Continuous, Stable, and Linear Maps of Coherence Spaces

Grzegorz Bancerek Institute of Mathematics Polish Academy of Sciences

MML Identifier: COHSP_1.

The papers [18], [21], [9], [14], [16], [11], [3], [19], [22], [7], [6], [10], [20], [12], [13], [17], [1], [2], [5], [8], [15], and [4] provide the terminology and notation for this paper.

1. Directed Sets

One can check that there exists a coherent space which is finite. Let us observe that a set is binary complete if:

(Def.1) For every set A such that for all sets a, b such that $a \in A$ and $b \in A$ holds $a \cup b \in$ it holds $\bigcup A \in$ it.

Let X be a set. The functor $\operatorname{FlatCoh}(X)$ yielding a set is defined as follows: (Def.2) $\operatorname{FlatCoh}(X) = \operatorname{CohSp}(\Delta_X).$

The functor $\operatorname{SubFin}(X)$ yielding a subset of X is defined by:

(Def.3) For every set x holds $x \in \text{SubFin}(X)$ iff $x \in X$ and x is finite.

One can prove the following three propositions:

- (1) For all sets X, x holds $x \in \text{FlatCoh}(X)$ iff $x = \emptyset$ or there exists a set y such that $x = \{y\}$ and $y \in X$.
- (2) For every set X holds \bigcup FlatCoh(X) = X.
- (3) For every finite down-closed set X holds $\operatorname{SubFin}(X) = X$.

One can check that $\{\emptyset\}$ is down-closed and binary complete. Let X be a set. One can check that 2^X is down-closed and binary complete and $\operatorname{FlatCoh}(X)$ is non empty down-closed and binary complete.

> C 1996 Warsaw University - Białystok ISSN 1426-2630

Let C be a non empty down-closed set. Observe that $\operatorname{SubFin}(C)$ is non empty and down-closed.

We now state the proposition

(4) Web $(\{\emptyset\}) = \emptyset$.

The scheme *MinimalElement wrt Incl* concerns sets \mathcal{A} , \mathcal{B} and a unary predicate \mathcal{P} , and states that:

There exists a set a such that $a \in \mathcal{B}$ and $\mathcal{P}[a]$ and for every set b such that $b \in \mathcal{B}$ and $\mathcal{P}[b]$ and $b \subseteq a$ holds b = a

provided the following requirements are met:

- $\mathcal{A} \in \mathcal{B}$,
- $\mathcal{P}[\mathcal{A}],$
- \mathcal{A} is finite.

Let X be a set. One can check that there exists a subset of X which is finite. Let C be a coherent space. Observe that there exists an element of C which is finite.

Let X be a set. We say that X is \cup -directed if and only if:

(Def.4) For every finite subset Y of X there exists a set a such that $\bigcup Y \subseteq a$ and $a \in X$.

We say that X is \cap -directed if and only if:

(Def.5) For every finite subset Y of X there exists a set a such that for every set y such that $y \in Y$ holds $a \subseteq y$ and $a \in X$.

Let us note that every set which is \cup -directed is also non empty and every set which is \cap -directed is also non empty.

We now state several propositions:

- (5) Let X be a set. Suppose X is \cup -directed. Let a, b be sets. If $a \in X$ and $b \in X$, then there exists a set c such that $a \cup b \subseteq c$ and $c \in X$.
- (6) Let X be a non empty set. Suppose that for all sets a, b such that $a \in X$ and $b \in X$ there exists a set c such that $a \cup b \subseteq c$ and $c \in X$. Then X is \cup -directed.
- (7) Let X be a set. Suppose X is \cap -directed. Let a, b be sets. If $a \in X$ and $b \in X$, then there exists a set c such that $c \subseteq a \cap b$ and $c \in X$.
- (8) Let X be a non empty set. Suppose that for all sets a, b such that $a \in X$ and $b \in X$ there exists a set c such that $c \subseteq a \cap b$ and $c \in X$. Then X is \cap -directed.
- (9) For every set x holds $\{x\}$ is \cup -directed and \cap -directed.
- (10) For all sets x, y holds $\{x, y, x \cup y\}$ is \cup -directed.
- (11) For all sets x, y holds $\{x, y, x \cap y\}$ is \cap -directed.

Let us observe that there exists a set which is \cup -directed \cap -directed and finite.

Let C be a non empty set. Observe that there exists a subset of C which is \cup -directed \cap -directed and finite.

We now state the proposition

- (12) For every set X holds Fin X is \cup -directed and \cap -directed.
 - Let X be a set. Observe that Fin X is \cup -directed and \cap -directed.

Let C be a down-closed non empty set. Note that there exists a subset of C which is preboolean and non empty.

Let C be a down-closed non empty set and let a be an element of C. Then Fin a is a preboolean non empty subset of C.

One can prove the following proposition

(13) Let X be a non empty set and let Y be a set. Suppose X is \cup -directed and $Y \subseteq \bigcup X$ and Y is finite. Then there exists a set Z such that $Z \in X$ and $Y \subseteq Z$.

Let X be a set. We say that X is \cap -closed if and only if:

(Def.6) For all sets x, y such that $x \in X$ and $y \in X$ holds $x \cap y \in X$.

We say that X is closed under directed unions if and only if:

- (Def.7) For every subset A of X such that A is \cup -directed holds $\bigcup A \in X$. One can check that every set which is down-closed is also \cap -closed. Next we state two propositions:
 - (14) For every coherent space C and for all elements x, y of C holds $x \cap y \in C$.
 - (15) For every coherent space C and for every \cup -directed subset A of C holds $\bigcup A \in C$.

Let us note that every coherent space is closed under directed unions.

Let us note that there exists a coherent space which is \cap -closed and closed under directed unions.

Let C be a closed under directed unions non empty set and let A be a \cup directed subset of C. Then $\bigcup A$ is an element of C.

Let X, Y be sets. We say that X includes lattice of Y if and only if:

- (Def.8) For all sets a, b such that $a \in Y$ and $b \in Y$ holds $a \cap b \in X$ and $a \cup b \in X$. The following proposition is true
 - (16) For every non empty set X such that X includes lattice of X holds X is \cup -directed and \cap -directed.

Let X, x, y be sets. We say that X includes lattice of x, y if and only if:

(Def.9) X includes lattice of $\{x, y\}$.

One can prove the following proposition

(17) For all sets X, x, y holds X includes lattice of x, y iff $x \in X$ and $y \in X$ and $x \cap y \in X$ and $x \cup y \in X$.

2. Continuous, Stable, and Linear Functions

Let f be a function. We say that f is preserving arbitrary unions if and only if:

(Def.10) For every subset A of dom f such that $\bigcup A \in \text{dom } f$ holds $f(\bigcup A) = \bigcup (f^{\circ}A)$.

We say that f is preserving directed unions if and only if:

(Def.11) For every subset A of dom f such that A is \cup -directed and $\bigcup A \in \text{dom } f$ holds $f(\bigcup A) = \bigcup (f^{\circ}A)$.

Let f be a function. We say that f is \subseteq -monotone if and only if:

(Def.12) For all sets a, b such that $a \in \text{dom } f$ and $b \in \text{dom } f$ and $a \subseteq b$ holds $f(a) \subseteq f(b)$.

We say that f is preserving binary intersections if and only if:

(Def.13) For all sets a, b such that dom f includes lattice of a, b holds $f(a \cap b) = f(a) \cap f(b)$.

Let us note that every function which is preserving directed unions is also \subseteq -monotone and every function which is preserving arbitrary unions is also preserving directed unions.

Next we state two propositions:

- (18) Let f be a function. Suppose f is preserving arbitrary unions. Let x, y be sets. If $x \in \text{dom } f$ and $y \in \text{dom } f$ and $x \cup y \in \text{dom } f$, then $f(x \cup y) = f(x) \cup f(y)$.
- (19) For every function f such that f is preserving arbitrary unions holds $f(\emptyset) = \emptyset$.

Let C_1 , C_2 be coherent spaces. Note that there exists a function from C_1 into C_2 which is preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. One can verify that there exists a many sorted set indexed by C which is preserving arbitrary unions and preserving binary intersections.

Let f be a function. We say that f is continuous if and only if:

(Def.14) dom f is closed under directed unions and f is preserving directed unions.

Let f be a function. We say that f is stable if and only if:

(Def.15) dom f is \cap -closed and f is continuous and preserving binary intersections.

Let f be a function. We say that f is linear if and only if:

(Def.16) f is stable and preserving arbitrary unions.

One can check the following observations:

- * every function which is continuous is also preserving directed unions,
- * every function which is stable is also preserving binary intersections and continuous, and
- $\ast~$ every function which is linear is also preserving arbitrary unions and stable.

Let X be a closed under directed unions set. Note that every many sorted set indexed by X which is preserving directed unions is also continuous.

Let X be a \cap -closed set. Observe that every many sorted set indexed by X which is continuous and preserving binary intersections is also stable.

Let us note that every function which is stable and preserving arbitrary unions is also linear.

Note that there exists a function which is linear. Let C be a coherent space. One can check that there exists a many sorted set indexed by C which is linear. Let B be a coherent space. One can check that there exists a function from B into C which is linear.

Let f be a continuous function. One can verify that dom f is closed under directed unions.

Let f be a stable function. One can verify that dom f is \cap -closed.

We now state several propositions:

- (20) For every set X holds \bigcup Fin X = X.
- (21) For every continuous function f such that dom f is down-closed and for every set a such that $a \in \text{dom } f$ holds $f(a) = \bigcup (f^{\circ} \text{Fin } a)$.
- (22) Let f be a function. Suppose dom f is down-closed. Then f is continuous if and only if the following conditions are satisfied:
 - (i) dom f is closed under directed unions,
 - (ii) f is \subseteq -monotone, and
- (iii) for all sets a, y such that $a \in \text{dom } f$ and $y \in f(a)$ there exists a set b such that b is finite and $b \subseteq a$ and $y \in f(b)$.
- (23) Let f be a function. Suppose dom f is down-closed and closed under directed unions. Then f is stable if and only if the following conditions are satisfied:
 - (i) f is \subseteq -monotone, and
 - (ii) for all sets a, y such that $a \in \text{dom } f$ and $y \in f(a)$ there exists a set b such that b is finite and $b \subseteq a$ and $y \in f(b)$ and for every set c such that $c \subseteq a$ and $y \in f(c)$ holds $b \subseteq c$.
- (24) Let f be a function. Suppose dom f is down-closed and closed under directed unions. Then f is linear if and only if the following conditions are satisfied:
 - (i) f is \subseteq -monotone, and
 - (ii) for all sets a, y such that $a \in \text{dom } f$ and $y \in f(a)$ there exists a set x such that $x \in a$ and $y \in f(\{x\})$ and for every set b such that $b \subseteq a$ and $y \in f(b)$ holds $x \in b$.

3. GRAPH OF CONTINUOUS FUNCTION

Let f be a function. The functor graph(f) yielding a set is defined as follows: (Def.17) For every set x holds $x \in \text{graph}(f)$ iff there exists a finite set y and there exists a set z such that $x = \langle y, z \rangle$ and $y \in \text{dom } f$ and $z \in f(y)$.

Let C_1 , C_2 be non empty sets and let f be a function from C_1 into C_2 . Then graph(f) is a subset of $[C_1, \bigcup C_2]$.

Let f be a function. Note that graph(f) is relation-like.

Next we state several propositions:

- (25) For every function f and for all sets x, y holds $\langle x, y \rangle \in \operatorname{graph}(f)$ iff x is finite and $x \in \operatorname{dom} f$ and $y \in f(x)$.
- (26) Let f be a \subseteq -monotone function and let a, b be sets. Suppose $b \in \text{dom } f$ and $a \subseteq b$ and b is finite. Let y be a set. If $\langle a, y \rangle \in \text{graph}(f)$, then $\langle b, y \rangle \in \text{graph}(f)$.
- (27) Let C_1, C_2 be coherent spaces, and let f be a function from C_1 into C_2 , and let a be an element of C_1 , and let y_1, y_2 be sets. If $\langle a, y_1 \rangle \in \operatorname{graph}(f)$ and $\langle a, y_2 \rangle \in \operatorname{graph}(f)$, then $\{y_1, y_2\} \in C_2$.
- (28) Let C_1 , C_2 be coherent spaces, and let f be a \subseteq -monotone function from C_1 into C_2 , and let a, b be elements of C_1 . Suppose $a \cup b \in C_1$. Let y_1, y_2 be sets. If $\langle a, y_1 \rangle \in \operatorname{graph}(f)$ and $\langle b, y_2 \rangle \in \operatorname{graph}(f)$, then $\{y_1, y_2\} \in C_2$.
- (29) For all coherent spaces C_1 , C_2 and for all continuous functions f, g from C_1 into C_2 such that graph(f) = graph(g) holds f = g.
- (30) Let C_1 , C_2 be coherent spaces and let X be a subset of $[C_1, \bigcup C_2]$. Suppose that
 - (i) for every set x such that $x \in X$ holds x_1 is finite,
 - (ii) for all finite elements a, b of C_1 such that $a \subseteq b$ and for every set y such that $\langle a, y \rangle \in X$ holds $\langle b, y \rangle \in X$, and
 - (iii) for every finite element a of C_1 and for all sets y_1, y_2 such that $\langle a, y_1 \rangle \in X$ and $\langle a, y_2 \rangle \in X$ holds $\{y_1, y_2\} \in C_2$. Then there exists a continuous function f from C_1 into C_2 such that $X = \operatorname{graph}(f)$.
- (31) Let C_1 , C_2 be coherent spaces, and let f be a continuous function from C_1 into C_2 , and let a be an element of C_1 . Then $f(a) = (\operatorname{graph}(f))^\circ \operatorname{Fin} a$.

4. TRACE OF STABLE FUNCTION

Let f be a function. The functor $\operatorname{Trace}(f)$ yields a set and is defined by the condition (Def.18).

(Def.18) Let x be a set. Then $x \in \text{Trace}(f)$ if and only if there exist sets a, y such that $x = \langle a, y \rangle$ and $a \in \text{dom } f$ and $y \in f(a)$ and for every set b such that $b \in \text{dom } f$ and $b \subseteq a$ and $y \in f(b)$ holds a = b.

Next we state the proposition

- (32) Let f be a function and let a, y be sets. Then $\langle a, y \rangle \in \text{Trace}(f)$ if and only if the following conditions are satisfied:
 - (i) $a \in \operatorname{dom} f$,
 - (ii) $y \in f(a)$, and

(iii) for every set b such that $b \in \text{dom } f$ and $b \subseteq a$ and $y \in f(b)$ holds a = b.

Let C_1 , C_2 be non empty sets and let f be a function from C_1 into C_2 . Then $\operatorname{Trace}(f)$ is a subset of $[C_1, \bigcup C_2]$.

Let f be a function. One can check that Trace(f) is relation-like. Next we state a number of propositions:

- (33) For every continuous function f such that dom f is down-closed holds $\operatorname{Trace}(f) \subseteq \operatorname{graph}(f)$.
- (34) Let f be a continuous function. Suppose dom f is down-closed. Let a, y be sets. If $\langle a, y \rangle \in \text{Trace}(f)$, then a is finite.
- (35) Let C_1, C_2 be coherent spaces, and let f be a \subseteq -monotone function from C_1 into C_2 , and let a_1, a_2 be sets. Suppose $a_1 \cup a_2 \in C_1$. Let y_1, y_2 be sets. If $\langle a_1, y_1 \rangle \in \operatorname{Trace}(f)$ and $\langle a_2, y_2 \rangle \in \operatorname{Trace}(f)$, then $\{y_1, y_2\} \in C_2$.
- (36) Let C_1 , C_2 be coherent spaces, and let f be a preserving binary intersections function from C_1 into C_2 , and let a_1 , a_2 be sets. If $a_1 \cup a_2 \in C_1$, then for every set y such that $\langle a_1, y \rangle \in \text{Trace}(f)$ and $\langle a_2, y \rangle \in \text{Trace}(f)$ holds $a_1 = a_2$.
- (37) Let C_1, C_2 be coherent spaces and let f, g be stable functions from C_1 into C_2 . If $\operatorname{Trace}(f) \subseteq \operatorname{Trace}(g)$, then for every element a of C_1 holds $f(a) \subseteq g(a)$.
- (38) For all coherent spaces C_1 , C_2 and for all stable functions f, g from C_1 into C_2 such that Trace(f) = Trace(g) holds f = g.
- (39) Let C_1 , C_2 be coherent spaces and let X be a subset of $[C_1, \bigcup C_2]$. Suppose that
 - (i) for every set x such that $x \in X$ holds x_1 is finite,
 - (ii) for all elements a, b of C_1 such that $a \cup b \in C_1$ and for all sets y_1, y_2 such that $\langle a, y_1 \rangle \in X$ and $\langle b, y_2 \rangle \in X$ holds $\{y_1, y_2\} \in C_2$, and
- (iii) for all elements a, b of C_1 such that $a \cup b \in C_1$ and for every set y such that $\langle a, y \rangle \in X$ and $\langle b, y \rangle \in X$ holds a = b. Then there exists a stable function f from C_1 into C_2 such that X = Trace(f).
- (40) Let C_1 , C_2 be coherent spaces, and let f be a stable function from C_1 into C_2 , and let a be an element of C_1 . Then $f(a) = (\text{Trace}(f))^{\circ} \text{Fin } a$.
- (41) Let C_1 , C_2 be coherent spaces, and let f be a stable function from C_1 into C_2 , and let a be an element of C_1 , and let y be a set. Then $y \in f(a)$ if and only if there exists an element b of C_1 such that $\langle b, y \rangle \in \text{Trace}(f)$ and $b \subseteq a$.
- (42) For all coherent spaces C_1 , C_2 there exists a stable function f from C_1 into C_2 such that $\text{Trace}(f) = \emptyset$.
- (43) Let C_1, C_2 be coherent spaces, and let a be a finite element of C_1 , and let y be a set. If $y \in \bigcup C_2$, then there exists a stable function f from C_1 into C_2 such that $\operatorname{Trace}(f) = \{\langle a, y \rangle\}$.
- (44) Let C_1, C_2 be coherent spaces, and let a be an element of C_1 , and let y be a set. Suppose $y \in \bigcup C_2$. Let f be a stable function from C_1 into C_2 . Suppose Trace $(f) = \{\langle a, y \rangle\}$. Let b be an element of C_1 . Then if $a \subseteq b$, then $f(b) = \{y\}$ and if $a \not\subseteq b$, then $f(b) = \emptyset$.

- (45) Let C_1 , C_2 be coherent spaces, and let f be a stable function from C_1 into C_2 , and let X be a subset of $\operatorname{Trace}(f)$. Then there exists a stable function g from C_1 into C_2 such that $\operatorname{Trace}(g) = X$.
- (46) Let C_1 , C_2 be coherent spaces and let A be a set. Suppose that for all sets x, y such that $x \in A$ and $y \in A$ there exists a stable function f from C_1 into C_2 such that $x \cup y = \operatorname{Trace}(f)$. Then there exists a stable function f from C_1 into C_2 such that $\bigcup A = \operatorname{Trace}(f)$.

Let C_1 , C_2 be coherent spaces. The functor $\text{StabCoh}(C_1, C_2)$ yielding a set is defined as follows:

(Def.19) For every set x holds $x \in \text{StabCoh}(C_1, C_2)$ iff there exists a stable function f from C_1 into C_2 such that x = Trace(f).

Let C_1 , C_2 be coherent spaces. Note that $StabCoh(C_1, C_2)$ is non empty down-closed and binary complete.

We now state three propositions:

- (47) For all coherent spaces C_1 , C_2 and for every stable function f from C_1 into C_2 holds $\operatorname{Trace}(f) \subseteq [\operatorname{SubFin}(C_1), \bigcup C_2].$
- (48) For all coherent spaces C_1 , C_2 holds \bigcup StabCoh $(C_1, C_2) = [$ SubFin (C_1) , $\bigcup C_2]$.
- (49) Let C_1, C_2 be coherent spaces, and let a, b be finite elements of C_1 , and let y_1, y_2 be sets. Then $\langle \langle a, y_1 \rangle, \langle b, y_2 \rangle \rangle \in \text{Web}(\text{StabCoh}(C_1, C_2))$ if and only if one of the following conditions is satisfied:
 - (i) $a \cup b \notin C_1$ and $y_1 \in \bigcup C_2$ and $y_2 \in \bigcup C_2$, or
 - (ii) $\langle y_1, y_2 \rangle \in \text{Web}(C_2)$ and if $y_1 = y_2$, then a = b.

5. TRACE OF LINEAR FUNCTION

The following proposition is true

(50) Let C_1 , C_2 be coherent spaces and let f be a stable function from C_1 into C_2 . Then f is linear if and only if for all sets a, y such that $\langle a, y \rangle \in \text{Trace}(f)$ there exists a set x such that $a = \{x\}$.

Let f be a function. The functor LinTrace(f) yielding a set is defined as follows:

(Def.20) For every set x holds $x \in \text{LinTrace}(f)$ iff there exist sets y, z such that $x = \langle y, z \rangle$ and $\langle \{y\}, z \rangle \in \text{Trace}(f)$.

Next we state three propositions:

- (51) For every function f and for all sets x, y holds $\langle x, y \rangle \in \text{LinTrace}(f)$ iff $\langle \{x\}, y \rangle \in \text{Trace}(f)$.
- (52) For every function f such that $f(\emptyset) = \emptyset$ and for all sets x, y such that $\{x\} \in \text{dom } f$ and $y \in f(\{x\})$ holds $\langle x, y \rangle \in \text{LinTrace}(f)$.
- (53) For every function f and for all sets x, y such that $\langle x, y \rangle \in \text{LinTrace}(f)$ holds $\{x\} \in \text{dom } f$ and $y \in f(\{x\})$.

Let C_1, C_2 be non empty sets and let f be a function from C_1 into C_2 . Then LinTrace(f) is a subset of $[\bigcup C_1, \bigcup C_2]$.

Let f be a function. One can verify that LinTrace(f) is relation-like.

Let C_1 , C_2 be coherent spaces. The functor $\text{LinCoh}(C_1, C_2)$ yielding a set is defined as follows:

(Def.21) For every set x holds $x \in \text{LinCoh}(C_1, C_2)$ iff there exists a linear function f from C_1 into C_2 such that x = LinTrace(f).

Next we state a number of propositions:

- (54) Let C_1 , C_2 be coherent spaces, and let f be a \subseteq -monotone function from C_1 into C_2 , and let x_1 , x_2 be sets. Suppose $\{x_1, x_2\} \in C_1$. Let y_1 , y_2 be sets. If $\langle x_1, y_1 \rangle \in \text{LinTrace}(f)$ and $\langle x_2, y_2 \rangle \in \text{LinTrace}(f)$, then $\{y_1, y_2\} \in C_2$.
- (55) Let C_1 , C_2 be coherent spaces, and let f be a preserving binary intersections function from C_1 into C_2 , and let x_1 , x_2 be sets. If $\{x_1, x_2\} \in C_1$, then for every set y such that $\langle x_1, y \rangle \in \text{LinTrace}(f)$ and $\langle x_2, y \rangle \in \text{LinTrace}(f)$ holds $x_1 = x_2$.
- (56) For all coherent spaces C_1 , C_2 and for all linear functions f, g from C_1 into C_2 such that LinTrace(f) = LinTrace(g) holds f = g.
- (57) Let C_1, C_2 be coherent spaces and let X be a subset of $[\bigcup C_1, \bigcup C_2]$. Suppose that
 - (i) for all sets a, b such that $\{a, b\} \in C_1$ and for all sets y_1, y_2 such that $\langle a, y_1 \rangle \in X$ and $\langle b, y_2 \rangle \in X$ holds $\{y_1, y_2\} \in C_2$, and
 - (ii) for all sets a, b such that $\{a, b\} \in C_1$ and for every set y such that $\langle a, y \rangle \in X$ and $\langle b, y \rangle \in X$ holds a = b. Then there exists a linear function f from C_1 into C_2 such that X = LinTrace(f).
- (58) Let C_1 , C_2 be coherent spaces, and let f be a linear function from C_1 into C_2 , and let a be an element of C_1 . Then $f(a) = (\text{LinTrace}(f))^{\circ}a$.
- (59) For all coherent spaces C_1 , C_2 there exists a linear function f from C_1 into C_2 such that $\text{LinTrace}(f) = \emptyset$.
- (60) Let C_1 , C_2 be coherent spaces, and let x be a set, and let y be a set. Suppose $x \in \bigcup C_1$ and $y \in \bigcup C_2$. Then there exists a linear function f from C_1 into C_2 such that $\operatorname{LinTrace}(f) = \{\langle x, y \rangle\}$.
- (61) Let C_1 , C_2 be coherent spaces, and let x be a set, and let y be a set. Suppose $x \in \bigcup C_1$ and $y \in \bigcup C_2$. Let f be a linear function from C_1 into C_2 . Suppose LinTrace $(f) = \{\langle x, y \rangle\}$. Let a be an element of C_1 . Then if $x \in a$, then $f(a) = \{y\}$ and if $x \notin a$, then $f(a) = \emptyset$.
- (62) Let C_1 , C_2 be coherent spaces, and let f be a linear function from C_1 into C_2 , and let X be a subset of LinTrace(f). Then there exists a linear function g from C_1 into C_2 such that LinTrace(g) = X.
- (63) Let C_1 , C_2 be coherent spaces and let A be a set. Suppose that for all sets x, y such that $x \in A$ and $y \in A$ there exists a linear function f

from C_1 into C_2 such that $x \cup y = \text{LinTrace}(f)$. Then there exists a linear function f from C_1 into C_2 such that $\bigcup A = \text{LinTrace}(f)$.

Let C_1 , C_2 be coherent spaces. One can check that $LinCoh(C_1, C_2)$ is non empty down-closed and binary complete.

One can prove the following propositions:

- (64) For all coherent spaces C_1, C_2 holds $\bigcup \text{LinCoh}(C_1, C_2) = [\bigcup C_1, \bigcup C_2].$
- (65) Let C_1 , C_2 be coherent spaces, and let x_1 , x_2 be sets, and let y_1 , y_2 be sets. Then $\langle \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \rangle \in \text{Web}(\text{LinCoh}(C_1, C_2))$ if and only if the following conditions are satisfied:
 - (i) $x_1 \in \bigcup C_1$,
 - (ii) $x_2 \in \bigcup C_1$, and
 - (iii) $\langle x_1, x_2 \rangle \notin \text{Web}(C_1)$ and $y_1 \in \bigcup C_2$ and $y_2 \in \bigcup C_2$ or $\langle y_1, y_2 \rangle \in \text{Web}(C_2)$ and if $y_1 = y_2$, then $x_1 = x_2$.

6. Negation of Coherence Spaces

Let C be a coherent space. The functor $\neg C$ yielding a set is defined by:

(Def.22) $\neg C = \{a : a \text{ ranges over subsets of } \bigcup C, \bigwedge_{b : \text{element of } C} \bigvee_{x : \text{set}} a \cap b \subseteq \{x\}\}.$

One can prove the following proposition

- (66) Let C be a coherent space and let x be a set. Then $x \in \neg C$ if and only if the following conditions are satisfied:
 - (i) $x \subseteq \bigcup C$, and
 - (ii) for every element a of C there exists a set z such that $x \cap a \subseteq \{z\}$.

Let C be a coherent space. Observe that $\neg C$ is non empty down-closed and binary complete.

Next we state several propositions:

- (67) For every coherent space C holds $\bigcup \neg C = \bigcup C$.
- (68) For every coherent space C and for all sets x, y such that $x \neq y$ and $\{x, y\} \in C$ holds $\{x, y\} \notin \neg C$.
- (69) For every coherent space C and for all sets x, y such that $\{x, y\} \subseteq \bigcup C$ and $\{x, y\} \notin C$ holds $\{x, y\} \in \neg C$.
- (70) For every coherent space C and for all sets x, y holds $\langle x, y \rangle \in \text{Web}(\neg C)$ iff $x \in \bigcup C$ but $y \in \bigcup C$ but x = y or $\langle x, y \rangle \notin \text{Web}(C)$.
- (71) For every coherent space C holds $\neg \neg C = C$.
- $(72) \quad \neg\{\emptyset\} = \{\emptyset\}.$
- (73) For every set X holds \neg FlatCoh(X) = 2^X and $\neg(2^X)$ = FlatCoh(X).

7. PRODUCT AND COPRODUCT ON COHERENCE SPACES

Let x, y be sets. The functor $x \uplus y$ yielding a set is defined by: (Def.23) $x \uplus y = \bigcup \text{disjoint} \langle x, y \rangle$.

We now state a number of propositions:

- (74) For all sets x, y holds $x \uplus y = [x, \{1\}] \cup [y, \{2\}].$
- (75) For every set x holds $x \uplus \emptyset = [x, \{1\}]$ and $\emptyset \uplus x = [x, \{2\}]$.
- (76) For all sets x, y, z such that $z \in x \uplus y$ holds $z = \langle z_1, z_2 \rangle$ but $z_2 = 1$ and $z_1 \in x$ or $z_2 = 2$ and $z_1 \in y$.
- (77) For all sets x, y, z holds $\langle z, 1 \rangle \in x \uplus y$ iff $z \in x$.
- (78) For all sets x, y, z holds $\langle z, 2 \rangle \in x \uplus y$ iff $z \in y$.
- (79) For all sets x_1, y_1, x_2, y_2 holds $x_1 \uplus y_1 \subseteq x_2 \uplus y_2$ iff $x_1 \subseteq x_2$ and $y_1 \subseteq y_2$.
- (80) For all sets x, y, z such that $z \subseteq x \uplus y$ there exist sets x_1, y_1 such that $z = x_1 \uplus y_1$ and $x_1 \subseteq x$ and $y_1 \subseteq y$.
- (81) For all sets x_1, y_1, x_2, y_2 holds $x_1 \uplus y_1 = x_2 \uplus y_2$ iff $x_1 = x_2$ and $y_1 = y_2$.
- (82) For all sets x_1, y_1, x_2, y_2 holds $(x_1 \uplus y_1) \cup (x_2 \uplus y_2) = x_1 \cup x_2 \uplus y_1 \cup y_2$.
- (83) For all sets x_1, y_1, x_2, y_2 holds $(x_1 \uplus y_1) \cap (x_2 \uplus y_2) = x_1 \cap x_2 \uplus y_1 \cap y_2$. Let C_1, C_2 be coherent spaces. The functor $C_1 \sqcap C_2$ yields a set and is defined

by:

(Def.24) $C_1 \sqcap C_2 = \{a \uplus b : a \text{ ranges over elements of } C_1, b \text{ ranges over elements of } C_2\}.$

The functor $C_1 \sqcup C_2$ yielding a set is defined as follows:

(Def.25) $C_1 \sqcup C_2 = \{a \uplus \emptyset : a \text{ ranges over elements of } C_1\} \cup \{\emptyset \uplus b : b \text{ ranges over elements of } C_2\}.$

The following propositions are true:

- (84) Let C_1 , C_2 be coherent spaces and let x be a set. Then $x \in C_1 \sqcap C_2$ if and only if there exists an element a of C_1 and there exists an element bof C_2 such that $x = a \uplus b$.
- (85) For all coherent spaces C_1 , C_2 and for all sets x, y holds $x \uplus y \in C_1 \sqcap C_2$ iff $x \in C_1$ and $y \in C_2$.
- (86) For all coherent spaces C_1, C_2 holds $\bigcup (C_1 \sqcap C_2) = \bigcup C_1 \uplus \bigcup C_2$.
- (87) For all coherent spaces C_1 , C_2 and for all sets x, y holds $x \uplus y \in C_1 \sqcup C_2$ iff $x \in C_1$ and $y = \emptyset$ or $x = \emptyset$ and $y \in C_2$.
- (88) Let C_1, C_2 be coherent spaces and let x be a set. Suppose $x \in C_1 \sqcup C_2$. Then there exists an element a of C_1 and there exists an element b of C_2 such that $x = a \uplus b$ but $a = \emptyset$ or $b = \emptyset$.
- (89) For all coherent spaces C_1 , C_2 holds $\bigcup (C_1 \sqcup C_2) = \bigcup C_1 \uplus \bigcup C_2$.

Let C_1 , C_2 be coherent spaces. Observe that $C_1 \sqcap C_2$ is non empty downclosed and binary complete and $C_1 \sqcup C_2$ is non empty down-closed and binary complete. In the sequel C_1 , C_2 will be coherent spaces. We now state several propositions:

- (90) For all sets x, y holds $\langle \langle x, 1 \rangle, \langle y, 1 \rangle \rangle \in \operatorname{Web}(C_1 \sqcap C_2)$ iff $\langle x, y \rangle \in \operatorname{Web}(C_1)$.
- (91) For all sets x, y holds $\langle \langle x, 2 \rangle, \langle y, 2 \rangle \rangle \in \text{Web}(C_1 \sqcap C_2)$ iff $\langle x, y \rangle \in \text{Web}(C_2)$.
- (92) For all sets x, y such that $x \in \bigcup C_1$ and $y \in \bigcup C_2$ holds $\langle \langle x, 1 \rangle, \langle y, 2 \rangle \rangle \in \operatorname{Web}(C_1 \sqcap C_2)$ and $\langle \langle y, 2 \rangle, \langle x, 1 \rangle \rangle \in \operatorname{Web}(C_1 \sqcap C_2)$.
- (93) For all sets x, y holds $\langle \langle x, 1 \rangle, \langle y, 1 \rangle \rangle \in \operatorname{Web}(C_1 \sqcup C_2)$ iff $\langle x, y \rangle \in \operatorname{Web}(C_1)$.
- (94) For all sets x, y holds $\langle \langle x, 2 \rangle, \langle y, 2 \rangle \rangle \in \text{Web}(C_1 \sqcup C_2)$ iff $\langle x, y \rangle \in \text{Web}(C_2)$.
- (95) For all sets x, y such that $x \in \bigcup C_1$ and $y \in \bigcup C_2$ holds $\langle \langle x, 1 \rangle, \langle y, 2 \rangle \rangle \notin \operatorname{Web}(C_1 \sqcup C_2)$ and $\langle \langle y, 2 \rangle, \langle x, 1 \rangle \rangle \notin \operatorname{Web}(C_1 \sqcup C_2)$.
- $(96) \quad \neg(C_1 \sqcap C_2) = \neg C_1 \sqcup \neg C_2.$

Let C_1, C_2 be coherent spaces. The functor $C_1 \otimes C_2$ yielding a set is defined as follows:

(Def.26) $C_1 \otimes C_2 = \bigcup \{2^{[a,b]} : a \text{ ranges over elements of } C_1, b \text{ ranges over elements of } C_2\}.$

We now state the proposition

(97) Let C_1, C_2 be coherent spaces and let x be a set. Then $x \in C_1 \otimes C_2$ if and only if there exists an element a of C_1 and there exists an element bof C_2 such that $x \subseteq [a, b]$.

Let C_1 , C_2 be coherent spaces. One can check that $C_1 \otimes C_2$ is non empty. Next we state the proposition

(98) For all coherent spaces C_1 , C_2 and for every element a of $C_1 \otimes C_2$ holds $\pi_1(a) \in C_1$ and $\pi_2(a) \in C_2$ and $a \subseteq [\pi_1(a), \pi_2(a)].$

Let C_1 , C_2 be coherent spaces. One can check that $C_1 \otimes C_2$ is down-closed and binary complete.

Next we state two propositions:

- (99) For all coherent spaces C_1 , C_2 holds $\bigcup (C_1 \otimes C_2) = [\bigcup C_1, \bigcup C_2].$
- (100) For all sets x_1, y_1, x_2, y_2 holds $\langle \langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \rangle \in \text{Web}(C_1 \otimes C_2)$ iff $\langle x_1, y_1 \rangle \in \text{Web}(C_1)$ and $\langle x_2, y_2 \rangle \in \text{Web}(C_2)$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(3):537–541, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [4] Grzegorz Bancerek. Indexed category. Formalized Mathematics, 5(3):329–337, 1996.
- [5] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.

- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109, 1991.
- [13] Jarosław Kotowicz and Konrad Raczkowski. Coherent space. Formalized Mathematics, 3(2):255–261, 1992.
- [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [17] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [19] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [20] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received August 30, 1995