Terms Over Many Sorted Universal Algebra¹

Grzegorz Bancerek Institute of Mathematics Polish Academy of Sciences

Summary. Pure terms (without constants) over a signature of many sorted universal algebra and terms with constants from algebra are introduced. Facts on evaluation of a term in some valuation are proved.

MML Identifier: MSATERM.

The articles [19], [22], [2], [20], [23], [11], [9], [12], [14], [3], [5], [6], [21], [1], [13], [7], [4], [8], [18], [17], [10], [15], and [16] provide the terminology and notation for this paper.

1. TERMS OVER A SIGNATURE AND OVER AN ALGEBRA

Let I be a non empty set, let X be a non-empty many sorted set indexed by I, and let i be an element of I. Note that X(i) is non empty.

In the sequel S will be a non-void non empty many sorted signature and V will be a non-empty many sorted set indexed by the carrier of S.

Let us consider S, V. The functor S-Terms(V) yielding a non empty subset of FinTrees(the carrier of DTConMSA(V)) is defined as follows:

(Def.1) S-Terms(V) = TS(DTConMSA(V)).

Let us consider S, V. A term of S over V is an element of S-Terms(V). In the sequel A denotes an algebra over S and t denotes a term of S over V. Let us consider S, V and let o be an operation symbol of S. Then Sym(o, V) is a nonterminal of DTConMSA(V).

Let us consider S, V and let s_1 be a nonterminal of DTConMSA(V). A finite sequence of elements of S-Terms(V) is called an argument sequence of s_1 if:

¹This article has been prepared during the visit of the author in Nagano in Summer 1994.

191

C 1996 Warsaw University - Białystok ISSN 1426-2630 (Def.2) It is a subtree sequence joinable by s_1 .

We now state the proposition

(1) Let o be an operation symbol of S and let a be a finite sequence. Then $\langle o, \text{ the carrier of } S \rangle$ -tree $(a) \in S$ -Terms(V) and a is decorated tree yielding if and only if a is an argument sequence of Sym(o, V).

The scheme *TermInd* concerns a non void non empty many sorted signature \mathcal{A} , a non-empty many sorted set \mathcal{B} indexed by the carrier of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

For every term t of \mathcal{A} over \mathcal{B} holds $\mathcal{P}[t]$

provided the parameters satisfy the following conditions:

- For every sort symbol s of \mathcal{A} and for every element v of $\mathcal{B}(s)$ holds $\mathcal{P}[\text{the root tree of } \langle v, s \rangle],$
- Let o be an operation symbol of \mathcal{A} and let p be an argument sequence of $\operatorname{Sym}(o, \mathcal{B})$. Suppose that for every term t of \mathcal{A} over \mathcal{B} such that $t \in \operatorname{rng} p$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[\langle o, \text{ the carrier of } \mathcal{A} \rangle$ -tree(p)].

Let us consider S, A, V. A term of A over V is a term of S over (the sorts of $A) \cup (V)$.

Let us consider S, A, V and let o be an operation symbol of S. An argument sequence of o, A, and V is an argument sequence of $Sym(o, (\text{the sorts of } A) \cup (V))$.

The scheme *CTermInd* concerns a non-void non empty many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , a non-empty many sorted set \mathcal{C} indexed by the carrier of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

For every term t of \mathcal{B} over \mathcal{C} holds $\mathcal{P}[t]$

provided the following requirements are met:

- For every sort symbol s of \mathcal{A} and for every element x of (the sorts of $\mathcal{B})(s)$ holds $\mathcal{P}[\text{the root tree of } \langle x, s \rangle],$
- For every sort symbol s of \mathcal{A} and for every element v of $\mathcal{C}(s)$ holds $\mathcal{P}[\text{the root tree of } \langle v, s \rangle],$
- Let o be an operation symbol of \mathcal{A} and let p be an argument sequence of o, \mathcal{B} , and \mathcal{C} . Suppose that for every term t of \mathcal{B} over \mathcal{C} such that $t \in \operatorname{rng} p$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[\operatorname{Sym}(o, (\text{the sorts of } \mathcal{B}) \cup \mathcal{C})\text{-tree}(p)].$

Let us consider S, V, t and let p be a node of t. Then t(p) is a symbol of DTConMSA(V).

Let us consider S, V. Observe that every term of S over V is finite. Next we state several propositions:

- (2) (i) There exists a sort symbol s of S and there exists an element v of V(s) such that $t(\varepsilon) = \langle v, s \rangle$, or
- (ii) $t(\varepsilon) \in [\text{the operation symbols of } S, \{\text{the carrier of } S\}].$
- (3) Let t be a term of A over V. Then
 - (i) there exists a sort symbol s of S and there exists a set x such that $x \in (\text{the sorts of } A)(s) \text{ and } t(\varepsilon) = \langle x, s \rangle$, or
- (ii) there exists a sort symbol s of S and there exists an element v of V(s) such that $t(\varepsilon) = \langle v, s \rangle$, or

- (iii) $t(\varepsilon) \in [$ the operation symbols of S, {the carrier of S}].
- (4) For every sort symbol s of S and for every element v of V(s) holds the root tree of $\langle v, s \rangle$ is a term of S over V.
- (5) For every sort symbol s of S and for every element v of V(s) such that $t(\varepsilon) = \langle v, s \rangle$ holds t = the root tree of $\langle v, s \rangle$.
- (6) Let s be a sort symbol of S and let x be a set. Suppose $x \in (\text{the sorts of } A)(s)$. Then the root tree of $\langle x, s \rangle$ is a term of A over V.
- (7) Let t be a term of A over V, and let s be a sort symbol of S, and let x be a set. If $x \in (\text{the sorts of } A)(s)$ and $t(\varepsilon) = \langle x, s \rangle$, then $t = \text{the root tree of } \langle x, s \rangle$.
- (8) For every sort symbol s of S and for every element v of V(s) holds the root tree of $\langle v, s \rangle$ is a term of A over V.
- (9) Let t be a term of A over V, and let s be a sort symbol of S, and let v be an element of V(s). If $t(\varepsilon) = \langle v, s \rangle$, then t = the root tree of $\langle v, s \rangle$.
- (10) Let o be an operation symbol of S. Suppose $t(\varepsilon) = \langle o, \text{ the carrier of } S \rangle$. Then there exists an argument sequence a of Sym(o, V) such that $t = \langle o, \text{ the carrier of } S \rangle$ -tree(a).

Let us consider S, let A be a non-empty algebra over S, let us consider V, let s be a sort symbol of S, and let x be an element of (the sorts of A)(s). The functor $x_{A,V}$ yielding a term of A over V is defined as follows:

(Def.3) $x_{A,V}$ = the root tree of $\langle x, s \rangle$.

Let us consider S, A, V, let s be a sort symbol of S, and let v be an element of V(s). The functor v_A yields a term of A over V and is defined as follows:

(Def.4) $v_A = \text{the root tree of } \langle v, s \rangle.$

Let us consider S, V, let s_1 be a nonterminal of DTConMSA(V), and let p be an argument sequence of s_1 . Then s_1 -tree(p) is a term of S over V.

The scheme *TermInd2* concerns a non void non empty many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , a non-empty many sorted set \mathcal{C} indexed by the carrier of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

For every term t of \mathcal{B} over \mathcal{C} holds $\mathcal{P}[t]$

provided the following conditions are satisfied:

- For every sort symbol s of \mathcal{A} and for every element x of (the sorts of $\mathcal{B})(s)$ holds $\mathcal{P}[x_{\mathcal{B},\mathcal{C}}]$,
- For every sort symbol s of \mathcal{A} and for every element v of $\mathcal{C}(s)$ holds $\mathcal{P}[v_{\mathcal{B}}]$,
- Let *o* be an operation symbol of \mathcal{A} and let *p* be an argument sequence of $\operatorname{Sym}(o, (\text{the sorts of } \mathcal{B}) \cup \mathcal{C})$. Suppose that for every term *t* of \mathcal{B} over \mathcal{C} such that $t \in \operatorname{rng} p$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[\operatorname{Sym}(o, (\text{the sorts of } \mathcal{B}) \cup \mathcal{C})$ -tree(p)].

2. Sort of a Term

One can prove the following three propositions:

- (11) For every term t of S over V there exists a sort symbol s of S such that $t \in \operatorname{FreeSort}(V, s)$.
- (12) For every sort symbol s of S holds $\operatorname{FreeSort}(V, s) \subseteq S \operatorname{-Terms}(V)$.
- (13) S-Terms $(V) = \bigcup$ FreeSorts(V).

Let us consider S, V, t. The sort of t yields a sort symbol of S and is defined by:

(Def.5) $t \in \text{FreeSort}(V, \text{the sort of } t).$

One can prove the following propositions:

- (14) Let s be a sort symbol of S and let v be an element of V(s). If t = the root tree of $\langle v, s \rangle$, then the sort of t = s.
- (15) Let t be a term of A over V, and let s be a sort symbol of S, and let x be a set. Suppose $x \in (\text{the sorts of } A)(s)$ and $t = \text{the root tree of } \langle x, s \rangle$. Then the sort of t = s.
- (16) Let t be a term of A over V, and let s be a sort symbol of S, and let v be an element of V(s). If t = the root tree of $\langle v, s \rangle$, then the sort of t = s.
- (17) Let o be an operation symbol of S. Suppose $t(\varepsilon) = \langle o,$ the carrier of $S \rangle$. Then the sort of t = the result sort of o.
- (18) Let A be a non-empty algebra over S, and let s be a sort symbol of S, and let x be an element of (the sorts of A)(s). Then the sort of $x_{A,V} = s$.
- (19) For every sort symbol s of S and for every element v of V(s) holds the sort of $v_A = s$.
- (20) Let *o* be an operation symbol of *S* and let *p* be an argument sequence of Sym(o, V). Then the sort of (Sym(o, V)-tree(p) **qua** term of *S* over V) = the result sort of *o*.

3. Argument Sequence

We now state several propositions:

- (21) Let *o* be an operation symbol of *S* and let *a* be a finite sequence of elements of *S*-Terms(*V*). Then *a* is an argument sequence of Sym(o, V) if and only if $Sym(o, V) \Rightarrow$ the roots of *a*.
- (22) Let o be an operation symbol of S and let a be an argument sequence of Sym(o, V). Then len a = len Arity(o) and dom a = dom Arity(o) and for every natural number i such that $i \in \text{dom } a$ holds a(i) is a term of S over V.

- (23) Let o be an operation symbol of S, and let a be an argument sequence of Sym(o, V), and let i be a natural number. Suppose $i \in \text{dom } a$. Let t be a term of S over V. Suppose t = a(i). Then
 - (i) $t = \pi_i(a \text{ qua finite sequence of elements of } S \text{-Terms}(V)$ qua non empty set),
 - (ii) the sort of $t = \operatorname{Arity}(o)(i)$, and
 - (iii) the sort of $t = \pi_i \operatorname{Arity}(o)$.
- (24) Let o be an operation symbol of S and let a be a finite sequence. Suppose that
 - (i) $\operatorname{len} a = \operatorname{len} \operatorname{Arity}(o)$ or $\operatorname{dom} a = \operatorname{dom} \operatorname{Arity}(o)$, and
 - (ii) for every natural number i such that $i \in \text{dom } a$ there exists a term t of S over V such that t = a(i) and the sort of t = Arity(o)(i) or for every natural number i such that $i \in \text{dom } a$ there exists a term t of S over V such that t = a(i) and the sort of $t = \pi_i \text{Arity}(o)$. Then a is an argument sequence of Sym(o, V).
- (25) Let o be an operation symbol of S and let a be a finite sequence of elements of S-Terms(V). Suppose that
 - (i) $\operatorname{len} a = \operatorname{len} \operatorname{Arity}(o)$ or $\operatorname{dom} a = \operatorname{dom} \operatorname{Arity}(o)$, and
 - (ii) for every natural number i such that $i \in \text{dom } a$ and for every term t of S over V such that t = a(i) holds the sort of t = Arity(o)(i) or for every natural number i such that $i \in \text{dom } a$ and for every term t of S over V such that t = a(i) holds the sort of $t = \pi_i \text{Arity}(o)$. Then a is an argument sequence of Sym(o, V).
- (26) Let S be a non void non empty many sorted signature and let V_1, V_2 be non-empty many sorted sets indexed by the carrier of S. If $V_1 \subseteq V_2$, then every term of S over V_1 is a term of S over V_2 .
- (27) Let S be a non void non empty many sorted signature, and let A be an algebra over S, and let V be a non-empty many sorted set indexed by the carrier of S. Then every term of S over V is a term of A over V.

4. Compound Terms

Let S be a non void non empty many sorted signature and let V be a nonempty many sorted set indexed by the carrier of S. A term of S over V is said to be a compound term of S over V if:

(Def.6) It $(\varepsilon) \in [$ the operation symbols of S, {the carrier of S}].

Let S be a non void non empty many sorted signature and let V be a nonempty many sorted set indexed by the carrier of S. A non empty subset of S-Terms(V) is called a set with a compound term of S over V if:

- (Def.7) There exists a compound term t of S over V such that $t \in it$. Next we state two propositions:
 - (28) If t is not root, then t is a compound term of S over V.

(29) For every node p of t holds $t \upharpoonright p$ is a term of S over V.

Let S be a non-void non empty many sorted signature, let V be a non-empty many sorted set indexed by the carrier of S, let t be a term of S over V, and let p be a node of t. Then $t \upharpoonright p$ is a term of S over V.

5. Evaluation of Terms

Let S be a non void non empty many sorted signature and let A be an algebra over S. A non-empty many sorted set indexed by the carrier of S is said to be a variables family of A if:

(Def.8) It misses the sorts of A.

We now state the proposition

(30) Let V be a variables family of A, and let s be a sort symbol of S, and let x be a set. If $x \in (\text{the sorts of } A)(s)$, then for every element v of V(s) holds $x \neq v$.

Let S be a non-void non empty many sorted signature, let A be a non-empty algebra over S, let V be a non-empty many sorted set indexed by the carrier of S, let t be a term of A over V, let f be a many sorted function from V into the sorts of A, and let v_1 be a finite decorated tree. We say that v_1 is an evaluation of t w.r.t. f if and only if the conditions (Def.9) are satisfied.

(Def.9) (i) $\operatorname{dom} v_1 = \operatorname{dom} t$, and

(ii) for every node p of v_1 holds for every sort symbol s of S and for every element v of V(s) such that $t(p) = \langle v, s \rangle$ holds $v_1(p) = f(s)(v)$ and for every sort symbol s of S and for every element x of (the sorts of A)(s) such that $t(p) = \langle x, s \rangle$ holds $v_1(p) = x$ and for every operation symbol o of S such that $t(p) = \langle o$, the carrier of $S \rangle$ holds $v_1(p) = (\text{Den}(o, A))(\text{succ}(v_1, p))$.

For simplicity we follow the rules: S will be a non-void non empty many sorted signature, A will be a non-empty algebra over S, V will be a variables family of A, t will be a term of A over V, and f will be a many sorted function from V into the sorts of A.

We now state several propositions:

- (31) Let s be a sort symbol of S and let x be an element of (the sorts of A)(s). Suppose t = the root tree of $\langle x, s \rangle$. Then the root tree of x is an evaluation of t w.r.t. f.
- (32) Let s be a sort symbol of S and let v be an element of V(s). Suppose t = the root tree of $\langle v, s \rangle$. Then the root tree of f(s)(v) is an evaluation of t w.r.t. f.
- (33) Let o be an operation symbol of S, and let p be an argument sequence of o, A, and V, and let q be a decorated tree yielding finite sequence. Suppose that
 - (i) $\operatorname{len} q = \operatorname{len} p$, and

(ii) for every natural number i and for every term t of A over V such that $i \in \text{dom } p$ and t = p(i) there exists a finite decorated tree v_1 such that $v_1 = q(i)$ and v_1 is an evaluation of t w.r.t. f.

Then there exists a finite decorated tree v_1 such that $v_1 = (\text{Den}(o, A))$ (the roots of q)-tree(q) and v_1 is an evaluation of $\text{Sym}(o, (\text{the sorts of } A) \cup (V))$ -tree(p) **qua** term of A over V w.r.t. f.

- (34) Let t be a term of A over V and let e be a finite decorated tree. Suppose e is an evaluation of t w.r.t. f. Let p be a node of t and let n be a node of e. If n = p, then $e \upharpoonright n$ is an evaluation of $t \upharpoonright p$ w.r.t. f.
- (35) Let o be an operation symbol of S, and let p be an argument sequence of o, A, and V, and let v_1 be a finite decorated tree. Suppose v_1 is an evaluation of $\text{Sym}(o, (\text{the sorts of } A) \cup (V))$ -tree(p) qua term of A over V w.r.t. f. Then there exists a decorated tree yielding finite sequence qsuch that
 - (i) $\operatorname{len} q = \operatorname{len} p$,
 - (ii) $v_1 = (\text{Den}(o, A))$ (the roots of q)-tree(q), and
 - (iii) for every natural number i and for every term t of A over V such that $i \in \text{dom } p$ and t = p(i) there exists a finite decorated tree v_1 such that $v_1 = q(i)$ and v_1 is an evaluation of t w.r.t. f.
- (36) There exists finite decorated tree which is an evaluation of t w.r.t. f.
- (37) Let e_1 , e_2 be finite decorated trees. Suppose e_1 is an evaluation of t w.r.t. f and e_2 is an evaluation of t w.r.t. f. Then $e_1 = e_2$.
- (38) Let v_1 be a finite decorated tree. Suppose v_1 is an evaluation of t w.r.t. f. Then $v_1(\varepsilon) \in (\text{the sorts of } A)(\text{the sort of } t)$.

Let S be a non void non empty many sorted signature, let A be a non-empty algebra over S, let V be a variables family of A, let t be a term of A over V, and let f be a many sorted function from V into the sorts of A. The functor $t \stackrel{@}{=} f$ yields an element of (the sorts of A)(the sort of t) and is defined as follows:

(Def.10) There exists a finite decorated tree v_1 such that v_1 is an evaluation of t w.r.t. f and $t^{@} f = v_1(\varepsilon)$.

In the sequel t denotes a term of A over V.

We now state several propositions:

- (39) For every finite decorated tree v_1 such that v_1 is an evaluation of t w.r.t. f holds $t \stackrel{@}{=} f = v_1(\varepsilon)$.
- (40) Let v_1 be a finite decorated tree. Suppose v_1 is an evaluation of t w.r.t. f. Let p be a node of t. Then $v_1(p) = t \upharpoonright p^{\textcircled{0}} f$.
- (41) For every sort symbol s of S and for every element x of (the sorts of A)(s) holds $x_{A,V} \stackrel{@}{=} f = x$.
- (42) For every sort symbol s of S and for every element v of V(s) holds $v_A \stackrel{@}{=} f(s)(v)$.
- (43) Let o be an operation symbol of S, and let p be an argument sequence of o, A, and V, and let q be a finite sequence. Suppose that

(i) $\operatorname{len} q = \operatorname{len} p$, and

(ii) for every natural number i such that i ∈ dom p and for every term t of A over V such that t = p(i) holds q(i) = t[@] f. Then (Sym(o, (the sorts of A)∪(V))-tree(p) qua term of A over V)[@](f) = (Den(o, A))(q).

References

- Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547– 552, 1991.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
 [4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
- [5] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [6] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [7] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
- [8] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185–190, 1996.
- [9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [10] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part 1. Formalized Mathematics, 2(5):683–687, 1991.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [15] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [16] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67– 74, 1996.
- [17] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [22] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received November 25, 1994