Terms Over Many Sorted Universal Algebra ${ }^{1}$

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Abstract

Summary. Pure terms (without constants) over a signature of many sorted universal algebra and terms with constants from algebra are introduced. Facts on evaluation of a term in some valuation are proved.

MML Identifier: MSATERM.

The articles [19], [22], [2], [20], [23], [11], [9], [12], [14], [3], [5], [6], [21], [1], [13], [7], [4], [8], [18], [17], [10], [15], and [16] provide the terminology and notation for this paper.

1. Terms over a Signature and over an Algebra

Let I be a non empty set, let X be a non-empty many sorted set indexed by I, and let i be an element of I. Note that $X(i)$ is non empty.

In the sequel S will be a non void non empty many sorted signature and V will be a non-empty many sorted set indexed by the carrier of S.

Let us consider S, V. The functor S-Terms (V) yielding a non empty subset of FinTrees(the carrier of DTConMSA (V)) is defined as follows:
(Def.1) $\quad S$-Terms $(V)=\mathrm{TS}(\mathrm{DTConMSA}(V))$.
Let us consider S, V. A term of S over V is an element of S - $\operatorname{Terms}(V)$.
In the sequel A denotes an algebra over S and t denotes a term of S over V.
Let us consider S, V and let o be an operation symbol of S. Then $\operatorname{Sym}(o, V)$ is a nonterminal of DTConMSA (V).

Let us consider S, V and let s_{1} be a nonterminal of DTConMSA(V). A finite sequence of elements of $S-\operatorname{Terms}(V)$ is called an argument sequence of s_{1} if:

[^0](Def.2) It is a subtree sequence joinable by s_{1}.
We now state the proposition
(1) Let o be an operation symbol of S and let a be a finite sequence. Then $\langle o$, the carrier of $S\rangle$-tree $(a) \in S-\operatorname{Terms}(V)$ and a is decorated tree yielding if and only if a is an argument sequence of $\operatorname{Sym}(o, V)$.
The scheme TermInd concerns a non void non empty many sorted signature \mathcal{A}, a non-empty many sorted set \mathcal{B} indexed by the carrier of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:

For every term t of \mathcal{A} over \mathcal{B} holds $\mathcal{P}[t]$
provided the parameters satisfy the following conditions:

- For every sort symbol s of \mathcal{A} and for every element v of $\mathcal{B}(s)$ holds $\mathcal{P}[$ the root tree of $\langle v, s\rangle]$,
- Let o be an operation symbol of \mathcal{A} and let p be an argument sequence of $\operatorname{Sym}(o, \mathcal{B})$. Suppose that for every term t of \mathcal{A} over \mathcal{B} such that $t \in \operatorname{rng} p$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[\langle o$, the carrier of $\mathcal{A}\rangle$-tree $(p)]$.
Let us consider S, A, V. A term of A over V is a term of S over (the sorts of $A) \cup(V)$.

Let us consider S, A, V and let o be an operation symbol of S. An argument sequence of o, A, and V is an argument sequence of $\operatorname{Sym}(o$, (the sorts of $A) \cup(V)$).

The scheme C TermInd concerns a non void non empty many sorted signature \mathcal{A}, a non-empty algebra \mathcal{B} over \mathcal{A}, a non-empty many sorted set \mathcal{C} indexed by the carrier of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:

For every term t of \mathcal{B} over \mathcal{C} holds $\mathcal{P}[t]$ provided the following requirements are met:

- For every sort symbol s of \mathcal{A} and for every element x of (the sorts of $\mathcal{B})(s)$ holds \mathcal{P} [the root tree of $\langle x, s\rangle$],
- For every sort symbol s of \mathcal{A} and for every element v of $\mathcal{C}(s)$ holds $\mathcal{P}[$ the root tree of $\langle v, s\rangle]$,
- Let o be an operation symbol of \mathcal{A} and let p be an argument sequence of o, \mathcal{B}, and \mathcal{C}. Suppose that for every term t of \mathcal{B} over \mathcal{C} such that $t \in \operatorname{rng} p$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[\operatorname{Sym}(o$, (the sorts of $\mathcal{B}) \cup \mathcal{C})$-tree $(p)]$.
Let us consider S, V, t and let p be a node of t. Then $t(p)$ is a symbol of DTConMSA (V).

Let us consider S, V. Observe that every term of S over V is finite.
Next we state several propositions:
(2) (i) There exists a sort symbol s of S and there exists an element v of $V(s)$ such that $t(\varepsilon)=\langle v, s\rangle$, or
(ii) $\quad t(\varepsilon) \in[$ the operation symbols of $S,\{$ the carrier of $S\}:]$.
(3) Let t be a term of A over V. Then
(i) there exists a sort symbol s of S and there exists a set x such that $x \in($ the sorts of $A)(s)$ and $t(\varepsilon)=\langle x, s\rangle$, or
(ii) there exists a sort symbol s of S and there exists an element v of $V(s)$ such that $t(\varepsilon)=\langle v, s\rangle$, or
(iii) $\quad t(\varepsilon) \in\{$ the operation symbols of S, \{the carrier of $S\}$:.
(4) For every sort symbol s of S and for every element v of $V(s)$ holds the root tree of $\langle v, s\rangle$ is a term of S over V.
(5) For every sort symbol s of S and for every element v of $V(s)$ such that $t(\varepsilon)=\langle v, s\rangle$ holds $t=$ the root tree of $\langle v, s\rangle$.
(6) Let s be a sort symbol of S and let x be a set. Suppose $x \in$ (the sorts of $A)(s)$. Then the root tree of $\langle x, s\rangle$ is a term of A over V.
(7) Let t be a term of A over V, and let s be a sort symbol of S, and let x be a set. If $x \in($ the sorts of $A)(s)$ and $t(\varepsilon)=\langle x, s\rangle$, then $t=$ the root tree of $\langle x, s\rangle$.
(8) For every sort symbol s of S and for every element v of $V(s)$ holds the root tree of $\langle v, s\rangle$ is a term of A over V.
(9) Let t be a term of A over V, and let s be a sort symbol of S, and let v be an element of $V(s)$. If $t(\varepsilon)=\langle v, s\rangle$, then $t=$ the root tree of $\langle v, s\rangle$.
(10) Let o be an operation symbol of S. Suppose $t(\varepsilon)=\langle o$, the carrier of $S\rangle$. Then there exists an argument sequence a of $\operatorname{Sym}(o, V)$ such that $t=\langle o$, the carrier of $S\rangle$-tree (a).
Let us consider S, let A be a non-empty algebra over S, let us consider V, let s be a sort symbol of S, and let x be an element of (the sorts of $A)(s)$. The functor $x_{A, V}$ yielding a term of A over V is defined as follows:
(Def.3) $\quad x_{A, V}=$ the root tree of $\langle x, s\rangle$.
Let us consider S, A, V, let s be a sort symbol of S, and let v be an element of $V(s)$. The functor v_{A} yields a term of A over V and is defined as follows:
(Def.4) $\quad v_{A}=$ the root tree of $\langle v, s\rangle$.
Let us consider S, V, let s_{1} be a nonterminal of DTConMSA (V), and let p be an argument sequence of s_{1}. Then s_{1} - $\operatorname{tree}(p)$ is a term of S over V.

The scheme TermInd2 concerns a non void non empty many sorted signature \mathcal{A}, a non-empty algebra \mathcal{B} over \mathcal{A}, a non-empty many sorted set \mathcal{C} indexed by the carrier of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:

For every term t of \mathcal{B} over \mathcal{C} holds $\mathcal{P}[t]$
provided the following conditions are satisfied:

- For every sort symbol s of \mathcal{A} and for every element x of (the sorts of $\mathcal{B})(s)$ holds $\mathcal{P}\left[x_{\mathcal{B}, \mathcal{C}}\right]$,
- For every sort symbol s of \mathcal{A} and for every element v of $\mathcal{C}(s)$ holds $\mathcal{P}\left[v_{\mathcal{B}}\right]$,
- Let o be an operation symbol of \mathcal{A} and let p be an argument sequence of $\operatorname{Sym}(o,($ the sorts of $\mathcal{B}) \cup \mathcal{C})$. Suppose that for every term t of \mathcal{B} over \mathcal{C} such that $t \in \operatorname{rng} p$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[\operatorname{Sym}(o$, (the sorts of $\mathcal{B}) \cup \mathcal{C})$-tree $(p)]$.

2. Sort of a Term

One can prove the following three propositions:
(11) For every term t of S over V there exists a sort symbol s of S such that $t \in \operatorname{FreeSort}(V, s)$.
(12) For every sort symbol s of S holds FreeSort $(V, s) \subseteq S$-Terms (V).
(13) $\quad S$-Terms $(V)=\bigcup$ FreeSorts (V).

Let us consider S, V, t. The sort of t yields a sort symbol of S and is defined by:
(Def.5) $\quad t \in \operatorname{FreeSort}(V$, the sort of $t)$.
One can prove the following propositions:
(14) Let s be a sort symbol of S and let v be an element of $V(s)$. If $t=$ the root tree of $\langle v, s\rangle$, then the sort of $t=s$.
(15) Let t be a term of A over V, and let s be a sort symbol of S, and let x be a set. Suppose $x \in($ the sorts of $A)(s)$ and $t=$ the root tree of $\langle x, s\rangle$. Then the sort of $t=s$.
(16) Let t be a term of A over V, and let s be a sort symbol of S, and let v be an element of $V(s)$. If $t=$ the root tree of $\langle v, s\rangle$, then the sort of $t=s$.
(17) Let o be an operation symbol of S. Suppose $t(\varepsilon)=\langle o$, the carrier of $S\rangle$. Then the sort of $t=$ the result sort of o.
(18) Let A be a non-empty algebra over S, and let s be a sort symbol of S, and let x be an element of (the sorts of $A)(s)$. Then the sort of $x_{A, V}=s$.
(19) For every sort symbol s of S and for every element v of $V(s)$ holds the sort of $v_{A}=s$.
(20) Let o be an operation symbol of S and let p be an argument sequence of $\operatorname{Sym}(o, V)$. Then the sort of $(\operatorname{Sym}(o, V)$-tree (p) qua term of S over $V)=$ the result sort of o.

3. Argument Sequence

We now state several propositions:
(21) Let o be an operation symbol of S and let a be a finite sequence of elements of S-Terms (V). Then a is an argument sequence of $\operatorname{Sym}(o, V)$ if and only if $\operatorname{Sym}(o, V) \Rightarrow$ the roots of a.
(22) Let o be an operation symbol of S and let a be an argument sequence of $\operatorname{Sym}(o, V)$. Then len $a=\operatorname{len} \operatorname{Arity}(o)$ and $\operatorname{dom} a=\operatorname{dom} \operatorname{Arity}(o)$ and for every natural number i such that $i \in \operatorname{dom} a$ holds $a(i)$ is a term of S over V.
(23)

Let o be an operation symbol of S, and let a be an argument sequence of $\operatorname{Sym}(o, V)$, and let i be a natural number. Suppose $i \in \operatorname{dom} a$. Let t be a term of S over V. Suppose $t=a(i)$. Then
(i) $\quad t=\pi_{i}(a$ qua finite sequence of elements of $S-\operatorname{Terms}(V)$ qua non empty set),
(ii) the sort of $t=\operatorname{Arity}(o)(i)$, and
(iii) the sort of $t=\pi_{i} \operatorname{Arity}(o)$.
(24) Let o be an operation symbol of S and let a be a finite sequence. Suppose that
(i) $\operatorname{len} a=\operatorname{len} \operatorname{Arity}(o)$ or $\operatorname{dom} a=\operatorname{dom} \operatorname{Arity}(o)$, and
(ii) for every natural number i such that $i \in \operatorname{dom} a$ there exists a term t of S over V such that $t=a(i)$ and the sort of $t=\operatorname{Arity}(o)(i)$ or for every natural number i such that $i \in \operatorname{dom} a$ there exists a term t of S over V such that $t=a(i)$ and the sort of $t=\pi_{i} \operatorname{Arity}(o)$.
Then a is an argument sequence of $\operatorname{Sym}(o, V)$.
(25) Let o be an operation symbol of S and let a be a finite sequence of elements of S-Terms (V). Suppose that
(i) $\operatorname{len} a=\operatorname{len} \operatorname{Arity}(o)$ or $\operatorname{dom} a=\operatorname{dom} \operatorname{Arity}(o)$, and
(ii) for every natural number i such that $i \in \operatorname{dom} a$ and for every term t of S over V such that $t=a(i)$ holds the sort of $t=\operatorname{Arity}(o)(i)$ or for every natural number i such that $i \in \operatorname{dom} a$ and for every term t of S over V such that $t=a(i)$ holds the sort of $t=\pi_{i} \operatorname{Arity}(o)$. Then a is an argument sequence of $\operatorname{Sym}(o, V)$.
(26) Let S be a non void non empty many sorted signature and let V_{1}, V_{2} be non-empty many sorted sets indexed by the carrier of S. If $V_{1} \subseteq V_{2}$, then every term of S over V_{1} is a term of S over V_{2}.
(27) Let S be a non void non empty many sorted signature, and let A be an algebra over S, and let V be a non-empty many sorted set indexed by the carrier of S. Then every term of S over V is a term of A over V.

4. Compound Terms

Let S be a non void non empty many sorted signature and let V be a nonempty many sorted set indexed by the carrier of S. A term of S over V is said to be a compound term of S over V if:
(Def.6) $\quad \operatorname{It}(\varepsilon) \in[$ the operation symbols of $S,\{$ the carrier of $S\}]$.
Let S be a non void non empty many sorted signature and let V be a nonempty many sorted set indexed by the carrier of S. A non empty subset of S-Terms (V) is called a set with a compound term of S over V if:
(Def.7) There exists a compound term t of S over V such that $t \in$ it.
Next we state two propositions:
(28) If t is not root, then t is a compound term of S over V.
(29) For every node p of t holds $t \upharpoonright p$ is a term of S over V.

Let S be a non void non empty many sorted signature, let V be a non-empty many sorted set indexed by the carrier of S, let t be a term of S over V, and let p be a node of t. Then $t \upharpoonright p$ is a term of S over V.

5. Evaluation of Terms

Let S be a non void non empty many sorted signature and let A be an algebra over S. A non-empty many sorted set indexed by the carrier of S is said to be a variables family of A if:
(Def.8) It misses the sorts of A.
We now state the proposition
(30) Let V be a variables family of A, and let s be a sort symbol of S, and let x be a set. If $x \in($ the sorts of $A)(s)$, then for every element v of $V(s)$ holds $x \neq v$.
Let S be a non void non empty many sorted signature, let A be a non-empty algebra over S, let V be a non-empty many sorted set indexed by the carrier of S, let t be a term of A over V, let f be a many sorted function from V into the sorts of A, and let v_{1} be a finite decorated tree. We say that v_{1} is an evaluation of t w.r.t. f if and only if the conditions (Def.9) are satisfied.
(Def.9) (i) $\operatorname{dom} v_{1}=\operatorname{dom} t$, and
(ii) for every node p of v_{1} holds for every sort symbol s of S and for every element v of $V(s)$ such that $t(p)=\langle v, s\rangle$ holds $v_{1}(p)=f(s)(v)$ and for every sort symbol s of S and for every element x of (the sorts of $A)(s)$ such that $t(p)=\langle x, s\rangle$ holds $v_{1}(p)=x$ and for every operation symbol o of S such that $t(p)=\langle o$, the carrier of $S\rangle$ holds $v_{1}(p)=(\operatorname{Den}(o, A))\left(\operatorname{succ}\left(v_{1}, p\right)\right)$.
For simplicity we follow the rules: S will be a non void non empty many sorted signature, A will be a non-empty algebra over S, V will be a variables family of A, t will be a term of A over V, and f will be a many sorted function from V into the sorts of A.

We now state several propositions:
(31) Let s be a sort symbol of S and let x be an element of (the sorts of $A)(s)$. Suppose $t=$ the root tree of $\langle x, s\rangle$. Then the root tree of x is an evaluation of t w.r.t. f.
(32) Let s be a sort symbol of S and let v be an element of $V(s)$. Suppose $t=$ the root tree of $\langle v, s\rangle$. Then the root tree of $f(s)(v)$ is an evaluation of t w.r.t. f.
(33) Let o be an operation symbol of S, and let p be an argument sequence of o, A, and V, and let q be a decorated tree yielding finite sequence. Suppose that
(i) $\operatorname{len} q=\operatorname{len} p$, and
(ii) for every natural number i and for every term t of A over V such that $i \in \operatorname{dom} p$ and $t=p(i)$ there exists a finite decorated tree v_{1} such that $v_{1}=q(i)$ and v_{1} is an evaluation of t w.r.t. f.
Then there exists a finite decorated tree v_{1} such that $v_{1}=(\operatorname{Den}(o, A))($ the roots of $q)$-tree (q) and v_{1} is an evaluation of $\operatorname{Sym}(o,($ the sorts of $A) \cup$ $(V))$-tree (p) qua term of A over V w.r.t. f.
(34) Let t be a term of A over V and let e be a finite decorated tree. Suppose e is an evaluation of t w.r.t. f. Let p be a node of t and let n be a node of e. If $n=p$, then $e \upharpoonright n$ is an evaluation of $t \upharpoonright p$ w.r.t. f.
(35) Let o be an operation symbol of S, and let p be an argument sequence of o, A, and V, and let v_{1} be a finite decorated tree. Suppose v_{1} is an evaluation of $\operatorname{Sym}(o$, (the sorts of $A) \cup(V))$-tree (p) qua term of A over V w.r.t. f. Then there exists a decorated tree yielding finite sequence q such that
(i) $\operatorname{len} q=\operatorname{len} p$,
(ii) $\quad v_{1}=(\operatorname{Den}(o, A))($ the roots of $q)$-tree (q), and
(iii) for every natural number i and for every term t of A over V such that $i \in \operatorname{dom} p$ and $t=p(i)$ there exists a finite decorated tree v_{1} such that $v_{1}=q(i)$ and v_{1} is an evaluation of t w.r.t. f.
(36) There exists finite decorated tree which is an evaluation of t w.r.t. f.
(37) Let e_{1}, e_{2} be finite decorated trees. Suppose e_{1} is an evaluation of t w.r.t. f and e_{2} is an evaluation of t w.r.t. f. Then $e_{1}=e_{2}$.
(38) Let v_{1} be a finite decorated tree. Suppose v_{1} is an evaluation of t w.r.t. f. Then $v_{1}(\varepsilon) \in($ the sorts of $A)$ (the sort of $\left.t\right)$.
Let S be a non void non empty many sorted signature, let A be a non-empty algebra over S, let V be a variables family of A, let t be a term of A over V, and let f be a many sorted function from V into the sorts of A. The functor $t{ }^{@} f$ yields an element of (the sorts of A)(the sort of t) and is defined as follows:
(Def.10) There exists a finite decorated tree v_{1} such that v_{1} is an evaluation of t w.r.t. f and $t^{@} f=v_{1}(\varepsilon)$.
In the sequel t denotes a term of A over V.
We now state several propositions:
(39) For every finite decorated tree v_{1} such that v_{1} is an evaluation of t w.r.t. f holds $t{ }^{@} f=v_{1}(\varepsilon)$.
(40) Let v_{1} be a finite decorated tree. Suppose v_{1} is an evaluation of t w.r.t. f. Let p be a node of t. Then $v_{1}(p)=t \upharpoonright p^{@} f$.
(41) For every sort symbol s of S and for every element x of (the sorts of $A)(s)$ holds $x_{A, V}{ }^{@} f=x$.
(42) For every sort symbol s of S and for every element v of $V(s)$ holds $v_{A}{ }^{@} f=f(s)(v)$.
(43) Let o be an operation symbol of S, and let p be an argument sequence of o, A, and V, and let q be a finite sequence. Suppose that
(i) $\operatorname{len} q=\operatorname{len} p$, and
(ii) for every natural number i such that $i \in \operatorname{dom} p$ and for every term t of A over V such that $t=p(i)$ holds $q(i)=t^{@} f$.
Then $(\operatorname{Sym}(o,(\text { the sorts of } A) \cup(V)) \text {-tree }(p) \text { qua term of } A \text { over } V)^{@}(f)=$ $(\operatorname{Den}(o, A))(q)$.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[5] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[6] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[7] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[8] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.
[9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[10] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[13] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[15] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[16] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):6774, 1996.
[17] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[22] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received November 25, 1994

[^0]: ${ }^{1}$ This article has been prepared during the visit of the author in Nagano in Summer 1994.

