Preliminaries to Circuits, I ¹

Yatsuka Nakamura Shinshu University, Nagano Piotr Rudnicki University of Alberta, Edmonton

Andrzej Trybulec Warsaw University, Białystok Pauline N. Kawamoto Shinshu University, Nagano

Summary. This article is the first in a series of four articles (continued in [24,23,22]) about modelling circuits by many-sorted algebras. Here, we introduce some auxiliary notations and prove auxiliary facts about many sorted sets, many sorted functions and trees.

MML Identifier: PRE_CIRC.

The articles [29], [33], [18], [4], [30], [1], [34], [13], [17], [31], [28], [14], [25], [16], [15], [8], [5], [7], [9], [6], [3], [2], [27], [19], [20], [26], [21], [11], [10], [12], and [32] provide the terminology and notation for this paper.

1. Varia

One can prove the following proposition

(1) For all sets X, Y holds $X \setminus Y$ misses Y.

In this article we present several logical schemes. The scheme $Fraenkel\ Subset$ deals with non empty sets \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(x): x \text{ ranges over elements of } \mathcal{A}, \mathcal{P}[x]\}$ is a subset of \mathcal{B} for all values of the parameters.

The scheme FraenkelFinIm concerns a finite non empty set \mathcal{A} , a unary functor \mathcal{F} yielding arbitrary, and a unary predicate \mathcal{P} , and states that:

¹This work was initiated while the second author visited Nagano (March-May 1994) and then continued when the third author visited Edmonton (May-June 1994). The work was finalized when the fourth author visited Bialystok (October-November 1994). Partial funding for this work has been provided by: Shinshu Endowment Fund for Information Science, NSERC Grant OGP9207, JSTF award 651-93-S009.

 $\{\mathcal{F}(x): x \text{ ranges over elements of } \mathcal{A}, \mathcal{P}[x]\}$ is finite for all values of the parameters.

The following three propositions are true:

- (2) For every function f and for arbitrary x, y such that dom $f = \{x\}$ and rng $f = \{y\}$ holds $f = \{\langle x, y \rangle\}$.
- (3) For all functions f, g, h such that $f \subseteq g$ holds $f + h \subseteq g + h$.
- (4) For all functions f, g, h such that $f \subseteq g$ and dom f misses dom h holds $f \subseteq g + h$.

Let X be a finite non empty subset of \mathbb{R} . The functor $\max X$ yields a real number and is defined as follows:

(Def.1) $\max X \in X$ and for every real number k such that $k \in X$ holds $k \le \max X$.

Let X be a finite non empty subset of \mathbb{N} . The functor $\max X$ yielding a natural number is defined by:

(Def.2) There exists a finite non empty subset Y of \mathbb{R} such that Y = X and $\max X = \max Y$.

2. Many Sorted Sets and Functions

One can prove the following proposition

(5) For every set I and for every many sorted set M_1 indexed by I holds $M_1^{\#}(\varepsilon_I) = \{\varepsilon\}.$

The scheme MSSLambda2Part deals with a set \mathcal{A} , two unary functors \mathcal{F} and \mathcal{G} yielding arbitrary, and a unary predicate \mathcal{P} , and states that:

There exists a many sorted set f indexed by \mathcal{A} such that for every element i of \mathcal{A} holds if $i \in \mathcal{A}$, then if $\mathcal{P}[i]$, then $f(i) = \mathcal{F}(i)$ and if not $\mathcal{P}[i]$, then $f(i) = \mathcal{G}(i)$

for all values of the parameters.

Let I be a set. A many sorted set indexed by I is locally-finite if:

(Def.3) For arbitrary i such that $i \in I$ holds it(i) is finite.

Let I be a set. Observe that there exists a many sorted set indexed by I which is non-empty and locally-finite.

Let I, A be sets. Then $I \mapsto A$ is a many sorted set indexed by I.

Let I be a set, let M be a many sorted set indexed by I, and let A be a subset of I. Then $M \upharpoonright A$ is a many sorted set indexed by A.

Let M be a non-empty function and let A be a set. One can check that $M \upharpoonright A$ is non-empty.

One can prove the following three propositions:

- (6) For every non empty set I and for every non-empty many sorted set B indexed by I holds $\bigcup \operatorname{rng} B$ is non empty.
- (7) For every set I holds $\operatorname{uncurry}(I \longmapsto \emptyset) = \emptyset$.

(8) Let I be a non empty set, and let A be a set, and let B be a non-empty many sorted set indexed by I, and let F be a many sorted function from $I \longmapsto A$ into B. Then dom commute(F) = A.

Now we present two schemes. The scheme LambdaRecCorrD concerns a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and a binary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

- (i) There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and for every natural number i and for every element x of \mathcal{A} such that x = f(i) holds $f(i+1) = \mathcal{F}(i,x)$, and
- (ii) for all functions f_1 , f_2 from \mathbb{N} into \mathcal{A} such that $f_1(0) = \mathcal{B}$ and for every natural number i and for every element x of \mathcal{A} such that $x = f_1(i)$ holds $f_1(i+1) = \mathcal{F}(i,x)$ and $f_2(0) = \mathcal{B}$ and for every natural number i and for every element x of \mathcal{A} such that $x = f_2(i)$ holds $f_2(i+1) = \mathcal{F}(i,x)$ holds $f_1 = f_2$

for all values of the parameters.

The scheme LambdaMSFD concerns a non empty set \mathcal{A} , a subset \mathcal{B} of \mathcal{A} , many sorted sets \mathcal{C} , \mathcal{D} indexed by \mathcal{B} , and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a many sorted function f from \mathcal{C} into \mathcal{D} such that for every element i of \mathcal{A} such that $i \in \mathcal{B}$ holds $f(i) = \mathcal{F}(i)$

provided the following requirement is met:

• For every element i of \mathcal{A} such that $i \in \mathcal{B}$ holds $\mathcal{F}(i)$ is a function from $\mathcal{C}(i)$ into $\mathcal{D}(i)$.

Let F be a non-empty function and let f be a function. Observe that $F \cdot f$ is non-empty.

Let I be a set and let M_1 be a non-empty many sorted set indexed by I. Note that every element of $\prod M_1$ is function-like and relation-like.

One can prove the following propositions:

- (9) Let I be a set, and let f be a non-empty many sorted set indexed by I, and let g be a function, and let s be an element of $\prod f$. Suppose dom $g \subseteq \text{dom } f$ and for arbitrary x such that $x \in \text{dom } g$ holds $g(x) \in f(x)$. Then s + g is an element of $\prod f$.
- (10) Let A, B be non empty sets, and let C be a non-empty many sorted set indexed by A, and let I_1 be a many sorted function from $A \mapsto B$ into C, and let b be an element of B. Then there exists a many sorted set c indexed by A such that $c = (\text{commute}(I_1))(b)$ and $c \in C$.
- (11) Let I be a set, and let M be a many sorted set indexed by I, and let x, g be functions. If $x \in \prod M$, then $x \cdot g \in \prod (M \cdot g)$.
- (12) For every natural number n and for arbitrary a holds $\prod (n \mapsto \{a\}) = \{n \mapsto a\}$.

3. Trees

We follow the rules: T, T_1 will denote finite trees, t, p will denote elements of T, and t_1 will denote an element of T_1 .

Let D be a non empty set. Note that every element of FinTrees(D) is finite. Let T be a finite decorated tree and let t be an element of dom T. Observe that $T \upharpoonright t$ is finite.

We now state the proposition

 $(13) T \upharpoonright p \approx \{t : p \leq t\}.$

Let T be a finite decorated tree, let t be an element of dom T, and let T_1 be a finite decorated tree. Note that $T(t/T_1)$ is finite.

Next we state a number of propositions:

- $(14) T(p/T_1) = \{t : p \not\preceq t\} \cup \{p \cap t_1\}.$
- (15) For every finite sequence f of elements of \mathbb{N} such that $f \in T(p/T_1)$ and $p \leq f$ there exists t_1 such that $f = p \cap t_1$.
- (16) For every tree yielding finite sequence p and for every natural number k such that $k+1 \in \text{dom } p \text{ holds } p \upharpoonright \langle k \rangle = p(k+1)$.
- (17) Let q be a decorated tree yielding finite sequence and let k be a natural number. If $k+1 \in \text{dom } q$, then $\langle k \rangle \in \overrightarrow{\text{dom } q(\kappa)}$.
- (18) Let p, q be tree yielding finite sequences and let k be a natural number. Suppose len p = len q and $k + 1 \in \text{dom } p$ and for every natural number i such that $i \in \text{dom } p$ and $i \neq k + 1$ holds p(i) = q(i). Let t be a tree. If q(k+1) = t, then $q = p(\langle k \rangle / t)$.
- (19) Let e_1 , e_2 be finite decorated trees, and let x be arbitrary, and let k be a natural number, and let p be a decorated tree yielding finite sequence. Suppose $\langle k \rangle \in \text{dom } e_1$ and $e_1 = x\text{-tree}(p)$. Then there exists a decorated tree yielding finite sequence q such that $e_1(\langle k \rangle/e_2) = x\text{-tree}(q)$ and len q = len p and $q(k+1) = e_2$ and for every natural number i such that $i \in \text{dom } p$ and $i \neq k+1$ holds q(i) = p(i).
- (20) For every finite tree T and for every element p of T such that $p \neq \varepsilon$ holds $\operatorname{card}(T \upharpoonright p) < \operatorname{card} T$.
- (21) For every finite function f holds card $f = \operatorname{card} \operatorname{dom} f$.
- (22) For all finite trees T, T_1 and for every element p of T holds $\operatorname{card}(T(p/T_1)) + \operatorname{card}(T \upharpoonright p) = \operatorname{card} T + \operatorname{card} T_1$.
- (23) For all finite decorated trees T, T_1 and for every element p of dom T holds $\operatorname{card}(T(p/T_1)) + \operatorname{card}(T \upharpoonright p) = \operatorname{card} T + \operatorname{card} T_1$.

Let x be arbitrary. One can check that the root tree of x is finite.

We now state the proposition

(24) For arbitrary x holds card (the root tree of x) = 1.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–552, 1991.
- [3] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537–541, 1990.
- [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [5] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
- [6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993.
- [7] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- 8 Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [9] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [10] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [11] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [13] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [14] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [15] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [16] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [18] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [19] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251–253, 1992.
- [20] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–108, 1993.
- [21] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
- [22] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.
- [23] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.
- [24] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.
- [25] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [26] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
- [27] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [28] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [29] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [30] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [31] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [32] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

- [33] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(1):73-83,\ 1990.$

Received November 17, 1994