Preliminaries to Circuits, II¹

Yatsuka Nakamura Shinshu University, Nagano Piotr Rudnicki University of Alberta, Edmonton

Andrzej Trybulec Pa Warsaw University, Białystok Shina

Pauline N. Kawamoto Shinshu University, Nagano

Summary. This article is the second in a series of four articles (started with [20] and continued in [19,18]) about modelling circuits by many sorted algebras.

First, we introduce some additional terminology for many sorted signatures. The vertices of such signatures are divided into input vertices and inner vertices. A many sorted signature is called *circuit like* if each sort is a result sort of at most one operation. Next, we introduce some notions for many sorted algebras and many sorted free algebras. Free envelope of an algebra is a free algebra generated by the sorts of the algebra. Evaluation of an algebra is defined as a homomorphism from the free envelope of the algebra into the algebra. We define depth of elements of free many sorted algebras.

A many sorted signature is said to be monotonic if every finitely generated algebra over it is locally finite (finite in each sort). Monotonic signatures are used (see [19,18]) in modelling backbones of circuits without directed cycles.

MML Identifier: MSAFREE2.

The papers [24], [28], [25], [1], [29], [12], [15], [7], [13], [5], [2], [4], [6], [3], [23], [17], [22], [11], [21], [9], [10], [8], [14], [26], [30], [16], [27], and [20] provide the notation and terminology for this paper.

1. MANY SORTED SIGNATURES

Let S be a many sorted signature. A vertex of S is an element of the carrier of S.

C 1996 Warsaw University - Białystok ISSN 1426-2630

¹Partial funding for this work has been provided by: Shinshu Endowment Fund for Information Science, NSERC Grant OGP9207, JSTF award 651-93-S009.

Let S be a non empty many sorted signature.

The functor SortsWithConstants(S) yielding a subset of the carrier of S is defined as follows:

- (Def.1) (i) SortsWithConstants $(S) = \{v : v \text{ ranges over sort symbols of } S, v \text{ has constants} \}$ if S is non void,
 - (ii) SortsWithConstants $(S) = \emptyset$, otherwise.

Let G be a non empty many sorted signature. The functor InputVertices(G) yields a subset of the carrier of G and is defined by:

(Def.2) Input Vertices $(G) = (\text{the carrier of } G) \setminus \operatorname{rng}(\text{the result sort of } G).$

The functor InnerVertices(G) yielding a subset of the carrier of G is defined by:

(Def.3) InnerVertices $(G) = \operatorname{rng}(\text{the result sort of } G).$

Next we state several propositions:

- (1) For every void non empty many sorted signature G holds InputVertices(G) = the carrier of G.
- (2) Let G be a non void non empty many sorted signature and let v be a vertex of G. Suppose $v \in \text{InputVertices}(G)$. Then it is not true that there exists an operation symbol o of G such that the result sort of o = v.
- (3) For every non empty many sorted signature G holds InputVertices $(G) \cup$ InnerVertices(G) = the carrier of G.
- (4) For every non empty many sorted signature G holds InputVertices(G) misses InnerVertices(G).
- (5) For every non empty many sorted signature G holds SortsWithConstants $(G) \subseteq$ InnerVertices(G).
- (6) For every non empty many sorted signature G holds InputVertices(G) misses SortsWithConstants(G).

A non empty many sorted signature has input vertices if:

(Def.4) InputVertices(it) $\neq \emptyset$.

Let us note that there exists a non empty many sorted signature which is non void and has input vertices.

Let G be a non empty many sorted signature with input vertices. Note that InputVertices(G) is non empty.

Let G be a non void non empty many sorted signature. Then InnerVertices(G) is a non empty subset of the carrier of G.

Let S be a non empty many sorted signature and let M_1 be a non-empty algebra over S. A many sorted set indexed by InputVertices(S) is said to be an input assignment of M_1 if:

(Def.5) For every vertex v of S such that $v \in \text{InputVertices}(S)$ holds $\text{it}(v) \in (\text{the sorts of } M_1)(v)$.

Let S be a non empty many sorted signature. We say that S is circuit-like if and only if the condition (Def.6) is satisfied.

(Def.6) Let S' be a non void non empty many sorted signature. Suppose S' = S. Let o_1 , o_2 be operation symbols of S'. If the result sort of o_1 = the result sort of o_2 , then $o_1 = o_2$.

Let us observe that every non empty many sorted signature which is void is also circuit-like.

Let us note that there exists a non empty many sorted signature which is non void circuit-like and strict.

Let I_1 be a circuit-like non void non empty many sorted signature and let v be a vertex of I_1 . Let us assume that $v \in \text{InnerVertices}(I_1)$. The action at v yielding an operation symbol of I_1 is defined as follows:

(Def.7) The result sort of the action at v = v.

2. Free Many Sorted Algebras

Next we state the proposition

(7) Let S be a non void non empty many sorted signature, and let A be an algebra over S, and let o be an operation symbol of S, and let p be a finite sequence. Suppose len p = len Arity(o) and for every natural number k such that $k \in \text{dom } p$ holds $p(k) \in (\text{the sorts of } A)(\pi_k \text{ Arity}(o))$. Then $p \in \text{Args}(o, A)$.

Let S be a non void non empty many sorted signature and let M_1 be a non-empty algebra over S. The functor FreeEnvelope (M_1) yielding a free strict non-empty algebra over S is defined as follows:

(Def.8) FreeEnvelope (M_1) = Free(the sorts of M_1).

One can prove the following proposition

(8) Let S be a non void non empty many sorted signature and let M_1 be a non-empty algebra over S. Then FreeGenerator(the sorts of M_1) is a free generator set of FreeEnvelope(M_1).

Let S be a non void non empty many sorted signature and let M_1 be a nonempty algebra over S. The functor $\text{Eval}(M_1)$ yielding a many sorted function from FreeEnvelope (M_1) into M_1 is defined by the conditions (Def.9).

(Def.9) (i) Eval (M_1) is a homomorphism of FreeEnvelope (M_1) into M_1 , and

(ii) for every sort symbol s of S and for arbitrary x, y such that $y \in$ FreeSort(the sorts of M_1 , s) and y = the root tree of $\langle x, s \rangle$ and $x \in$ (the sorts of M_1)(s) holds (Eval (M_1))(s)(y) = x.

One can prove the following proposition

(9) Let S be a non-void non empty many sorted signature and let A be a non-empty algebra over S. Then the sorts of A is a generator set of A.

Let S be a non empty many sorted signature. An algebra over S is finitelygenerated if:

- (Def.10) (i) For every non void non empty many sorted signature S' such that S' = S and for every algebra A over S' such that A = it holds there exists generator set of A which is locally-finite if S is not void,
 - (ii) the sorts of it is locally-finite, otherwise.

Let S be a non empty many sorted signature. An algebra over S is locally-finite if:

(Def.11) The sorts of it is locally-finite.

Let S be a non empty many sorted signature. Observe that every non-empty algebra over S which is locally-finite is also finitely-generated.

Let S be a non empty many sorted signature. The trivial algebra of S yields a strict algebra over S and is defined by:

(Def.12) The sorts of the trivial algebra of $S = (\text{the carrier of } S) \longmapsto \{0\}.$

Let S be a non empty many sorted signature. Observe that there exists an algebra over S which is locally-finite non-empty and strict.

A non empty many sorted signature is monotonic if:

(Def.13) Every finitely-generated non-empty algebra over it is locally-finite.

One can verify that there exists a non empty many sorted signature which is non void finite monotonic and circuit-like.

The following propositions are true:

- (10) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set indexed by the carrier of S, and let v be a sort symbol of S. Then every element of the sorts of Free(X)(v) is a finite decorated tree.
- (11) Let S be a non void non empty many sorted signature and let X be a non-empty locally-finite many sorted set indexed by the carrier of S. Then Free(X) is finitely-generated.
- (12) Let S be a non void non empty many sorted signature, and let A be a non-empty algebra over S, and let v be a vertex of S, and let e be an element of (the sorts of FreeEnvelope(A))(v). Suppose $v \in \text{InputVertices}(S)$. Then there exists an element x of (the sorts of A)(v) such that $e = \text{the root tree of } \langle x, v \rangle$.
- (13) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set indexed by the carrier of S, and let o be an operation symbol of S, and let p be a decorated tree yielding finite sequence. Suppose $\langle o, \text{ the carrier of } S \rangle$ -tree $(p) \in (\text{the sorts of Free}(X))(\text{the result sort of } o)$. Then len p = len Arity(o).
- (14) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set indexed by the carrier of S, and let o be an operation symbol of S, and let p be a decorated tree yielding finite sequence. Suppose $\langle o, \text{ the carrier of } S \rangle$ -tree $(p) \in (\text{the sorts of Free}(X))(\text{the result sort of } o)$. Let i be a natural number. If $i \in \text{dom Arity}(o)$, then $p(i) \in (\text{the sorts of Free}(X))(\text{Arity}(o)(i))$.

Let S be a non-void non empty many sorted signature, let X be a non-empty many sorted set indexed by the carrier of S, and let v be a vertex of S. One can check that every element of the sorts of Free(X)(v) is finite non empty function-like and relation-like.

Let S be a non-void non empty many sorted signature, let X be a non-empty many sorted set indexed by the carrier of S, and let v be a vertex of S. Note that there exists an element of the sorts of Free(X)(v) which is function-like and relation-like.

Let S be a non-void non empty many sorted signature, let X be a nonempty many sorted set indexed by the carrier of S, and let v be a vertex of S. Observe that every function-like relation-like element of the sorts of Free(X)(v)is decorated tree-like.

Let I_1 be a non-void non empty many sorted signature, let X be a non-empty many sorted set indexed by the carrier of I_1 , and let v be a vertex of I_1 . Observe that there exists an element of the sorts of Free(X)(v) which is finite.

We now state the proposition

(15) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set indexed by the carrier of S, and let v be a vertex of S, and let o be an operation symbol of S, and let e be an element of (the sorts of $\operatorname{Free}(X))(v)$. Suppose $v \in \operatorname{InnerVertices}(S)$ and $e(\varepsilon) =$ $\langle o, \text{ the carrier of } S \rangle$. Then there exists a decorated tree yielding finite sequence p such that len $p = \operatorname{len} \operatorname{Arity}(o)$ and for every natural number i such that $i \in \operatorname{dom} p$ holds $p(i) \in (\operatorname{the sorts of } \operatorname{Free}(X))(\operatorname{Arity}(o)(i))$.

Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set indexed by the carrier of S, let v be a sort symbol of S, and let e be an element of (the sorts of Free(X))(v). The functor depth(e) yielding a natural number is defined by:

(Def.14) There exists a finite decorated tree d_1 and there exists a finite tree t such that $d_1 = e$ and $t = \text{dom } d_1$ and depth(e) = height t.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
- [3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993.
- [4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [5] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [8] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [10] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.

- [11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part 1. Formalized Mathematics, 2(5):683–687, 1991.
- [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [16] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–108, 1993.
- [18] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.
- [19] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.
- [20] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67– 74, 1996.
- [22] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [23] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [28] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.
- [30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received December 13, 1994