, 〈〈y,
2〉〉〉〉 ∈ Web(C1 ⊓ C2) and 〈〈〈〈y, 2〉〉, 〈〈x, 1〉〉〉〉 ∈ Web(C1 ⊓ C2).

(93) For all sets x, y holds 〈〈〈〈x, 1〉〉, 〈〈y, 1〉〉〉〉 ∈ Web(C1 ⊔ C2) iff 〈〈x, y〉〉 ∈
Web(C1).

(94) For all sets x, y holds 〈〈〈〈x, 2〉〉, 〈〈y, 2〉〉〉〉 ∈ Web(C1 ⊔ C2) iff 〈〈x, y〉〉 ∈
Web(C2).

(95) For all sets x, y such that x ∈
⋃

C1 and y ∈
⋃

C2 holds 〈〈〈〈x, 1〉〉, 〈〈y,
2〉〉〉〉 /∈ Web(C1 ⊔ C2) and 〈〈〈〈y, 2〉〉, 〈〈x, 1〉〉〉〉 /∈ Web(C1 ⊔ C2).

(96) ¬(C1 ⊓ C2) = ¬C1 ⊔ ¬C2.

Let C1, C2 be coherent spaces. The functor C1 ⊗C2 yielding a set is defined
as follows:

(Def.26) C1 ⊗ C2 =
⋃
{2[: a, b :] : a ranges over elements of C1, b ranges over

elements of C2}.

We now state the proposition

(97) Let C1, C2 be coherent spaces and let x be a set. Then x ∈ C1 ⊗ C2 if
and only if there exists an element a of C1 and there exists an element b
of C2 such that x ⊆ [: a, b :].

Let C1, C2 be coherent spaces. One can check that C1 ⊗ C2 is non empty.
Next we state the proposition

(98) For all coherent spaces C1, C2 and for every element a of C1 ⊗C2 holds
π1(a) ∈ C1 and π2(a) ∈ C2 and a ⊆ [: π1(a), π2(a) :].

Let C1, C2 be coherent spaces. One can check that C1 ⊗ C2 is down-closed
and binary complete.

Next we state two propositions:

(99) For all coherent spaces C1, C2 holds
⋃

(C1 ⊗ C2) = [:
⋃

C1,
⋃

C2 :].

(100) For all sets x1, y1, x2, y2 holds 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ Web(C1 ⊗ C2) iff
〈〈x1, y1〉〉 ∈ Web(C1) and 〈〈x2, y2〉〉 ∈ Web(C2).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics,

1(3):537–541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. Indexed category. Formalized Mathematics, 5(3):329–337, 1996.
[5] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.



continuous, stable, and linear maps of . . . 393

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.
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