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Summary. This article is the second in a series of four articles
(started with [20] and continued in [19,18]) about modelling circuits by
many sorted algebras.

First, we introduce some additional terminology for many sorted sig-
natures. The vertices of such signatures are divided into input vertices
and inner vertices. A many sorted signature is called circuit like if each
sort is a result sort of at most one operation. Next, we introduce some
notions for many sorted algebras and many sorted free algebras. Free
envelope of an algebra is a free algebra generated by the sorts of the al-
gebra. Evaluation of an algebra is defined as a homomorphism from the
free envelope of the algebra into the algebra. We define depth of elements
of free many sorted algebras.

A many sorted signature is said to be monotonic if every finitely gen-
erated algebra over it is locally finite (finite in each sort). Monotonic
signatures are used (see [19,18]) in modelling backbones of circuits with-
out directed cycles.

MML Identifier: MSAFREE2.

The papers [24], [28], [25], [1], [29], [12], [15], [7], [13], [5], [2], [4], [6], [3], [23],
[17], [22], [11], [21], [9], [10], [8], [14], [26], [30], [16], [27], and [20] provide the
notation and terminology for this paper.

1. Many Sorted Signatures

Let S be a many sorted signature. A vertex of S is an element of the carrier
of S.

1Partial funding for this work has been provided by: Shinshu Endowment Fund for Infor-
mation Science, NSERC Grant OGP9207, JSTF award 651-93-S009.
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Let S be a non empty many sorted signature.

The functor SortsWithConstants(S) yielding a subset of the carrier of S is
defined as follows:

(Def.1) (i) SortsWithConstants(S) = {v : v ranges over sort symbols of S, v

has constants} if S is non void,

(ii) SortsWithConstants(S) = ∅, otherwise.

Let G be a non empty many sorted signature. The functor InputVertices(G)
yields a subset of the carrier of G and is defined by:

(Def.2) InputVertices(G) = (the carrier of G) \ rng (the result sort of G).

The functor InnerVertices(G) yielding a subset of the carrier of G is defined by:

(Def.3) InnerVertices(G) = rng (the result sort of G).

Next we state several propositions:

(1) For every void non empty many sorted signature G holds
InputVertices(G) = the carrier of G.

(2) Let G be a non void non empty many sorted signature and let v be a
vertex of G. Suppose v ∈ InputVertices(G). Then it is not true that there
exists an operation symbol o of G such that the result sort of o = v.

(3) For every non empty many sorted signature G holds InputVertices(G)∪
InnerVertices(G) = the carrier of G.

(4) For every non empty many sorted signature G holds InputVertices(G)
misses InnerVertices(G).

(5) For every non empty many sorted signature G holds

SortsWithConstants(G) ⊆ InnerVertices(G).

(6) For every non empty many sorted signature G holds InputVertices(G)
misses SortsWithConstants(G).

A non empty many sorted signature has input vertices if:

(Def.4) InputVertices(it) 6= ∅.

Let us note that there exists a non empty many sorted signature which is
non void and has input vertices.

Let G be a non empty many sorted signature with input vertices. Note that
InputVertices(G) is non empty.

Let G be a non void non empty many sorted signature. Then InnerVertices(G)
is a non empty subset of the carrier of G.

Let S be a non empty many sorted signature and let M1 be a non-empty
algebra over S. A many sorted set indexed by InputVertices(S) is said to be an
input assignment of M1 if:

(Def.5) For every vertex v of S such that v ∈ InputVertices(S) holds it(v) ∈ (the
sorts of M1)(v).

Let S be a non empty many sorted signature. We say that S is circuit-like
if and only if the condition (Def.6) is satisfied.
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(Def.6) Let S ′ be a non void non empty many sorted signature. Suppose S ′ = S.

Let o1, o2 be operation symbols of S ′. If the result sort of o1 = the result
sort of o2, then o1 = o2.

Let us observe that every non empty many sorted signature which is void is
also circuit-like.

Let us note that there exists a non empty many sorted signature which is
non void circuit-like and strict.

Let I1 be a circuit-like non void non empty many sorted signature and let
v be a vertex of I1. Let us assume that v ∈ InnerVertices(I1). The action at v

yielding an operation symbol of I1 is defined as follows:

(Def.7) The result sort of the action at v = v.

2. Free Many Sorted Algebras

Next we state the proposition

(7) Let S be a non void non empty many sorted signature, and let A be an
algebra over S, and let o be an operation symbol of S, and let p be a finite
sequence. Suppose len p = len Arity(o) and for every natural number k

such that k ∈ dom p holds p(k) ∈ (the sorts of A)(πk Arity(o)). Then
p ∈ Args(o,A).

Let S be a non void non empty many sorted signature and let M1 be a
non-empty algebra over S. The functor FreeEnvelope(M1) yielding a free strict
non-empty algebra over S is defined as follows:

(Def.8) FreeEnvelope(M1) = Free(the sorts of M1).

One can prove the following proposition

(8) Let S be a non void non empty many sorted signature and let M1 be a
non-empty algebra over S. Then FreeGenerator(the sorts of M1) is a free
generator set of FreeEnvelope(M1).

Let S be a non void non empty many sorted signature and let M1 be a non-
empty algebra over S. The functor Eval(M1) yielding a many sorted function
from FreeEnvelope(M1) into M1 is defined by the conditions (Def.9).

(Def.9) (i) Eval(M1) is a homomorphism of FreeEnvelope(M1) into M1, and

(ii) for every sort symbol s of S and for arbitrary x, y such that y ∈
FreeSort(the sorts of M1, s) and y = the root tree of 〈〈x, s〉〉 and x ∈ (the
sorts of M1)(s) holds (Eval(M1))(s)(y) = x.

One can prove the following proposition

(9) Let S be a non void non empty many sorted signature and let A be a
non-empty algebra over S. Then the sorts of A is a generator set of A.

Let S be a non empty many sorted signature. An algebra over S is finitely-
generated if:
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(Def.10) (i) For every non void non empty many sorted signature S ′ such that
S′ = S and for every algebra A over S ′ such that A = it holds there exists
generator set of A which is locally-finite if S is not void,

(ii) the sorts of it is locally-finite, otherwise.

Let S be a non empty many sorted signature. An algebra over S is locally-
finite if:

(Def.11) The sorts of it is locally-finite.

Let S be a non empty many sorted signature. Observe that every non-empty
algebra over S which is locally-finite is also finitely-generated.

Let S be a non empty many sorted signature. The trivial algebra of S yields
a strict algebra over S and is defined by:

(Def.12) The sorts of the trivial algebra of S = (the carrier of S) 7−→ {0}.

Let S be a non empty many sorted signature. Observe that there exists an
algebra over S which is locally-finite non-empty and strict.

A non empty many sorted signature is monotonic if:

(Def.13) Every finitely-generated non-empty algebra over it is locally-finite.

One can verify that there exists a non empty many sorted signature which
is non void finite monotonic and circuit-like.

The following propositions are true:

(10) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be a
sort symbol of S. Then every element of the sorts of Free(X)(v) is a finite
decorated tree.

(11) Let S be a non void non empty many sorted signature and let X be
a non-empty locally-finite many sorted set indexed by the carrier of S.
Then Free(X) is finitely-generated.

(12) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let v be a vertex of S, and let e be an ele-
ment of (the sorts of FreeEnvelope(A))(v). Suppose v ∈ InputVertices(S).
Then there exists an element x of (the sorts of A)(v) such that e = the
root tree of 〈〈x, v〉〉.

(13) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of S, and let o be an
operation symbol of S, and let p be a decorated tree yielding finite se-
quence. Suppose 〈〈o, the carrier of S〉〉-tree(p) ∈ (the sorts of Free(X))(the
result sort of o). Then len p = len Arity(o).

(14) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of S, and let o be an
operation symbol of S, and let p be a decorated tree yielding finite se-
quence. Suppose 〈〈o, the carrier of S〉〉-tree(p) ∈ (the sorts of Free(X))(the
result sort of o). Let i be a natural number. If i ∈ dom Arity(o), then
p(i) ∈ (the sorts of Free(X))(Arity(o)(i)).
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Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, and let v be a vertex of S. One
can check that every element of the sorts of Free(X)(v) is finite non empty
function-like and relation-like.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, and let v be a vertex of S. Note
that there exists an element of the sorts of Free(X)(v) which is function-like and
relation-like.

Let S be a non void non empty many sorted signature, let X be a non-
empty many sorted set indexed by the carrier of S, and let v be a vertex of S.
Observe that every function-like relation-like element of the sorts of Free(X)(v)
is decorated tree-like.

Let I1 be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of I1, and let v be a vertex of I1. Observe
that there exists an element of the sorts of Free(X)(v) which is finite.

We now state the proposition

(15) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be a
vertex of S, and let o be an operation symbol of S, and let e be an element
of (the sorts of Free(X))(v). Suppose v ∈ InnerVertices(S) and e(ε) =
〈〈o, the carrier of S〉〉. Then there exists a decorated tree yielding finite
sequence p such that len p = len Arity(o) and for every natural number i

such that i ∈ dom p holds p(i) ∈ (the sorts of Free(X))(Arity(o)(i)).

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, let v be a sort symbol of S, and
let e be an element of (the sorts of Free(X))(v). The functor depth(e) yielding
a natural number is defined by:

(Def.14) There exists a finite decorated tree d1 and there exists a finite tree t

such that d1 = e and t = dom d1 and depth(e) = height t.
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‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received December 13, 1994


