Special Polygons

Czesław Byliński
Warsaw University
Białystok

Yatsuka Nakamura
Shinshu University
Nagano

MML Identifier: SPPOL_2.

The papers [22], [26], [21], [25], [13], [1], [14], [27], [4], [5], [2], [23], [3], [10], [24], [19], [15], [18], [7], [9], [8], [20], [11], [12], [17], [16], and [6] provide the notation and terminology for this paper.

1. Segments in $\mathcal{E}_{\mathrm{T}}^{2}$

For simplicity we adopt the following convention: P, P_{1}, P_{2} will be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}, f, f_{1}, f_{2}, g$ will be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}, p, p_{1}$, p_{2}, q, q_{1}, q_{2} will be points of $\mathcal{E}_{\mathrm{T}}^{2}, r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}$ will be real numbers, and i, j, k, n will be natural numbers.

Next we state a number of propositions:
(1) If $\left[r_{1}, r_{2}\right]=\left[r_{1}^{\prime}, r_{2}^{\prime}\right]$, then $r_{1}=r_{1}^{\prime}$ and $r_{2}=r_{2}^{\prime}$.
(2) If $i+j=\operatorname{len} f$, then $\mathcal{L}(f, i)=\mathcal{L}(\operatorname{Rev}(f), j)$.
(3) If $i+1 \leq \operatorname{len}(f \upharpoonright n)$, then $\mathcal{L}(f \upharpoonright n, i)=\mathcal{L}(f, i)$.
(4) If $n \leq \operatorname{len} f$ and $1 \leq i$, then $\mathcal{L}\left(f_{\text {ln }}, i\right)=\mathcal{L}(f, n+i)$.
(5) If $1 \leq i$ and $i+1 \leq \operatorname{len} f-n$, then $\mathcal{L}\left(f_{\text {ln }}, i\right)=\mathcal{L}(f, n+i)$.
(6) If $i+1 \leq \operatorname{len} f$, then $\mathcal{L}\left(f^{\wedge} g, i\right)=\mathcal{L}(f, i)$.
(7) If $1 \leq i$, then $\mathcal{L}\left(f^{\wedge} g\right.$, len $\left.f+i\right)=\mathcal{L}(g, i)$.
(8) If f is non empty and g is non empty, then $\mathcal{L}(f \wedge g$, len $f)=$ $\mathcal{L}\left(\pi_{\operatorname{len} f} f, \pi_{1} g\right)$.
(9) If $i+1 \leq \operatorname{len}(f-: p)$, then $\mathcal{L}(f-: p, i)=\mathcal{L}(f, i)$.
(10) If $p \in \operatorname{rng} f$ and $1 \leq i+1$, then $\mathcal{L}(f:-p, i+1)=\mathcal{L}(f, i+p \leftrightarrow f)$.
(11) $\widetilde{\mathcal{L}}\left(\varepsilon_{(\text {the carrier of }} \mathcal{E}_{\mathrm{T}}^{2}\right)=\emptyset$.

$$
\begin{equation*}
\widetilde{\mathcal{L}}(\langle p\rangle)=\emptyset . \tag{12}
\end{equation*}
$$

(13) If $p \in \widetilde{\mathcal{L}}(f)$, then there exists i such that $1 \leq i$ and $i+1 \leq \operatorname{len} f$ and $p \in \mathcal{L}(f, i)$.
(14) If $p \in \widetilde{\mathcal{L}}(f)$, then there exists i such that $1 \leq i$ and $i+1 \leq \operatorname{len} f$ and $p \in \mathcal{L}\left(\pi_{i} f, \pi_{i+1} f\right)$.
(15) If $1 \leq i$ and $i+1 \leq \operatorname{len} f$ and $p \in \mathcal{L}\left(\pi_{i} f, \pi_{i+1} f\right)$, then $p \in \widetilde{\mathcal{L}}(f)$.
(16) If $1 \leq i$ and $i+1 \leq \operatorname{len} f$, then $\mathcal{L}\left(\pi_{i} f, \pi_{i+1} f\right) \subseteq \widetilde{\mathcal{L}}(f)$.
(17) If $p \in \mathcal{L}(f, i)$, then $p \in \widetilde{\mathcal{L}}(f)$.
(18) If len $f \geq 2$, then $\operatorname{rng} f \subseteq \widetilde{\mathcal{L}}(f)$.
(19) If f is non empty, then $\widetilde{\mathcal{L}}(f \wedge\langle p\rangle)=\widetilde{\mathcal{L}}(f) \cup \mathcal{L}\left(\pi_{\operatorname{len} f} f, p\right)$.
(20) If f is non empty, then $\widetilde{\mathcal{L}}(\langle p\rangle \sim f)=\mathcal{L}\left(p, \pi_{1} f\right) \cup \widetilde{\mathcal{L}}(f)$.
(21) $\widetilde{\mathcal{L}}(\langle p, q\rangle)=\mathcal{L}(p, q)$.
(22) $\quad \widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(\operatorname{Rev}(f))$.
(23) If f_{1} is non empty and f_{2} is non empty, then $\widetilde{\mathcal{L}}\left(f_{1} \sim f_{2}\right)=\widetilde{\mathcal{L}}\left(f_{1}\right) \cup$ $\mathcal{L}\left(\pi_{\operatorname{len} f_{1}} f_{1}, \pi_{1} f_{2}\right) \cup \tilde{\mathcal{L}}\left(f_{2}\right)$.
$(25)^{1} \quad$ If $q \in \operatorname{rng} f$, then $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(f-: q) \cup \widetilde{\mathcal{L}}(f:-q)$.
(26) If $p \in \mathcal{L}(f, n)$, then $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(\operatorname{Ins}(f, n, p))$.

2. Special Sequences in $\mathcal{E}_{\text {T }}^{2}$

One can verify the following observations:

* there exists a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$
* every finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is one-to-one unfolded s.n.c. special and non trivial,
* every finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ which is one-to-one unfolded s.n.c. special and non trivial has and
* every finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is non empty.

Let us note that there exists a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ which is one-to-one unfolded s.n.c. special and non trivial.

We now state the proposition
(27) If len $f \leq 2$, then f is unfolded.

Let f be an unfolded finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let us consider n. Note that $f \upharpoonright n$ is unfolded and $f_{\llcorner n}$ is unfolded.

One can prove the following proposition
(28) If $p \in \operatorname{rng} f$ and f is unfolded, then $f:-p$ is unfolded.

Let f be an unfolded finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let us consider p. Observe that $f-: p$ is unfolded.

Next we state several propositions:

[^0](29) If f is unfolded, then $\operatorname{Rev}(f)$ is unfolded.
(30) If g is unfolded and $\mathcal{L}\left(p, \pi_{1} g\right) \cap \mathcal{L}(g, 1)=\left\{\pi_{1} g\right\}$, then $\langle p\rangle \wedge g$ is unfolded.
(31) If f is unfolded and $k+1=\operatorname{len} f$ and $\mathcal{L}(f, k) \cap \mathcal{L}\left(\pi_{\operatorname{len} f} f, p\right)=\left\{\pi_{\operatorname{len} f} f\right\}$, then $f^{\wedge}\langle p\rangle$ is unfolded.
(32) Suppose f is unfolded and g is unfolded and $k+1=\operatorname{len} f$ and $\mathcal{L}(f, k) \cap$ $\mathcal{L}\left(\pi_{\operatorname{len} f} f, \pi_{1} g\right)=\left\{\pi_{\operatorname{len} f} f\right\}$ and $\mathcal{L}\left(\pi_{\operatorname{len} f} f, \pi_{1} g\right) \cap \mathcal{L}(g, 1)=\left\{\pi_{1} g\right\}$. Then $f^{\wedge} g$ is unfolded.
(33) If f is unfolded and $p \in \mathcal{L}(f, n)$, then $\operatorname{Ins}(f, n, p)$ is unfolded.
(34) If len $f \leq 2$, then f is s.n.c..

Let f be a s.n.c. finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let us consider n. Observe that $f \upharpoonright n$ is s.n.c. and $f_{l n}$ is s.n.c..

Let f be a s.n.c. finite sequence of elements of $\mathcal{E}_{\text {T }}^{2}$ and let us consider p. Note that $f-: p$ is s.n.c..

We now state four propositions:
(35) If $p \in \operatorname{rng} f$ and f is s.n.c., then $f:-p$ is s.n.c..
(36) If f is s.n.c., then $\operatorname{Rev}(f)$ is s.n.c..
(37) Suppose that
(i) f is s.n.c.,
(ii) g is s.n.c.,
(iii) $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g)=\emptyset$,
(iv) for every i such that $1 \leq i$ and $i+2 \leq \operatorname{len} f$ holds $\mathcal{L}(f, i) \cap$ $\mathcal{L}\left(\pi_{\text {len } f} f, \pi_{1} g\right)=\emptyset$, and
(v) for every i such that $2 \leq i$ and $i+1 \leq \operatorname{len} g$ holds $\mathcal{L}(g, i) \cap$ $\mathcal{L}\left(\pi_{\operatorname{len} f} f, \pi_{1} g\right)=\emptyset$. Then $f^{\wedge} g$ is s.n.c..
(38) If f is unfolded and s.n.c. and $p \in \mathcal{L}(f, n)$ and $p \notin \operatorname{rng} f$, then $\operatorname{Ins}(f, n, p)$ is s.n.c..
Let us observe that $\varepsilon_{\text {(the carrier of }} \mathcal{E}_{\mathrm{T}}^{2}$) is special.
Next we state two propositions:
(39) $\langle p\rangle$ is special.
(40) If $p_{\mathbf{1}}=q_{\mathbf{1}}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$, then $\langle p, q\rangle$ is special.

Let f be a special finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let us consider n. Note that $f \upharpoonright n$ is special and $f_{\downharpoonright n}$ is special.

We now state the proposition
(41) If $p \in \operatorname{rng} f$ and f is special, then $f:-p$ is special.

Let f be a special finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and let us consider p. Observe that $f-: p$ is special.

The following four propositions are true:
(42) If f is special, then $\operatorname{Rev}(f)$ is special.
$(44)^{2}$ If f is special and $p \in \mathcal{L}(f, n)$, then $\operatorname{Ins}(f, n, p)$ is special.

[^1](45) If $q \in \operatorname{rng} f$ and $1 \neq q \leftrightarrow f$ and $q \leftrightarrow f \neq \operatorname{len} f$ and f is unfolded and s.n.c., then $\widetilde{\mathcal{L}}(f-: q) \cap \widetilde{\mathcal{L}}(f:-q)=\{q\}$.
(46) If $p \neq q$ and if $p_{\mathbf{1}}=q_{\mathbf{1}}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$, then $\langle p, q\rangle$
a S-sequence in \mathbb{R}^{2} is a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$.
The following propositions are true:
(47) For every S-sequence f in \mathbb{R}^{2} holds $\operatorname{Rev}(f)$
(48) For every S-sequence f in \mathbb{R}^{2} such that $i \in \operatorname{dom} f$ holds $\pi_{i} f \in \widetilde{\mathcal{L}}(f)$.
(49) If $p \neq q$ and if $p_{\mathbf{1}}=q_{\mathbf{1}}$ or $p_{\mathbf{2}}=q_{\mathbf{2}}$, then $\mathcal{L}(p, q)$
(50) For every S-sequence f in \mathbb{R}^{2} such that $p \in \operatorname{rng} f$ and $p \leftrightarrow f \neq 1$ holds $f-: p$
(51) For every S-sequence f in \mathbb{R}^{2} such that $p \in \operatorname{rng} f$ and $p \leftrightarrow f \neq \operatorname{len} f$ holds $f:-p$
(52) For every S-sequence f in \mathbb{R}^{2} such that $p \in \mathcal{L}(f, i)$ and $p \notin \operatorname{rng} f$ holds $\operatorname{Ins}(f, i, p)$

3. Special Polygons in $\mathcal{E}_{\text {T }}^{2}$

Let us mention that there exists a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and every subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is non empty.

The following proposition is true
(53) If P is a special polygonal arc joining p_{1} and p_{2}, then P is a special polygonal arc joining p_{2} and p_{1}.
Let us consider p_{1}, p_{2}, P. We say that p_{1} and p_{2} split P if and only if the conditions (Def.1) are satisfied.
(Def.1) (i) $p_{1} \neq p_{2}$, and
(ii) there exist S-sequences f_{1}, f_{2} in \mathbb{R}^{2} such that $p_{1}=\pi_{1} f_{1}$ and $p_{1}=\pi_{1} f_{2}$ and $p_{2}=\pi_{\text {len } f_{1}} f_{1}$ and $p_{2}=\pi_{\operatorname{len} f_{2}} f_{2}$ and $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right)=\left\{p_{1}, p_{2}\right\}$ and $P=\widetilde{\mathcal{L}}\left(f_{1}\right) \cup \widetilde{\mathcal{L}}\left(f_{2}\right)$.
We now state four propositions:
(54) If p_{1} and p_{2} split P, then p_{2} and p_{1} split P.
(55) If p_{1} and p_{2} split P and $q \in P$ and $q \neq p_{1}$, then p_{1} and q split P.
(56) If p_{1} and p_{2} split P and $q \in P$ and $q \neq p_{2}$, then q and p_{2} split P.
(57) If p_{1} and p_{2} split P and $q_{1} \in P$ and $q_{2} \in P$ and $q_{1} \neq q_{2}$, then q_{1} and q_{2} split P.
Let us observe that a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is special polygon if:
(Def.2) There exist p_{1}, p_{2} such that p_{1} and p_{2} split it.
We introduce special polygonal as a synonym of special polygon.
Let us consider $r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}$. The functor $\left[. r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}\right.$] yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by the condition (Def.3).
(Def.3)

$$
\left[r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime} \cdot\right]=\left\{p: p_{\mathbf{1}}=r_{1} \wedge p_{\mathbf{2}} \leq r_{2}^{\prime} \wedge p_{\mathbf{2}} \geq r_{1}^{\prime} \vee p_{\mathbf{1}} \leq r_{2} \wedge p_{\mathbf{1}} \geq r_{1} \wedge\right.
$$

$$
\left.p_{\mathbf{2}}=r_{2}^{\prime} \vee p_{\mathbf{1}} \leq r_{2} \wedge p_{\mathbf{1}} \geq r_{1} \wedge p_{\mathbf{2}}=r_{1}^{\prime} \vee p_{\mathbf{1}}=r_{2} \wedge p_{\mathbf{2}} \leq r_{2}^{\prime} \wedge p_{\mathbf{2}} \geq r_{1}^{\prime}\right\}
$$

One can prove the following propositions:
(58) If $r_{1}<r_{2}$ and $r_{1}^{\prime}<r_{2}^{\prime}$, then $\left[. r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}\right]=\mathcal{L}\left(\left[r_{1}, r_{1}^{\prime}\right],\left[r_{1}, r_{2}^{\prime}\right]\right) \cup \mathcal{L}\left(\left[r_{1}\right.\right.$, $\left.\left.r_{2}^{\prime}\right],\left[r_{2}, r_{2}^{\prime}\right]\right) \cup\left(\mathcal{L}\left(\left[r_{2}, r_{2}^{\prime}\right],\left[r_{2}, r_{1}^{\prime}\right]\right) \cup \mathcal{L}\left(\left[r_{2}, r_{1}^{\prime}\right],\left[r_{1}, r_{1}^{\prime}\right]\right)\right)$.
(59) If $r_{1}<r_{2}$ and $r_{1}^{\prime}<r_{2}^{\prime}$, then $\left[. r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}.\right]$ is special polygonal.
(60) $\quad \square_{\mathcal{E}^{2}}=[.0,1,0,1$.$] .$
(61) $\square_{\mathcal{E}^{2}}$ is special polygonal.

One can verify the following observations:

* there exists a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ which is special polygonal,
* every subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ which is special polygonal is also non empty, and
* every subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ which is special polygonal is also non trivial.
A special polygon in \mathbb{R}^{2} is a special polygonal subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$.
We now state four propositions:
(62) If P is then P is compact.
(63) Every special polygon in \mathbb{R}^{2} is compact.
(64) If P is special polygonal, then for all p_{1}, p_{2} such that $p_{1} \neq p_{2}$ and $p_{1} \in P$ and $p_{2} \in P$ holds p_{1} and p_{2} split P.
(65) Suppose P is special polygonal. Given p_{1}, p_{2}. Suppose $p_{1} \neq p_{2}$ and $p_{1} \in P$ and $p_{2} \in P$. Then there exist P_{1}, P_{2} such that
(i) $\quad P_{1}$ is a special polygonal arc joining p_{1} and p_{2},
(ii) $\quad P_{2}$ is a special polygonal arc joining p_{1} and p_{2},
(iii) $\quad P_{1} \cap P_{2}=\left\{p_{1}, p_{2}\right\}$, and
(iv) $\quad P=P_{1} \cup P_{2}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[7] Agata Darmochwat. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[8] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[12] Agata Darmochwat and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[15] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[16] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Formalized Mathematics, 5(1):97-102, 1996.
[17] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[18] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 30, 1995

[^0]: ${ }^{1}$ The proposition (24) has been removed.

[^1]: ${ }^{2}$ The proposition (43) has been removed.

