Continuous, Stable, and Linear Maps of Coherence Spaces

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

MML Identifier: COHSP_1.

The papers [18], [21], [9], [14], [16], [11], [3], [19], [22], [7], [6], [10], [20], [12], [13], [17], [1], [2], [5], [8], [15], and [4] provide the terminology and notation for this paper.

1. Directed Sets

One can check that there exists a coherent space which is finite. Let us observe that a set is binary complete if:
(Def.1) For every set A such that for all sets a, b such that $a \in A$ and $b \in A$ holds $a \cup b \in$ it holds $\cup A \in$ it.
Let X be a set. The functor $\operatorname{Flat} \operatorname{Coh}(X)$ yielding a set is defined as follows: (Def.2) $\operatorname{FlatCoh}(X)=\operatorname{CohSp}\left(\triangle_{X}\right)$.
The functor $\operatorname{SubFin}(X)$ yielding a subset of X is defined by:
(Def.3) For every set x holds $x \in \operatorname{SubFin}(X)$ iff $x \in X$ and x is finite.
One can prove the following three propositions:
(1) For all sets X, x holds $x \in \operatorname{FlatCoh}(X)$ iff $x=\emptyset$ or there exists a set y such that $x=\{y\}$ and $y \in X$.
(2) For every set X holds \cup Flat $\operatorname{Coh}(X)=X$.
(3) For every finite down-closed set X holds $\operatorname{SubFin}(X)=X$.

One can check that $\{\emptyset\}$ is down-closed and binary complete. Let X be a set. One can check that 2^{X} is down-closed and binary complete and $\operatorname{FlatCoh}(X)$ is non empty down-closed and binary complete.

Let C be a non empty down-closed set. Observe that $\operatorname{SubFin}(C)$ is non empty and down-closed.

We now state the proposition
(4) $\operatorname{Web}(\{\emptyset\})=\emptyset$.

The scheme MinimalElement wrt Incl concerns sets \mathcal{A}, \mathcal{B} and a unary predicate \mathcal{P}, and states that:

There exists a set a such that $a \in \mathcal{B}$ and $\mathcal{P}[a]$ and for every set b such that $b \in \mathcal{B}$ and $\mathcal{P}[b]$ and $b \subseteq a$ holds $b=a$
provided the following requirements are met:

- $\mathcal{A} \in \mathcal{B}$,
- $\mathcal{P}[\mathcal{A}]$,
- \mathcal{A} is finite.

Let X be a set. One can check that there exists a subset of X which is finite.
Let C be a coherent space. Observe that there exists an element of C which is finite.

Let X be a set. We say that X is \cup-directed if and only if:
(Def.4) For every finite subset Y of X there exists a set a such that $\cup Y \subseteq a$ and $a \in X$.
We say that X is \cap-directed if and only if:
(Def.5) For every finite subset Y of X there exists a set a such that for every set y such that $y \in Y$ holds $a \subseteq y$ and $a \in X$.
Let us note that every set which is \cup-directed is also non empty and every set which is \cap-directed is also non empty.

We now state several propositions:
(5) Let X be a set. Suppose X is \cup-directed. Let a, b be sets. If $a \in X$ and $b \in X$, then there exists a set c such that $a \cup b \subseteq c$ and $c \in X$.
(6) Let X be a non empty set. Suppose that for all sets a, b such that $a \in X$ and $b \in X$ there exists a set c such that $a \cup b \subseteq c$ and $c \in X$. Then X is \cup-directed.
(7) Let X be a set. Suppose X is \cap-directed. Let a, b be sets. If $a \in X$ and $b \in X$, then there exists a set c such that $c \subseteq a \cap b$ and $c \in X$.
(8) Let X be a non empty set. Suppose that for all sets a, b such that $a \in X$ and $b \in X$ there exists a set c such that $c \subseteq a \cap b$ and $c \in X$. Then X is \cap-directed.
(9) For every set x holds $\{x\}$ is \cup-directed and \cap-directed.
(10) For all sets x, y holds $\{x, y, x \cup y\}$ is \cup-directed.
(11) For all sets x, y holds $\{x, y, x \cap y\}$ is \cap-directed.

Let us observe that there exists a set which is \cup-directed \cap-directed and finite.

Let C be a non empty set. Observe that there exists a subset of C which is \cup-directed \cap-directed and finite.

We now state the proposition
(12) For every set X holds Fin X is \cup-directed and \cap-directed.

Let X be a set. Observe that Fin X is \cup-directed and \cap-directed.
Let C be a down-closed non empty set. Note that there exists a subset of C which is preboolean and non empty.

Let C be a down-closed non empty set and let a be an element of C. Then Fin a is a preboolean non empty subset of C.

One can prove the following proposition
(13) Let X be a non empty set and let Y be a set. Suppose X is \cup-directed and $Y \subseteq \cup X$ and Y is finite. Then there exists a set Z such that $Z \in X$ and $Y \subseteq Z$.
Let X be a set. We say that X is \cap-closed if and only if:
(Def.6) For all sets x, y such that $x \in X$ and $y \in X$ holds $x \cap y \in X$.
We say that X is closed under directed unions if and only if:
(Def.7) For every subset A of X such that A is \cup-directed holds $\cup A \in X$.
One can check that every set which is down-closed is also \cap-closed.
Next we state two propositions:
(14) For every coherent space C and for all elements x, y of C holds $x \cap y \in C$.
(15) For every coherent space C and for every \cup-directed subset A of C holds $\cup A \in C$.
Let us note that every coherent space is closed under directed unions.
Let us note that there exists a coherent space which is \cap-closed and closed under directed unions.

Let C be a closed under directed unions non empty set and let A be a \cup directed subset of C. Then $\cup A$ is an element of C.

Let X, Y be sets. We say that X includes lattice of Y if and only if:
(Def.8) For all sets a, b such that $a \in Y$ and $b \in Y$ holds $a \cap b \in X$ and $a \cup b \in X$.
The following proposition is true
(16) For every non empty set X such that X includes lattice of X holds X is \cup-directed and \cap-directed.
Let X, x, y be sets. We say that X includes lattice of x, y if and only if:
(Def.9) $\quad X$ includes lattice of $\{x, y\}$.
One can prove the following proposition
(17) For all sets X, x, y holds X includes lattice of x, y iff $x \in X$ and $y \in X$ and $x \cap y \in X$ and $x \cup y \in X$.

2. Continuous, Stable, and Linear Functions

Let f be a function. We say that f is preserving arbitrary unions if and only if:
(Def.10) For every subset A of $\operatorname{dom} f$ such that $\bigcup A \in \operatorname{dom} f$ holds $f(\bigcup A)=$ $\bigcup\left(f^{\circ} A\right)$.

We say that f is preserving directed unions if and only if:
(Def.11) For every subset A of $\operatorname{dom} f$ such that A is \cup-directed and $\bigcup A \in \operatorname{dom} f$ holds $f(\cup A)=\bigcup\left(f^{\circ} A\right)$.
Let f be a function. We say that f is \subseteq-monotone if and only if:
(Def.12) For all sets a, b such that $a \in \operatorname{dom} f$ and $b \in \operatorname{dom} f$ and $a \subseteq b$ holds $f(a) \subseteq f(b)$.
We say that f is preserving binary intersections if and only if:
(Def.13) For all sets a, b such that $\operatorname{dom} f$ includes lattice of a, b holds $f(a \cap b)=$ $f(a) \cap f(b)$.
Let us note that every function which is preserving directed unions is also \subseteq-monotone and every function which is preserving arbitrary unions is also preserving directed unions.

Next we state two propositions:
(18) Let f be a function. Suppose f is preserving arbitrary unions. Let x, y be sets. If $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} f$ and $x \cup y \in \operatorname{dom} f$, then $f(x \cup y)=f(x) \cup f(y)$.
(19) For every function f such that f is preserving arbitrary unions holds $f(\emptyset)=\emptyset$.
Let C_{1}, C_{2} be coherent spaces. Note that there exists a function from C_{1} into C_{2} which is preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. One can verify that there exists a many sorted set indexed by C which is preserving arbitrary unions and preserving binary intersections.

Let f be a function. We say that f is continuous if and only if:
(Def.14) $\operatorname{dom} f$ is closed under directed unions and f is preserving directed unions.
Let f be a function. We say that f is stable if and only if:
(Def.15) $\quad \operatorname{dom} f$ is \cap-closed and f is continuous and preserving binary intersections.
Let f be a function. We say that f is linear if and only if:
(Def.16) $\quad f$ is stable and preserving arbitrary unions.
One can check the following observations:

* every function which is continuous is also preserving directed unions,
* every function which is stable is also preserving binary intersections and continuous, and
* every function which is linear is also preserving arbitrary unions and stable.
Let X be a closed under directed unions set. Note that every many sorted set indexed by X which is preserving directed unions is also continuous.

Let X be a \cap-closed set. Observe that every many sorted set indexed by X which is continuous and preserving binary intersections is also stable.

Let us note that every function which is stable and preserving arbitrary unions is also linear.

Note that there exists a function which is linear. Let C be a coherent space. One can check that there exists a many sorted set indexed by C which is linear. Let B be a coherent space. One can check that there exists a function from B into C which is linear.

Let f be a continuous function. One can verify that $\operatorname{dom} f$ is closed under directed unions.

Let f be a stable function. One can verify that $\operatorname{dom} f$ is \cap-closed.
We now state several propositions:
(20) For every set X holds \cup Fin $X=X$.
(21) For every continuous function f such that $\operatorname{dom} f$ is down-closed and for every set a such that $a \in \operatorname{dom} f$ holds $f(a)=\bigcup\left(f^{\circ}\right.$ Fin $\left.a\right)$.
(22) Let f be a function. Suppose $\operatorname{dom} f$ is down-closed. Then f is continuous if and only if the following conditions are satisfied:
(i) $\operatorname{dom} f$ is closed under directed unions,
(ii) f is \subseteq-monotone, and
(iii) for all sets a, y such that $a \in \operatorname{dom} f$ and $y \in f(a)$ there exists a set b such that b is finite and $b \subseteq a$ and $y \in f(b)$.
(23) Let f be a function. Suppose dom f is down-closed and closed under directed unions. Then f is stable if and only if the following conditions are satisfied:
(i) f is \subseteq-monotone, and
(ii) for all sets a, y such that $a \in \operatorname{dom} f$ and $y \in f(a)$ there exists a set b such that b is finite and $b \subseteq a$ and $y \in f(b)$ and for every set c such that $c \subseteq a$ and $y \in f(c)$ holds $b \subseteq c$.
(24) Let f be a function. Suppose $\operatorname{dom} f$ is down-closed and closed under directed unions. Then f is linear if and only if the following conditions are satisfied:
(i) f is \subseteq-monotone, and
(ii) for all sets a, y such that $a \in \operatorname{dom} f$ and $y \in f(a)$ there exists a set x such that $x \in a$ and $y \in f(\{x\})$ and for every set b such that $b \subseteq a$ and $y \in f(b)$ holds $x \in b$.

3. Graph of Continuous Function

Let f be a function. The functor graph (f) yielding a set is defined as follows:
(Def.17) For every set x holds $x \in \operatorname{graph}(f)$ iff there exists a finite set y and there exists a set z such that $x=\langle y, z\rangle$ and $y \in \operatorname{dom} f$ and $z \in f(y)$.
Let C_{1}, C_{2} be non empty sets and let f be a function from C_{1} into C_{2}. Then $\operatorname{graph}(f)$ is a subset of : $C_{1}, \cup C_{2}:$.

Let f be a function. Note that $\operatorname{graph}(f)$ is relation-like.

Next we state several propositions:
(25) For every function f and for all sets x, y holds $\langle x, y\rangle \in \operatorname{graph}(f)$ iff x is finite and $x \in \operatorname{dom} f$ and $y \in f(x)$.
(26) Let f be a \subseteq-monotone function and let a, b be sets. Suppose $b \in \operatorname{dom} f$ and $a \subseteq b$ and b is finite. Let y be a set. If $\langle a, y\rangle \in \operatorname{graph}(f)$, then $\langle b$, $y\rangle \in \operatorname{graph}(f)$.
(27) Let C_{1}, C_{2} be coherent spaces, and let f be a function from C_{1} into C_{2}, and let a be an element of C_{1}, and let y_{1}, y_{2} be sets. If $\left\langle a, y_{1}\right\rangle \in \operatorname{graph}(f)$ and $\left\langle a, y_{2}\right\rangle \in \operatorname{graph}(f)$, then $\left\{y_{1}, y_{2}\right\} \in C_{2}$.
(28) Let C_{1}, C_{2} be coherent spaces, and let f be a \subseteq-monotone function from C_{1} into C_{2}, and let a, b be elements of C_{1}. Suppose $a \cup b \in C_{1}$. Let y_{1}, y_{2} be sets. If $\left\langle a, y_{1}\right\rangle \in \operatorname{graph}(f)$ and $\left\langle b, y_{2}\right\rangle \in \operatorname{graph}(f)$, then $\left\{y_{1}, y_{2}\right\} \in C_{2}$.
(29) For all coherent spaces C_{1}, C_{2} and for all continuous functions f, g from C_{1} into C_{2} such that $\operatorname{graph}(f)=\operatorname{graph}(g)$ holds $f=g$.
(30) Let C_{1}, C_{2} be coherent spaces and let X be a subset of : $C_{1}, \cup C_{2}$!. Suppose that
(i) for every set x such that $x \in X$ holds x_{1} is finite,
(ii) for all finite elements a, b of C_{1} such that $a \subseteq b$ and for every set y such that $\langle a, y\rangle \in X$ holds $\langle b, y\rangle \in X$, and
(iii) for every finite element a of C_{1} and for all sets y_{1}, y_{2} such that $\langle a$, $\left.y_{1}\right\rangle \in X$ and $\left\langle a, y_{2}\right\rangle \in X$ holds $\left\{y_{1}, y_{2}\right\} \in C_{2}$.
Then there exists a continuous function f from C_{1} into C_{2} such that $X=\operatorname{graph}(f)$.
(31) Let C_{1}, C_{2} be coherent spaces, and let f be a continuous function from C_{1} into C_{2}, and let a be an element of C_{1}. Then $f(a)=(\operatorname{graph}(f))^{\circ} \operatorname{Fin} a$.

4. Trace of Stable Function

Let f be a function. The functor $\operatorname{Trace}(f)$ yields a set and is defined by the condition (Def.18).
(Def.18) Let x be a set. Then $x \in \operatorname{Trace}(f)$ if and only if there exist sets a, y such that $x=\langle a, y\rangle$ and $a \in \operatorname{dom} f$ and $y \in f(a)$ and for every set b such that $b \in \operatorname{dom} f$ and $b \subseteq a$ and $y \in f(b)$ holds $a=b$.
Next we state the proposition
(32) Let f be a function and let a, y be sets. Then $\langle a, y\rangle \in \operatorname{Trace}(f)$ if and only if the following conditions are satisfied:
(i) $\quad a \in \operatorname{dom} f$,
(ii) $y \in f(a)$, and
(iii) for every set b such that $b \in \operatorname{dom} f$ and $b \subseteq a$ and $y \in f(b)$ holds $a=b$.

Let C_{1}, C_{2} be non empty sets and let f be a function from C_{1} into C_{2}. Then Trace (f) is a subset of : $C_{1}, \cup C_{2} \ddagger$.

Let f be a function. One can check that $\operatorname{Trace}(f)$ is relation-like.
Next we state a number of propositions:
(33) For every continuous function f such that $\operatorname{dom} f$ is down-closed holds Trace $(f) \subseteq \operatorname{graph}(f)$.
(34) Let f be a continuous function. Suppose $\operatorname{dom} f$ is down-closed. Let a, y be sets. If $\langle a, y\rangle \in \operatorname{Trace}(f)$, then a is finite.
(35) Let C_{1}, C_{2} be coherent spaces, and let f be a \subseteq-monotone function from C_{1} into C_{2}, and let a_{1}, a_{2} be sets. Suppose $a_{1} \cup a_{2} \in C_{1}$. Let y_{1}, y_{2} be sets. If $\left\langle a_{1}, y_{1}\right\rangle \in \operatorname{Trace}(f)$ and $\left\langle a_{2}, y_{2}\right\rangle \in \operatorname{Trace}(f)$, then $\left\{y_{1}, y_{2}\right\} \in C_{2}$.
(36) Let C_{1}, C_{2} be coherent spaces, and let f be a preserving binary intersections function from C_{1} into C_{2}, and let a_{1}, a_{2} be sets. If $a_{1} \cup a_{2} \in C_{1}$, then for every set y such that $\left\langle a_{1}, y\right\rangle \in \operatorname{Trace}(f)$ and $\left\langle a_{2}, y\right\rangle \in \operatorname{Trace}(f)$ holds $a_{1}=a_{2}$.
(37) Let C_{1}, C_{2} be coherent spaces and let f, g be stable functions from C_{1} into C_{2}. If Trace $(f) \subseteq \operatorname{Trace}(g)$, then for every element a of C_{1} holds $f(a) \subseteq g(a)$.
(38) For all coherent spaces C_{1}, C_{2} and for all stable functions f, g from C_{1} into C_{2} such that $\operatorname{Trace}(f)=\operatorname{Trace}(g)$ holds $f=g$.
(39) Let C_{1}, C_{2} be coherent spaces and let X be a subset of : $C_{1}, \cup C_{2}$:. Suppose that
(i) for every set x such that $x \in X$ holds $x_{\mathbf{1}}$ is finite,
(ii) for all elements a, b of C_{1} such that $a \cup b \in C_{1}$ and for all sets y_{1}, y_{2} such that $\left\langle a, y_{1}\right\rangle \in X$ and $\left\langle b, y_{2}\right\rangle \in X$ holds $\left\{y_{1}, y_{2}\right\} \in C_{2}$, and
(iii) for all elements a, b of C_{1} such that $a \cup b \in C_{1}$ and for every set y such that $\langle a, y\rangle \in X$ and $\langle b, y\rangle \in X$ holds $a=b$.
Then there exists a stable function f from C_{1} into C_{2} such that $X=$ Trace (f).
(40) Let C_{1}, C_{2} be coherent spaces, and let f be a stable function from C_{1} into C_{2}, and let a be an element of C_{1}. Then $f(a)=(\operatorname{Trace}(f))^{\circ} \operatorname{Fin} a$.
(41) Let C_{1}, C_{2} be coherent spaces, and let f be a stable function from C_{1} into C_{2}, and let a be an element of C_{1}, and let y be a set. Then $y \in f(a)$ if and only if there exists an element b of C_{1} such that $\langle b, y\rangle \in \operatorname{Trace}(f)$ and $b \subseteq a$.
(42) For all coherent spaces C_{1}, C_{2} there exists a stable function f from C_{1} into C_{2} such that $\operatorname{Trace}(f)=\emptyset$.
(43) Let C_{1}, C_{2} be coherent spaces, and let a be a finite element of C_{1}, and let y be a set. If $y \in \cup C_{2}$, then there exists a stable function f from C_{1} into C_{2} such that $\operatorname{Trace}(f)=\{\langle a, y\rangle\}$.
(44) Let C_{1}, C_{2} be coherent spaces, and let a be an element of C_{1}, and let y be a set. Suppose $y \in \bigcup C_{2}$. Let f be a stable function from C_{1} into C_{2}. Suppose Trace $(f)=\{\langle a, y\rangle\}$. Let b be an element of C_{1}. Then if $a \subseteq b$, then $f(b)=\{y\}$ and if $a \nsubseteq b$, then $f(b)=\emptyset$.
(45) Let C_{1}, C_{2} be coherent spaces, and let f be a stable function from C_{1} into C_{2}, and let X be a subset of $\operatorname{Trace}(f)$. Then there exists a stable function g from C_{1} into C_{2} such that $\operatorname{Trace}(g)=X$.
(46) Let C_{1}, C_{2} be coherent spaces and let A be a set. Suppose that for all sets x, y such that $x \in A$ and $y \in A$ there exists a stable function f from C_{1} into C_{2} such that $x \cup y=\operatorname{Trace}(f)$. Then there exists a stable function f from C_{1} into C_{2} such that $\bigcup A=\operatorname{Trace}(f)$.
Let C_{1}, C_{2} be coherent spaces. The functor $\operatorname{StabCoh}\left(C_{1}, C_{2}\right)$ yielding a set is defined as follows:
(Def.19) For every set x holds $x \in \operatorname{StabCoh}\left(C_{1}, C_{2}\right)$ iff there exists a stable function f from C_{1} into C_{2} such that $x=\operatorname{Trace}(f)$.
Let C_{1}, C_{2} be coherent spaces. Note that $\operatorname{StabCoh}\left(C_{1}, C_{2}\right)$ is non empty down-closed and binary complete.

We now state three propositions:
(47) For all coherent spaces C_{1}, C_{2} and for every stable function f from C_{1} into C_{2} holds $\operatorname{Trace}(f) \subseteq: \operatorname{SubFin}\left(C_{1}\right), \cup C_{2} \ddagger$.
(48) For all coherent spaces C_{1}, C_{2} holds $\cup \operatorname{StabCoh}\left(C_{1}, C_{2}\right)=\left\{: \operatorname{SubFin}\left(C_{1}\right)\right.$, $\cup C_{2}:$
(49) Let C_{1}, C_{2} be coherent spaces, and let a, b be finite elements of C_{1}, and let y_{1}, y_{2} be sets. Then $\left\langle\left\langle a, y_{1}\right\rangle,\left\langle b, y_{2}\right\rangle\right\rangle \in \operatorname{Web}\left(\operatorname{StabCoh}\left(C_{1}, C_{2}\right)\right)$ if and only if one of the following conditions is satisfied:
(i) $a \cup b \notin C_{1}$ and $y_{1} \in \bigcup C_{2}$ and $y_{2} \in \bigcup C_{2}$, or
(ii) $\left\langle y_{1}, y_{2}\right\rangle \in \operatorname{Web}\left(C_{2}\right)$ and if $y_{1}=y_{2}$, then $a=b$.

5. Trace of Linear Function

The following proposition is true
(50) Let C_{1}, C_{2} be coherent spaces and let f be a stable function from C_{1} into C_{2}. Then f is linear if and only if for all sets a, y such that $\langle a$, $y\rangle \in \operatorname{Trace}(f)$ there exists a set x such that $a=\{x\}$.
Let f be a function. The functor $\operatorname{LinTrace}(f)$ yielding a set is defined as follows:
(Def.20) For every set x holds $x \in \operatorname{LinTrace}(f)$ iff there exist sets y, z such that $x=\langle y, z\rangle$ and $\langle\{y\}, z\rangle \in \operatorname{Trace}(f)$.
Next we state three propositions:
(51) For every function f and for all sets x, y holds $\langle x, y\rangle \in \operatorname{LinTrace}(f)$ iff $\langle\{x\}, y\rangle \in \operatorname{Trace}(f)$.
(52) For every function f such that $f(\emptyset)=\emptyset$ and for all sets x, y such that $\{x\} \in \operatorname{dom} f$ and $y \in f(\{x\})$ holds $\langle x, y\rangle \in \operatorname{LinTrace}(f)$.
(53) For every function f and for all sets x, y such that $\langle x, y\rangle \in \operatorname{LinTrace}(f)$ holds $\{x\} \in \operatorname{dom} f$ and $y \in f(\{x\})$.

Let C_{1}, C_{2} be non empty sets and let f be a function from C_{1} into C_{2}. Then $\operatorname{LinTrace}(f)$ is a subset of $: \cup C_{1}, \cup C_{2}$:

Let f be a function. One can verify that $\operatorname{LinTrace}(f)$ is relation-like.
Let C_{1}, C_{2} be coherent spaces. The functor $\operatorname{LinCoh}\left(C_{1}, C_{2}\right)$ yielding a set is defined as follows:
(Def.21) For every set x holds $x \in \operatorname{LinCoh}\left(C_{1}, C_{2}\right)$ iff there exists a linear function f from C_{1} into C_{2} such that $x=\operatorname{LinTrace}(f)$.
Next we state a number of propositions:
(54) Let C_{1}, C_{2} be coherent spaces, and let f be a \subseteq-monotone function from C_{1} into C_{2}, and let x_{1}, x_{2} be sets. Suppose $\left\{x_{1}, x_{2}\right\} \in C_{1}$. Let y_{1}, y_{2} be sets. If $\left\langle x_{1}, y_{1}\right\rangle \in \operatorname{LinTrace}(f)$ and $\left\langle x_{2}, y_{2}\right\rangle \in \operatorname{LinTrace}(f)$, then $\left\{y_{1}, y_{2}\right\} \in C_{2}$.
(55) Let C_{1}, C_{2} be coherent spaces, and let f be a preserving binary intersections function from C_{1} into C_{2}, and let x_{1}, x_{2} be sets. If $\left\{x_{1}, x_{2}\right\} \in C_{1}$, then for every set y such that $\left\langle x_{1}, y\right\rangle \in \operatorname{LinTrace}(f)$ and $\left\langle x_{2}, y\right\rangle \in \operatorname{LinTrace}(f)$ holds $x_{1}=x_{2}$.
(56) For all coherent spaces C_{1}, C_{2} and for all linear functions f, g from C_{1} into C_{2} such that LinTrace $(f)=\operatorname{LinTrace}(g)$ holds $f=g$.
(57) Let C_{1}, C_{2} be coherent spaces and let X be a subset of : $\cup C_{1}, \cup C_{2}$]. Suppose that
(i) for all sets a, b such that $\{a, b\} \in C_{1}$ and for all sets y_{1}, y_{2} such that $\left\langle a, y_{1}\right\rangle \in X$ and $\left\langle b, y_{2}\right\rangle \in X$ holds $\left\{y_{1}, y_{2}\right\} \in C_{2}$, and
(ii) for all sets a, b such that $\{a, b\} \in C_{1}$ and for every set y such that $\langle a$, $y\rangle \in X$ and $\langle b, y\rangle \in X$ holds $a=b$.
Then there exists a linear function f from C_{1} into C_{2} such that $X=$ LinTrace (f).
(58) Let C_{1}, C_{2} be coherent spaces, and let f be a linear function from C_{1} into C_{2}, and let a be an element of C_{1}. Then $f(a)=(\operatorname{LinTrace}(f))^{\circ} a$.
(59) For all coherent spaces C_{1}, C_{2} there exists a linear function f from C_{1} into C_{2} such that LinTrace $(f)=\emptyset$.
(60) Let C_{1}, C_{2} be coherent spaces, and let x be a set, and let y be a set. Suppose $x \in \bigcup C_{1}$ and $y \in \bigcup C_{2}$. Then there exists a linear function f from C_{1} into C_{2} such that LinTrace $(f)=\{\langle x, y\rangle\}$.
(61) Let C_{1}, C_{2} be coherent spaces, and let x be a set, and let y be a set. Suppose $x \in \bigcup C_{1}$ and $y \in \bigcup C_{2}$. Let f be a linear function from C_{1} into C_{2}. Suppose LinTrace $(f)=\{\langle x, y\rangle\}$. Let a be an element of C_{1}. Then if $x \in a$, then $f(a)=\{y\}$ and if $x \notin a$, then $f(a)=\emptyset$.
(62) Let C_{1}, C_{2} be coherent spaces, and let f be a linear function from C_{1} into C_{2}, and let X be a subset of $\operatorname{LinTrace}(f)$. Then there exists a linear function g from C_{1} into C_{2} such that LinTrace $(g)=X$.
(63) Let C_{1}, C_{2} be coherent spaces and let A be a set. Suppose that for all sets x, y such that $x \in A$ and $y \in A$ there exists a linear function f
from C_{1} into C_{2} such that $x \cup y=\operatorname{LinTrace}(f)$. Then there exists a linear function f from C_{1} into C_{2} such that $\cup A=\operatorname{LinTrace}(f)$.
Let C_{1}, C_{2} be coherent spaces. One can check that $\operatorname{LinCoh}\left(C_{1}, C_{2}\right)$ is non empty down-closed and binary complete.

One can prove the following propositions:
(64) For all coherent spaces C_{1}, C_{2} holds $\cup \operatorname{LinCoh}\left(C_{1}, C_{2}\right)=\left\{\cup C_{1}, \cup C_{2}\right.$:.
(65) Let C_{1}, C_{2} be coherent spaces, and let x_{1}, x_{2} be sets, and let y_{1}, y_{2} be sets. Then $\left\langle\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right\rangle \in \operatorname{Web}\left(\operatorname{LinCoh}\left(C_{1}, C_{2}\right)\right)$ if and only if the following conditions are satisfied:
(i) $x_{1} \in \cup C_{1}$,
(ii) $x_{2} \in \cup C_{1}$, and
(iii) $\left\langle x_{1}, x_{2}\right\rangle \notin \operatorname{Web}\left(C_{1}\right)$ and $y_{1} \in \bigcup C_{2}$ and $y_{2} \in \bigcup C_{2}$ or $\left\langle y_{1}, y_{2}\right\rangle \in$ $\operatorname{Web}\left(C_{2}\right)$ and if $y_{1}=y_{2}$, then $x_{1}=x_{2}$.

6. Negation of Coherence Spaces

Let C be a coherent space. The functor $\neg C$ yielding a set is defined by:
(Def.22) $\neg C=\left\{a: a\right.$ ranges over subsets of $\cup C, \bigwedge_{b: \text { element of } C} \bigvee_{x: \text { set }} a \cap b \subseteq$ $\{x\}\}$.
One can prove the following proposition
(66) Let C be a coherent space and let x be a set. Then $x \in \neg C$ if and only if the following conditions are satisfied:
(i) $x \subseteq \cup C$, and
(ii) for every element a of C there exists a set z such that $x \cap a \subseteq\{z\}$.

Let C be a coherent space. Observe that $\neg C$ is non empty down-closed and binary complete.

Next we state several propositions:
(67) For every coherent space C holds $\cup \neg C=\bigcup C$.
(68) For every coherent space C and for all sets x, y such that $x \neq y$ and $\{x, y\} \in C$ holds $\{x, y\} \notin \neg C$.
(69) For every coherent space C and for all sets x, y such that $\{x, y\} \subseteq \cup C$ and $\{x, y\} \notin C$ holds $\{x, y\} \in \neg C$.
(70) For every coherent space C and for all sets x, y holds $\langle x, y\rangle \in \operatorname{Web}(\neg C)$ iff $x \in \bigcup C$ but $y \in \bigcup C$ but $x=y$ or $\langle x, y\rangle \notin \operatorname{Web}(C)$.
(71) For every coherent space C holds $\neg \neg C=C$.
(72) $\neg\{\emptyset\}=\{\emptyset\}$.
(73) For every set X holds \neg Flat $\operatorname{Coh}(X)=2^{X}$ and $\neg\left(2^{X}\right)=$ FlatCoh (X).

7. Product and Coproduct on Coherence Spaces

Let x, y be sets. The functor $x \uplus y$ yielding a set is defined by:
(Def.23) $\quad x \uplus y=\bigcup$ disjoint $\langle x, y\rangle$.
We now state a number of propositions:
(74) For all sets x, y holds $x \uplus y=\{x,\{1\}:] \cup: y,\{2\}:]$.
(75) For every set x holds $x \uplus \emptyset=\{x,\{1\}:$ and $\emptyset \uplus x=\{x,\{2\}:]$.
(76) For all sets x, y, z such that $z \in x \uplus y$ holds $z=\left\langle z_{\mathbf{1}}, z_{\mathbf{2}}\right\rangle$ but $z_{\mathbf{2}}=1$ and $z_{1} \in x$ or $z_{\mathbf{2}}=2$ and $z_{\mathbf{1}} \in y$.
(77) For all sets x, y, z holds $\langle z, 1\rangle \in x \uplus y$ iff $z \in x$.
(78) For all sets x, y, z holds $\langle z, 2\rangle \in x \uplus y$ iff $z \in y$.
(79) For all sets $x_{1}, y_{1}, x_{2}, y_{2}$ holds $x_{1} \uplus y_{1} \subseteq x_{2} \uplus y_{2}$ iff $x_{1} \subseteq x_{2}$ and $y_{1} \subseteq y_{2}$.
(80) For all sets x, y, z such that $z \subseteq x \uplus y$ there exist sets x_{1}, y_{1} such that $z=x_{1} \uplus y_{1}$ and $x_{1} \subseteq x$ and $y_{1} \subseteq y$.
(81) For all sets $x_{1}, y_{1}, x_{2}, y_{2}$ holds $x_{1} \uplus y_{1}=x_{2} \uplus y_{2}$ iff $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
(82) For all sets $x_{1}, y_{1}, x_{2}, y_{2}$ holds $\left(x_{1} \uplus y_{1}\right) \cup\left(x_{2} \uplus y_{2}\right)=x_{1} \cup x_{2} \uplus y_{1} \cup y_{2}$.
(83) For all sets $x_{1}, y_{1}, x_{2}, y_{2}$ holds $\left(x_{1} \uplus y_{1}\right) \cap\left(x_{2} \uplus y_{2}\right)=x_{1} \cap x_{2} \uplus y_{1} \cap y_{2}$.

Let C_{1}, C_{2} be coherent spaces. The functor $C_{1} \sqcap C_{2}$ yields a set and is defined by:
(Def.24) $\quad C_{1} \sqcap C_{2}=\left\{a \uplus b: a\right.$ ranges over elements of C_{1}, b ranges over elements of $\left.C_{2}\right\}$.
The functor $C_{1} \sqcup C_{2}$ yielding a set is defined as follows:
(Def.25) $\quad C_{1} \sqcup C_{2}=\left\{a \uplus \emptyset: a\right.$ ranges over elements of $\left.C_{1}\right\} \cup\{\emptyset \uplus b: b$ ranges over elements of $\left.C_{2}\right\}$.
The following propositions are true:
(84) Let C_{1}, C_{2} be coherent spaces and let x be a set. Then $x \in C_{1} \sqcap C_{2}$ if and only if there exists an element a of C_{1} and there exists an element b of C_{2} such that $x=a \uplus b$.
(85) For all coherent spaces C_{1}, C_{2} and for all sets x, y holds $x \uplus y \in C_{1} \sqcap C_{2}$ iff $x \in C_{1}$ and $y \in C_{2}$.
(86) For all coherent spaces C_{1}, C_{2} holds $\cup\left(C_{1} \sqcap C_{2}\right)=\bigcup C_{1} \uplus \bigcup C_{2}$.
(87) For all coherent spaces C_{1}, C_{2} and for all sets x, y holds $x \uplus y \in C_{1} \sqcup C_{2}$ iff $x \in C_{1}$ and $y=\emptyset$ or $x=\emptyset$ and $y \in C_{2}$.
(88) Let C_{1}, C_{2} be coherent spaces and let x be a set. Suppose $x \in C_{1} \sqcup C_{2}$. Then there exists an element a of C_{1} and there exists an element b of C_{2} such that $x=a \uplus b$ but $a=\emptyset$ or $b=\emptyset$.
(89) For all coherent spaces C_{1}, C_{2} holds $\cup\left(C_{1} \sqcup C_{2}\right)=\bigcup C_{1} \uplus \bigcup C_{2}$.

Let C_{1}, C_{2} be coherent spaces. Observe that $C_{1} \sqcap C_{2}$ is non empty downclosed and binary complete and $C_{1} \sqcup C_{2}$ is non empty down-closed and binary complete.

In the sequel C_{1}, C_{2} will be coherent spaces.
We now state several propositions:
(90) For all sets x, y holds $\langle\langle x, 1\rangle,\langle y, 1\rangle\rangle \in \operatorname{Web}\left(C_{1} \sqcap C_{2}\right)$ iff $\langle x, y\rangle \in$ $\operatorname{Web}\left(C_{1}\right)$.
(91) For all sets x, y holds $\langle\langle x, 2\rangle,\langle y, 2\rangle\rangle \in \operatorname{Web}\left(C_{1} \sqcap C_{2}\right)$ iff $\langle x, y\rangle \in$ $\mathrm{Web}\left(C_{2}\right)$.
(92) For all sets x, y such that $x \in \cup C_{1}$ and $y \in \cup C_{2}$ holds $\langle\langle x, 1\rangle,\langle y$, $2\rangle\rangle \in \operatorname{Web}\left(C_{1} \sqcap C_{2}\right)$ and $\langle\langle y, 2\rangle,\langle x, 1\rangle\rangle \in \operatorname{Web}\left(C_{1} \sqcap C_{2}\right)$.
(93) For all sets x, y holds $\langle\langle x, 1\rangle,\langle y, 1\rangle\rangle \in \operatorname{Web}\left(C_{1} \sqcup C_{2}\right)$ iff $\langle x, y\rangle \in$ $\operatorname{Web}\left(C_{1}\right)$.
(94) For all sets x, y holds $\langle\langle x, 2\rangle,\langle y, 2\rangle\rangle \in \operatorname{Web}\left(C_{1} \sqcup C_{2}\right)$ iff $\langle x, y\rangle \in$ $\mathrm{Web}\left(C_{2}\right)$.
(95) For all sets x, y such that $x \in \bigcup C_{1}$ and $y \in \bigcup C_{2}$ holds $\langle\langle x, 1\rangle,\langle y$, $2\rangle\rangle \notin \operatorname{Web}\left(C_{1} \sqcup C_{2}\right)$ and $\langle\langle y, 2\rangle,\langle x, 1\rangle\rangle \notin \operatorname{Web}\left(C_{1} \sqcup C_{2}\right)$.
(96) $\neg\left(C_{1} \sqcap C_{2}\right)=\neg C_{1} \sqcup \neg C_{2}$.

Let C_{1}, C_{2} be coherent spaces. The functor $C_{1} \otimes C_{2}$ yielding a set is defined as follows:
(Def.26) $\quad C_{1} \otimes C_{2}=\bigcup\left\{2^{〔 a, b]}: a\right.$ ranges over elements of C_{1}, b ranges over elements of $\left.C_{2}\right\}$.
We now state the proposition
(97) Let C_{1}, C_{2} be coherent spaces and let x be a set. Then $x \in C_{1} \otimes C_{2}$ if and only if there exists an element a of C_{1} and there exists an element b of C_{2} such that $x \subseteq: a, b ;$.
Let C_{1}, C_{2} be coherent spaces. One can check that $C_{1} \otimes C_{2}$ is non empty.
Next we state the proposition
(98) For all coherent spaces C_{1}, C_{2} and for every element a of $C_{1} \otimes C_{2}$ holds $\pi_{1}(a) \in C_{1}$ and $\pi_{2}(a) \in C_{2}$ and $a \subseteq\left\{\pi_{1}(a), \pi_{2}(a):\right]$.
Let C_{1}, C_{2} be coherent spaces. One can check that $C_{1} \otimes C_{2}$ is down-closed and binary complete.

Next we state two propositions:
(99) For all coherent spaces C_{1}, C_{2} holds $\cup\left(C_{1} \otimes C_{2}\right)=$: $\cup C_{1}, \cup C_{2}$: .
(100) For all sets $x_{1}, y_{1}, x_{2}, y_{2}$ holds $\left\langle\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle\right\rangle \in \operatorname{Web}\left(C_{1} \otimes C_{2}\right)$ iff $\left\langle x_{1}, y_{1}\right\rangle \in \operatorname{Web}\left(C_{1}\right)$ and $\left\langle x_{2}, y_{2}\right\rangle \in \operatorname{Web}\left(C_{2}\right)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. Indexed category. Formalized Mathematics, 5(3):329-337, 1996.
[5] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105-109, 1991.
[13] Jarosław Kotowicz and Konrad Raczkowski. Coherent space. Formalized Mathematics, 3(2):255-261, 1992.
[14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[17] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[20] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[21] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

