Subtrees ${ }^{1}$

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Summary. The concepts of root tree, the set of successors of a node in decorated tree and sets of subtrees are introduced.

MML Identifier: TREES_9.

The notation and terminology used here are introduced in the following papers: [16], [17], [15], [3], [18], [12], [13], [9], [14], [11], [7], [2], [1], [4], [6], [8], [5], and [10].

1. Root Tree and Successors of Node in Decorated Tree

One can check that every tree which is finite is also finite-order.
The following propositions are true:
(1) For every decorated tree t holds $t \upharpoonright \varepsilon_{N}=t$.
(2) For every tree t and for all finite sequences p, q of elements of \mathbb{N} such that $p^{\wedge} q \in t$ holds $t \upharpoonright\left(p^{\wedge} q\right)=t \upharpoonright p \upharpoonright q$.
(3) Let t be a decorated tree and let p, q be finite sequences of elements of \mathbb{N}. If $p^{\wedge} q \in \operatorname{dom} t$, then $t \upharpoonright\left(p^{\wedge} q\right)=t \upharpoonright p \upharpoonright q$.
A decorated tree is root if:
(Def.1) \quad dom it $=$ the elementary tree of 0 .
Let us note that every decorated tree which is root is also finite.
The following three propositions are true:

(5) For every tree t and for every element p of t holds $t \upharpoonright p=$ the elementary tree of 0 iff $p \in \operatorname{Leaves}(t)$.

[^0](6) For every decorated tree t and for every node p of t holds $t \upharpoonright p$ is root iff $p \in$ Leaves $(\operatorname{dom} t)$.
Let us mention that there exists a decorated tree which is root and there exists a decorated tree which is finite and non root.

Let x be a set. Note that the root tree of x is finite and root.
A tree is finite-branching if:
(Def.2) For every element x of it holds $\operatorname{succ} x$ is finite.
Let us mention that every tree which is finite-order is also finite-branching.
Let us note that there exists a tree which is finite.
A decorated tree is finite-order if:
(Def.3) domit is finite-order.
A decorated tree is finite-branching if:
(Def.4) dom it is finite-branching.
One can check that every decorated tree which is finite is also finite-order and every decorated tree which is finite-order is also finite-branching.

Let us observe that there exists a decorated tree which is finite.
Let t be a finite-order decorated tree. One can verify that dom t is finiteorder.

Let t be a finite-branching decorated tree. Note that dom t is finite-branching.
Let t be a finite-branching tree and let p be an element of t. Note that succ p is finite.

The scheme $\operatorname{FinOrdSet}$ concerns a unary functor \mathcal{F} yielding a set and a finite set \mathcal{A}, and states that:

For every natural number n holds $\mathcal{F}(n) \in \mathcal{A}$ iff $n<\operatorname{card} \mathcal{A}$ provided the parameters have the following properties:

- For every set x such that $x \in \mathcal{A}$ there exists a natural number n such that $x=\mathcal{F}(n)$,
- For all natural numbers i, j such that $i<j$ and $\mathcal{F}(j) \in \mathcal{A}$ holds $\mathcal{F}(i) \in \mathcal{A}$,
- For all natural numbers i, j such that $\mathcal{F}(i)=\mathcal{F}(j)$ holds $i=j$.

Let X be a set. One can verify that there exists a finite sequence of elements of X which is one-to-one and empty.

The following proposition is true
(7) Let t be a finite-branching tree, and let p be an element of t, and let n be a natural number. Then $p^{\wedge}\langle n\rangle \in \operatorname{succ} p$ if and only if $n<\operatorname{card} \operatorname{succ} p$.
Let t be a finite-branching tree and let p be an element of t. The functor Succ p yielding an one-to-one finite sequence of elements of t is defined by:
(Def.5) len Succ $p=\operatorname{card} \operatorname{succ} p$ and $\operatorname{rng} \operatorname{Succ} p=\operatorname{succ} p$ and for every natural number i such that $i<\operatorname{len} \operatorname{Succ} p$ holds $(\operatorname{Succ} p)(i+1)=p^{\wedge}\langle i\rangle$.
Let t be a finite-branching decorated tree and let p be a finite sequence. Let us assume that $p \in \operatorname{dom} t$. The functor $\operatorname{succ}(t, p)$ yielding a finite sequence is defined by:
(Def.6) There exists an element q of $\operatorname{dom} t$ such that $q=p$ and $\operatorname{succ}(t, p)=$ $t \cdot \operatorname{Succ} q$.
One can prove the following two propositions:
(8) Let t be a finite-branching decorated tree. Then there exists a set x and there exists a decorated tree yielding finite sequence p such that $t=x$-tree (p).
(9) For every finite decorated tree t and for every node p of t holds $t \upharpoonright p$ is finite.
Let t be a finite decorated tree and let p be a node of t. Observe that $t \upharpoonright p$ is finite.

The following proposition is true
(10) For every finite tree t and for every element p of t such that $t=t \upharpoonright p$ holds $p=\varepsilon$.
Let D be a non empty set and let S be a non empty subset of FinTrees (D). One can verify that every element of S is finite.

2. Set of Subtrees of Decorated Tree

Let t be a decorated tree. The functor $\operatorname{Subtrees}(t)$ yielding a constituted of decorated trees non empty set is defined by:
(Def.7) Subtrees $(t)=\{t \upharpoonright p: p$ ranges over nodes of $t\}$.
Let D be a non empty set and let t be a tree decorated with elements of D. Then $\operatorname{Subtrees}(t)$ is a non empty subset of Trees (D).

Let D be a non empty set and let t be a finite tree decorated with elements of D. Then $\operatorname{Subtrees}(t)$ is a non empty subset of FinTrees (D).

Let t be a finite decorated tree. One can verify that every element of Subtrees (t) is finite.

In the sequel x denotes a set and t, t_{1}, t_{2} denote decorated trees.
One can prove the following propositions:
(11) $\quad x \in \operatorname{Subtrees}(t)$ iff there exists a node n of t such that $x=t \upharpoonright n$.
(12) $t \in \operatorname{Subtrees}(t)$.
(13) If t_{1} is finite and $\operatorname{Subtrees}\left(t_{1}\right)=\operatorname{Subtrees}\left(t_{2}\right)$, then $t_{1}=t_{2}$.
(14) For every node n of t holds $\operatorname{Subtrees}(t \upharpoonright n) \subseteq \operatorname{Subtrees}(t)$.

Let t be a decorated tree. The functor FixedSubtrees (t) yields a non empty subset of $: \operatorname{dom} t, \operatorname{Subtrees}(t):]$ and is defined as follows:
(Def.8) FixedSubtrees $(t)=\{\langle p, t \upharpoonright p\rangle: p$ ranges over nodes of $t\}$.
Next we state three propositions:
(15) $\quad x \in \operatorname{FixedSubtrees}(t)$ iff there exists a node n of t such that $x=\langle n$, $t \upharpoonright n\rangle$.
(16) $\langle\varepsilon, t\rangle \in$ FixedSubtrees (t).

$$
\begin{equation*}
\text { If FixedSubtrees }\left(t_{1}\right)=\text { FixedSubtrees }\left(t_{2}\right), \text { then } t_{1}=t_{2} \tag{17}
\end{equation*}
$$

Let t be a decorated tree and let C be a set. The functor C-Subtrees (t) yielding a subset of $\operatorname{Subtrees}(t)$ is defined as follows:
(Def.9) C-Subtrees $(t)=\{t \upharpoonright p: p$ ranges over nodes of $t, p \notin \operatorname{Leaves}(\operatorname{dom} t) \vee$ $t(p) \in C\}$.
In the sequel C denotes a set.
We now state two propositions:
(18) $\quad x \in C$-Subtrees (t) iff there exists a node n of t such that $x=t \upharpoonright n$ but $n \notin \operatorname{Leaves}(\operatorname{dom} t)$ or $t(n) \in C$.
(19) $\quad C$-Subtrees (t) is empty iff t is root and $t(\varepsilon) \notin C$.

Let t be a finite decorated tree and let C be a set. The functor C-ImmediateSubtrees (t) yields a function from C-Subtrees (t) into $(\operatorname{Subtrees}(t))^{*}$ and is defined by the condition (Def.10).
(Def.10) Let d be a decorated tree. Suppose $d \in C$-Subtrees (t). Let p be a finite sequence of elements of $\operatorname{Subtrees}(t)$. If $p=(C$-ImmediateSubtrees $(t))(d)$, then $d=d(\varepsilon)$-tree (p).

3. Set of Subtrees of Set of Decorated Tree

Let X be a constituted of decorated trees non empty set. The functor Subtrees (X) yielding a constituted of decorated trees non empty set is defined by:
(Def.11) $\operatorname{Subtrees}(X)=\{t \upharpoonright p: t$ ranges over elements of X, p ranges over nodes of $t\}$.
Let D be a non empty set and let X be a non empty subset of Trees (D). Then $\operatorname{Subtrees}(X)$ is a non empty subset of $\operatorname{Trees}(D)$.

Let D be a non empty set and let X be a non empty subset of FinTrees (D). Then $\operatorname{Subtrees}(X)$ is a non empty subset of FinTrees (D).

In the sequel X, Y will be non empty constituted of decorated trees sets.
We now state three propositions:
(20) $\quad x \in \operatorname{Subtrees}(X)$ iff there exists an element t of X and there exists a node n of t such that $x=t \upharpoonright n$.
(21) If $t \in X$, then $t \in \operatorname{Subtrees}(X)$.
(22) If $X \subseteq Y$, then $\operatorname{Subtrees}(X) \subseteq \operatorname{Subtrees}(Y)$.

Let t be a decorated tree. Observe that $\{t\}$ is non empty and constituted of decorated trees.

Next we state two propositions:
(23) $\operatorname{Subtrees}(\{t\})=\operatorname{Subtrees}(t)$.
(24) $\operatorname{Subtrees}(X)=\bigcup\{\operatorname{Subtrees}(t): t$ ranges over elements of $X\}$.

Let X be a constituted of decorated trees non empty set and let C be a set. The functor C - $\operatorname{Subtrees}(X)$ yields a subset of $\operatorname{Subtrees}(X)$ and is defined as follows:
(Def.12) C - $\operatorname{Subtrees}(X)=\{t \upharpoonright p: t$ ranges over elements of X, p ranges over nodes of $t, p \notin$ Leaves $(\operatorname{dom} t) \vee t(p) \in C\}$.
We now state four propositions:
(25) $\quad x \in C$ - $\operatorname{Subtrees}(X)$ iff there exists an element t of X and there exists a node n of t such that $x=t \upharpoonright n$ but $n \notin$ Leaves (dom t) or $t(n) \in C$.
(26) $\quad C$ - $\operatorname{Subtrees}(X)$ is empty iff for every element t of X holds t is root and $t(\varepsilon) \notin C$.
(27) $\quad C$-Subtrees $(\{t\})=C$-Subtrees (t).
(28) $\quad C$-Subtrees $(X)=\bigcup\{C$-Subtrees $(t): t$ ranges over elements of $X\}$.

Let X be a non empty constituted of decorated trees set. Let us assume that every element of X is finite. Let C be a set. The functor C-ImmediateSubtrees (X) yields a function from C-Subtrees (X) into $(\operatorname{Subtrees}(X))^{*}$ and is defined by the condition (Def.13).
(Def.13) Let d be a decorated tree. Suppose $d \in C$-Subtrees (X). Let p be a finite sequence of elements of $\operatorname{Subtrees}(X)$. If $p=$ $(C$-ImmediateSubtrees $(X))(d)$, then $d=d(\varepsilon)$-tree (p).
Let t be a tree. Observe that there exists an element of t which is empty.
We now state four propositions:
(29) For every finite decorated tree t and for every element p of $\operatorname{dom} t$ holds len $\operatorname{succ}(t, p)=\operatorname{len} \operatorname{Succ} p$ and dom $\operatorname{succ}(t, p)=\operatorname{dom} \operatorname{Succ} p$.
(30) For every finite tree yielding finite sequence p and for every empty element n of \overbrace{p} holds card succ $n=\operatorname{len} p$.
(31) Let t be a finite decorated tree, and let x be a set, and let p be a decorated tree yielding finite sequence. Suppose $t=x$-tree (p). Let n be an empty element of $\operatorname{dom} t$. Then $\operatorname{succ}(t, n)=$ the roots of p.
(32) For every finite decorated tree t and for every node p of t and for every node q of $t \upharpoonright p$ holds $\operatorname{succ}\left(t, p^{\wedge} q\right)=\operatorname{succ}(t \upharpoonright p, q)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[5] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[6] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[7] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[8] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[10] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This article has been worked out during the visit of the author in Nagano in Summer 1994.

