FORMALIZED MATHEMATICS

Volume 5, Number 2, 1996
Warsaw University - Bialystok

Preliminaries to Circuits, I !

Yatsuka Nakamura Piotr Rudnicki
Shinshu University, Nagano University of Alberta, Edmonton

Andrzej Trybulec Pauline N. Kawamoto
Warsaw University, Biatystok Shinshu University, Nagano

Summary. This article is the first in a series of four articles (con-
tinued in [24,23,22]) about modelling circuits by many-sorted algebras.

Here, we introduce some auxiliary notations and prove auxiliary facts
about many sorted sets, many sorted functions and trees.

MML Identifier: PRE_CIRC.

The articles [29], [33], [18], [4], [30], [1], [34], [13], [17], [31], [28], [14], [25], [16],
[15], [8], [5], [7], [9), [6], [3], [2], [27], [19], [20], [26], [21], [11], [10], [12], and [32]
provide the terminology and notation for this paper.

1. VARIA

One can prove the following proposition
(1)  For all sets X, Y holds X \ Y misses Y.

In this article we present several logical schemes. The scheme Fraenkel Subset
deals with non empty sets A, B, a unary functor F yielding an element of B,
and a unary predicate P, and states that:

{F(z) : x ranges over elements of A, P[z]|} is a subset of B
for all values of the parameters.

The scheme FraenkelFinIm concerns a finite non empty set A, a unary functor
F yielding arbitrary, and a unary predicate P, and states that:
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{F(z) : x ranges over elements of A, P[z]} is finite
for all values of the parameters.
The following three propositions are true:

(2)  For every function f and for arbitrary x, y such that dom f = {z} and

mg f = {y} holds f = {(z, y)}.
(3)  For all functions f, g, h such that f C g holds f +-h C g+ h.
(4)  For all functions f, g, h such that f C g and dom f misses dom h holds
fCg+h.
Let X be a finite non empty subset of R. The functor max X yields a real
number and is defined as follows:

(Def.1) maxX € X and for every real number k such that £ € X holds k£ <
max X.
Let X be a finite non empty subset of N. The functor max X yielding a
natural number is defined by:

(Def.2)  There exists a finite non empty subset Y of R such that ¥ = X and
max X = maxY.

2. MANY SORTED SETS AND F'UNCTIONS

One can prove the following proposition

(5)  For every set I and for every many sorted set M; indexed by I holds
Ml#(E]) = {8}
The scheme MSSLambda2Part deals with a set A, two unary functors F and
g yielding arbitrary, and a unary predicate P, and states that:
There exists a many sorted set f indexed by A such that for every
element i of A holds if i € A, then if P[i], then f(i) = F(i) and if
not P[i], then f(i) = G(i)
for all values of the parameters.
Let I be a set. A many sorted set indexed by I is locally-finite if:
(Def.3)  For arbitrary ¢ such that i € I holds it(¢) is finite.
Let I be a set. Observe that there exists a many sorted set indexed by I
which is non-empty and locally-finite.
Let I, A be sets. Then I — A is a many sorted set indexed by I.
Let I be a set, let M be a many sorted set indexed by I, and let A be a
subset of I. Then M | A is a many sorted set indexed by A.
Let M be a non-empty function and let A be a set. One can check that M [ A
is non-empty.
One can prove the following three propositions:
(6) For every non empty set I and for every non-empty many sorted set B
indexed by I holds |Jrng B is non empty.

(7)  For every set I holds uncurry(I — 0) = 0.
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(8) Let I be anon empty set, and let A be a set, and let B be a non-empty
many sorted set indexed by I, and let F' be a many sorted function from
I — A into B. Then dom commute(F') = A.

Now we present two schemes. The scheme LambdaRecCorrD concerns a non
empty set A, an element B of A, and a binary functor F yielding an element of
A, and states that:

(i)  There exists a function f from N into A such that f(0) =B
and for every natural number ¢ and for every element x of A such
that © = f(¢) holds f(i +1) = F(i,x), and
(ii)  for all functions fi, fo from N into A such that f1(0) = B
and for every natural number ¢ and for every element x of A such
that x = f1(7) holds f1(i+1) = F(i,x) and f2(0) = B and for every
natural number ¢ and for every element z of A such that x = f5(7)
holds f3(i + 1) = F(i,x) holds f1 = fo

for all values of the parameters.

The scheme LambdaMSFD concerns a non empty set A, a subset B of A,
many sorted sets C, D indexed by B, and a unary functor F yielding arbitrary,
and states that:

There exists a many sorted function f from C into D such that for
every element i of A such that ¢ € B holds f(i) = F(7)

provided the following requirement is met:

e For every element i of A such that ¢ € B holds F (i) is a function
from C(i) into D(7).
Let F be a non-empty function and let f be a function. Observe that F - f
is non-empty.
Let I be a set and let M7 be a non-empty many sorted set indexed by I.
Note that every element of [ M; is function-like and relation-like.

One can prove the following propositions:

(9) Let I be a set, and let f be a non-empty many sorted set indexed
by I, and let g be a function, and let s be an element of [] f. Suppose
dom g C dom f and for arbitrary x such that € dom g holds g(x) € f(x).
Then s +- g is an element of [] f.

(10) Let A, B be non empty sets, and let C' be a non-empty many sorted set
indexed by A, and let I; be a many sorted function from A —— B into
C, and let b be an element of B. Then there exists a many sorted set ¢
indexed by A such that ¢ = (commute(I1))(b) and ¢ € C.

(11)  Let I be a set, and let M be a many sorted set indexed by I, and let
x, g be functions. If z € [[ M, then x - g € [[(M - g).

(12)  For every natural number n and for arbitrary a holds [[(n — {a}) =
{n — a}.
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3. TREES

We follow the rules: T, T} will denote finite trees, ¢, p will denote elements
of T', and t; will denote an element of T7.
Let D be a non empty set. Note that every element of FinTrees(D) is finite.
Let T be a finite decorated tree and let ¢t be an element of dom 7. Observe
that 1" | t is finite.
We now state the proposition
(13) Trp={t:p=<t}
Let T be a finite decorated tree, let ¢t be an element of dom T, and let T7 be
a finite decorated tree. Note that T'(t/T1) is finite.
Next we state a number of propositions:
(14) Tp/T)=A{t:pAt}u{p~t}.
(15)  For every finite sequence f of elements of N such that f € T'(p/T;) and
p =< f there exists 1 such that f =p ™ t;.
(16)  For every tree yielding finite sequence p and for every natural number
k such that k + 1 € dom p holds “p [ (k) = p(k + 1).
(17)  Let g be a decorated tree yielding finite sequence and let k be a natural

—_——
number. If £+ 1 € dom g, then (k) € d(’){m q(k).

(18)  Let p, q be tree yielding finite sequences and let k be a natural number.
Suppose lenp = lenq and k£ + 1 € dom p and for every natural number %
such that ¢ € domp and i # k + 1 holds p(i) = ¢(i). Let ¢ be a tree. If
al+1) = 1, then 74> = "5 ({k)/%).

(19)  Let ey, ey be finite decorated trees, and let = be arbitrary, and let k be
a natural number, and let p be a decorated tree yielding finite sequence.
Suppose (k) € dome; and e; = z-tree(p). Then there exists a decorated
tree yielding finite sequence ¢ such that e ((k)/es) = z-tree(q) and lenq =
lenp and g(k+1) = eg and for every natural number ¢ such that ¢ € domp
and ¢ # k + 1 holds ¢(7) = p(7).

(20)  For every finite tree T and for every element p of T such that p # ¢
holds card(T' | p) < card T.

(21)  For every finite function f holds card f = card dom f.

(22) For all finite trees T, T; and for every element p of T holds
card(T'(p/T1)) + card(T | p) = card T + card T7.
(23)  For all finite decorated trees T', T} and for every element p of domT
holds card(T'(p/Th)) + card(T | p) = card T + card T.
Let = be arbitrary. One can check that the root tree of x is finite.
We now state the proposition
(24)  For arbitrary x holds card (the root tree of x) = 1.
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