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Summary. This article is the first in a series of four articles (con-
tinued in [24,23,22]) about modelling circuits by many-sorted algebras.

Here, we introduce some auxiliary notations and prove auxiliary facts
about many sorted sets, many sorted functions and trees.

MML Identifier: PRE CIRC.

The articles [29], [33], [18], [4], [30], [1], [34], [13], [17], [31], [28], [14], [25], [16],
[15], [8], [5], [7], [9], [6], [3], [2], [27], [19], [20], [26], [21], [11], [10], [12], and [32]
provide the terminology and notation for this paper.

1. Varia

One can prove the following proposition

(1) For all sets X, Y holds X \ Y misses Y .

In this article we present several logical schemes. The scheme Fraenkel Subset

deals with non empty sets A, B, a unary functor F yielding an element of B,
and a unary predicate P, and states that:

{F(x) : x ranges over elements of A, P[x]} is a subset of B
for all values of the parameters.

The scheme FraenkelFinIm concerns a finite non empty set A, a unary functor
F yielding arbitrary, and a unary predicate P, and states that:

1This work was initiated while the second author visited Nagano (March-May 1994) and
then continued when the third author visited Edmonton (May-June 1994). The work was
finalized when the fourth author visited Bialystok (October-November 1994). Partial funding
for this work has been provided by: Shinshu Endowment Fund for Information Science, NSERC
Grant OGP9207, JSTF award 651-93-S009.
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{F(x) : x ranges over elements of A, P[x]} is finite
for all values of the parameters.

The following three propositions are true:

(2) For every function f and for arbitrary x, y such that dom f = {x} and
rng f = {y} holds f = {〈〈x, y〉〉}.

(3) For all functions f , g, h such that f ⊆ g holds f +· h ⊆ g +· h.

(4) For all functions f , g, h such that f ⊆ g and dom f misses dom h holds
f ⊆ g +· h.

Let X be a finite non empty subset of � . The functor maxX yields a real
number and is defined as follows:

(Def.1) maxX ∈ X and for every real number k such that k ∈ X holds k ≤
maxX.

Let X be a finite non empty subset of � . The functor maxX yielding a
natural number is defined by:

(Def.2) There exists a finite non empty subset Y of � such that Y = X and
maxX = maxY.

2. Many Sorted Sets and Functions

One can prove the following proposition

(5) For every set I and for every many sorted set M1 indexed by I holds
M1

#(εI) = {ε}.

The scheme MSSLambda2Part deals with a set A, two unary functors F and
G yielding arbitrary, and a unary predicate P, and states that:

There exists a many sorted set f indexed by A such that for every
element i of A holds if i ∈ A, then if P[i], then f(i) = F(i) and if
not P[i], then f(i) = G(i)

for all values of the parameters.
Let I be a set. A many sorted set indexed by I is locally-finite if:

(Def.3) For arbitrary i such that i ∈ I holds it(i) is finite.

Let I be a set. Observe that there exists a many sorted set indexed by I
which is non-empty and locally-finite.

Let I, A be sets. Then I 7−→ A is a many sorted set indexed by I.
Let I be a set, let M be a many sorted set indexed by I, and let A be a

subset of I. Then M
�
A is a many sorted set indexed by A.

Let M be a non-empty function and let A be a set. One can check that M
�
A

is non-empty.
One can prove the following three propositions:

(6) For every non empty set I and for every non-empty many sorted set B
indexed by I holds

⋃
rng B is non empty.

(7) For every set I holds uncurry(I 7−→ ∅) = ∅.
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(8) Let I be a non empty set, and let A be a set, and let B be a non-empty
many sorted set indexed by I, and let F be a many sorted function from
I 7−→ A into B. Then dom commute(F ) = A.

Now we present two schemes. The scheme LambdaRecCorrD concerns a non
empty set A, an element B of A, and a binary functor F yielding an element of
A, and states that:

(i) There exists a function f from � into A such that f(0) = B
and for every natural number i and for every element x of A such
that x = f(i) holds f(i + 1) = F(i, x), and

(ii) for all functions f1, f2 from � into A such that f1(0) = B
and for every natural number i and for every element x of A such
that x = f1(i) holds f1(i+1) = F(i, x) and f2(0) = B and for every
natural number i and for every element x of A such that x = f2(i)
holds f2(i + 1) = F(i, x) holds f1 = f2

for all values of the parameters.

The scheme LambdaMSFD concerns a non empty set A, a subset B of A,
many sorted sets C, D indexed by B, and a unary functor F yielding arbitrary,
and states that:

There exists a many sorted function f from C into D such that for
every element i of A such that i ∈ B holds f(i) = F(i)

provided the following requirement is met:

• For every element i of A such that i ∈ B holds F(i) is a function
from C(i) into D(i).

Let F be a non-empty function and let f be a function. Observe that F · f
is non-empty.

Let I be a set and let M1 be a non-empty many sorted set indexed by I.
Note that every element of

∏
M1 is function-like and relation-like.

One can prove the following propositions:

(9) Let I be a set, and let f be a non-empty many sorted set indexed
by I, and let g be a function, and let s be an element of

∏
f. Suppose

dom g ⊆ dom f and for arbitrary x such that x ∈ dom g holds g(x) ∈ f(x).
Then s +· g is an element of

∏
f.

(10) Let A, B be non empty sets, and let C be a non-empty many sorted set
indexed by A, and let I1 be a many sorted function from A 7−→ B into
C, and let b be an element of B. Then there exists a many sorted set c
indexed by A such that c = (commute(I1))(b) and c ∈ C.

(11) Let I be a set, and let M be a many sorted set indexed by I, and let
x, g be functions. If x ∈

∏
M, then x · g ∈

∏
(M · g).

(12) For every natural number n and for arbitrary a holds
∏

(n 7→ {a}) =
{n 7→ a}.
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3. Trees

We follow the rules: T , T1 will denote finite trees, t, p will denote elements
of T , and t1 will denote an element of T1.

Let D be a non empty set. Note that every element of FinTrees(D) is finite.
Let T be a finite decorated tree and let t be an element of domT. Observe

that T
�
t is finite.

We now state the proposition

(13) T
�
p ≈ {t : p � t}.

Let T be a finite decorated tree, let t be an element of dom T, and let T1 be
a finite decorated tree. Note that T (t/T1) is finite.

Next we state a number of propositions:

(14) T (p/T1) = {t : p � t} ∪ {p � t1}.

(15) For every finite sequence f of elements of � such that f ∈ T (p/T1) and
p � f there exists t1 such that f = p � t1.

(16) For every tree yielding finite sequence p and for every natural number

k such that k + 1 ∈ dom p holds
︷︸︸︷
p

�
〈k〉 = p(k + 1).

(17) Let q be a decorated tree yielding finite sequence and let k be a natural

number. If k + 1 ∈ dom q, then 〈k〉 ∈
︷ ︸︸ ︷

dom
κ

q(κ) .

(18) Let p, q be tree yielding finite sequences and let k be a natural number.
Suppose len p = len q and k + 1 ∈ dom p and for every natural number i
such that i ∈ dom p and i 6= k + 1 holds p(i) = q(i). Let t be a tree. If

q(k + 1) = t, then
︷︸︸︷
q =

︷︸︸︷
p (〈k〉/t).

(19) Let e1, e2 be finite decorated trees, and let x be arbitrary, and let k be
a natural number, and let p be a decorated tree yielding finite sequence.
Suppose 〈k〉 ∈ dom e1 and e1 = x-tree(p). Then there exists a decorated
tree yielding finite sequence q such that e1(〈k〉/e2) = x-tree(q) and len q =
len p and q(k+1) = e2 and for every natural number i such that i ∈ dom p
and i 6= k + 1 holds q(i) = p(i).

(20) For every finite tree T and for every element p of T such that p 6= ε
holds card(T

�
p) < card T.

(21) For every finite function f holds card f = card dom f.

(22) For all finite trees T , T1 and for every element p of T holds
card(T (p/T1)) + card(T

�
p) = card T + card T1.

(23) For all finite decorated trees T , T1 and for every element p of domT
holds card(T (p/T1)) + card(T

�
p) = card T + card T1.

Let x be arbitrary. One can check that the root tree of x is finite.

We now state the proposition

(24) For arbitrary x holds card (the root tree of x) = 1.
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