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Summary. The paper is the crowning of a series of articles writ-
ten in the Mizar language, being a formalization of notions needed for
the description of the one-dimensional Lebesgue measure. The formal-
ization of the notion as classical as the Lebesgue measure determines the
powers of the PC Mizar system as a tool for the strict, precise nota-
tion and verification of the correctness of deductive theories. Following
the successive articles [6], [8], [10], [11] constructed so that the final one
should include the definition and the basic properties of the Lebesgue
measure, we observe one of the paths relatively simple in the sense of the
definition, enabling us the formal introduction of this notion. This way,
although toilsome, since such is the nature of formal theories, is greatly
instructive. It brings home the proper succession of the introduction of
the definitions of intermediate notions and points out to those elements
of the theory which determine the essence of the complexity of the notion
being introduced.

The paper includes the definition of the σ-field of Lebesgue measur-
able sets, the definition of the Lebesgue measure and the basic set of the
theorems describing its properties.

MML Identifier: MEASURE7.

The terminology and notation used in this paper are introduced in the following
articles: [21], [24], [20], [25], [14], [12], [13], [2], [19], [3], [17], [6], [8], [10], [9],
[5], [7], [18], [11], [23], [1], [4], [16], [22], and [15].

The following propositions are true:

(1) For every function F from � into � such that for every natural number
n holds F (n) = 0 � holds

∑
F = 0 � .

(2) For every function F from � into � such that F is non-negative and for
every natural number n holds F (n) ≤ (Ser F )(n).

(3) Let F , G, H be functions from � into � . Suppose G is non-negative
and H is non-negative. Suppose that for every natural number n holds
F (n) = G(n) + H(n). Let n be a natural number. Then (SerF )(n) =
(Ser G)(n) + (Ser H)(n).
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(4) Let F , G, H be functions from � into � . Suppose that for every natural
number n holds F (n) = G(n) + H(n). If G is non-negative and H is non-
negative, then

∑
F ≤

∑
G +

∑
H.

(5) Let F , G be functions from � into � . Suppose F is non-negative and for
every natural number n holds F (n) = G(n). Let n be a natural number.
Then (Ser F )(n) = (Ser G)(n).

(6) Let F , G be functions from � into � . Suppose F is non-negative and for
every natural number n holds F (n) ≤ G(n). Let n be a natural number.
Then (Ser F )(n) ≤

∑
G.

(7) For every function F from � into � such that F is non-negative and for
every natural number n holds (Ser F )(n) ≤

∑
F.

Let S be a non empty subset of � , let H be a function from S into � , and
let n be an element of S. Then H(n) is a natural number.

Let G be a function from � into � , let S be a non empty subset of � , and let
H be a function from S into � . The functor On(G,H) yields a function from �
into � and is defined as follows:

(Def.1) For every element n of � holds if n ∈ S, then (On(G,H))(n) = G(H(n))
and if n /∈ S, then (On(G,H))(n) = 0 � .

Next we state several propositions:

(8) Let G be a function from � into � . Suppose G is non-negative. Let S
be a non empty subset of � and let H be a function from S into � . Then
On(G,H) is non-negative.

(9) Let F be a function from � into � . Suppose F is non-negative. Let n,
k be natural numbers. If n ≤ k, then (Ser F )(n) ≤ (Ser F )(k).

(10) Let k be a natural number and let F be a function from � into � .
Suppose F is non-negative. Suppose that for every natural number n
such that n 6= k holds F (n) = 0 � . Then

(i) for every natural number n such that n < k holds (Ser F )(n) = 0 � ,
and

(ii) for every natural number n such that k ≤ n holds (Ser F )(n) = F (k).

(11) Let G be a function from � into � . Suppose G is non-negative. Let S
be a non empty subset of � and let H be a function from S into � . If H
is one-to-one and rng H = � , then

∑
On(G,H) ≤

∑
G.

(12) Let F , G be functions from � into � . Suppose F is non-negative and G
is non-negative. Let S be a non empty subset of � and let H be a function
from S into � . Suppose H is one-to-one and rng H = � . Suppose that
for every natural number k holds if k ∈ S, then F (k) = G(H(k)) and if
k /∈ S, then F (k) = 0 � . Then

∑
F ≤

∑
G.

Let A be a subset of � . A function from � into 2
�

is said to be an interval
covering of A if:

(Def.2) A ⊆
⋃

rng it and for every natural number n holds it(n) is an interval.

Let A be a subset of � , let F be an interval covering of A, and let n be a
natural number. Then F (n) is an interval.
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Let F be a function from � into 2
�
. A function from � into (2

�
)



is said to

be an interval covering of F if:

(Def.3) For every natural number n holds it(n) is an interval covering of F (n).

Let A be a subset of � and let F be an interval covering of A. The functor
(F ) vol yields a function from � into � and is defined by:

(Def.4) For every natural number n holds (F ) vol(n) = vol(F (n)).

The following proposition is true

(13) For every subset A of � and for every interval covering F of A holds
(F ) vol is non-negative.

Let F be a function from � into 2
�
, let H be an interval covering of F , and

let n be a natural number. Then H(n) is an interval covering of F (n).
Let F be a function from � into 2

�
and let G be an interval covering of F .

The functor (G) vol yields a function from � into � 

and is defined by:

(Def.5) For every natural number n holds (G) vol(n) = (G(n)) vol .

Let A be a subset of � and let F be an interval covering of A. The functor
vol(F ) yields a Real number and is defined as follows:

(Def.6) vol(F ) =
∑

((F ) vol).

Let F be a function from � into 2
�

and let G be an interval covering of F .
The functor vol(G) yielding a function from � into � is defined by:

(Def.7) For every natural number n holds (vol(G))(n) = vol(G(n)).

One can prove the following proposition

(14) Let F be a function from � into 2
�
, and let G be an interval covering

of F , and let n be a natural number. Then 0 � ≤ (vol(G))(n).

Let A be a subset of � . The functor Svc(A) yielding a non empty subset of
� is defined by:

(Def.8) For every Real number x holds x ∈ Svc(A) iff there exists an interval
covering F of A such that x = vol(F ).

Let A be an element of 2
�
. The functor � A yields an element of � and is

defined as follows:

(Def.9) � A = inf Svc(A).

The function OSMeas from 2
�

into � is defined by:

(Def.10) For every subset A of � holds (OSMeas)(A) = inf Svc(A).

Let F be a function from � into � and let n be a natural number. Then
F (n) is a natural number.

Let x, y be Real numbers. Then {x, y} is a subset of � .
Let H be a function from � into [: � , � :]. The functor pr1(H) yielding a

function from � into � is defined by:

(Def.11) For every element n of � there exists an element s of � such that
H(n) = 〈〈 pr1(H)(n), s〉〉.

Let H be a function from � into [: � , � :]. The functor pr2(H) yielding a
function from � into � is defined by:
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(Def.12) For every element n of � holds H(n) = 〈〈pr1(H)(n), pr2(H)(n)〉〉.

Let F be a function from � into 2
�
, let G be an interval covering of F , and

let H be a function from � into [: � , � :]. Let us assume that H is one-to-one and
rng H = [: � , � :]. The functor On(G,H) yields an interval covering of

⋃
rng F

and is defined by:

(Def.13) For every element n of � holds (On(G,H))(n) = G(pr1(H)(n))(pr2(H)(n)).

Next we state three propositions:

(15) Let H be a function from � into [: � , � :]. Suppose H is one-to-one and
rng H = [: � , � :]. Let k be a natural number. Then there exists a natural
number m such that for every function F from � into 2

�
and for every in-

terval covering G of F holds (Ser((On(G,H)) vol))(k) ≤ (Ser vol(G))(m).

(16) For every function F from � into 2
�

and for every interval covering G
of F holds inf Svc(

⋃
rng F ) ≤

∑
vol(G).

(17)1 OSMeas is a Caratheodor’s measure on � .

OSMeas is a Caratheodor’s measure on � .
The functor Lµ-σFIELD is a σ-field of subsets of � and is defined by:

(Def.14) Lµ-σFIELD = σ-Field(OSMeas).

The σ-measure Lµ on Lµ-σFIELD is defined by:

(Def.15) Lµ = σ-Meas(OSMeas).

The following propositions are true:

(18) Lµ is complete on Lµ-σFIELD.

(19) Lµ is a measure on Lµ-σFIELD.

(20) ∅ ∈ Lµ-σFIELD and � ∈ Lµ-σFIELD.

(21) For every set A such that A ∈ Lµ-σFIELD holds � \ A ∈ Lµ-σFIELD.

(22) For all sets A, B such that A ∈ Lµ-σFIELD and B ∈ Lµ-σFIELD holds
A ∪ B ∈ Lµ-σFIELD.

(23) For all sets A, B such that A ∈ Lµ-σFIELD and B ∈ Lµ-σFIELD holds
A ∩ B ∈ Lµ-σFIELD.

(24) For all sets A, B such that A ∈ Lµ-σFIELD and B ∈ Lµ-σFIELD holds
A \ B ∈ Lµ-σFIELD.

(25) For every family T of measurable sets of Lµ-σFIELD holds
⋂

T ∈
Lµ-σFIELD and

⋃
T ∈ Lµ-σFIELD.

(27)2 For every denumerable family M of subsets of � such that M ⊆
Lµ-σFIELD holds

⋂
M ∈ Lµ-σFIELD.

(28) For all elements A, B of Lµ-σFIELD such that A∩B = ∅ holds Lµ(A∪
B) = Lµ(A) + Lµ(B).

(29) For all elements A, B of Lµ-σFIELD such that A ⊆ B holds Lµ(A) ≤
Lµ(B).

1
Editiorial footnote: The repetition below is caused by the fact that the first sentence is

the translation of a Mizar theorem, and the second one – of a Mizar redefinition.
2The proposition (26) has been removed.
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(30) For all elements A, B of Lµ-σFIELD such that A ⊆ B and Lµ(A) < +∞
holds Lµ(B \ A) = Lµ(B) − Lµ(A).

(31) For all elements A, B of Lµ-σFIELD holds Lµ(A∪B) ≤ Lµ(A)+Lµ(B).

(32) Lµ is non-negative and Lµ(∅) = 0 � and for every sequence F of sepa-
rated subsets of Lµ-σFIELD holds

∑
(Lµ · F ) = Lµ(

⋃
rng F ).

(33) For every function F from � into Lµ-σFIELD such that for every ele-
ment n of � holds F (n) ⊆ F (n + 1) holds Lµ(

⋃
rng F ) = sup rng(Lµ ·F ).

(34) Let F be a function from � into Lµ-σFIELD. Suppose for every element
n of � holds F (n + 1) ⊆ F (n) and Lµ(F (0)) < +∞. Then Lµ(

⋂
rng F ) =

inf rng(Lµ · F ).

(35) Let T be a family of measurable sets of Lµ-σFIELD. Suppose that for
every set A such that A ∈ T holds A is a set of measure zero w.r.t. Lµ.
Then

⋃
T is a set of measure zero w.r.t. Lµ.

(36) Let T be a family of measurable sets of Lµ-σFIELD. Given a set A
such that A ∈ T and A is a set of measure zero w.r.t. Lµ. Then

⋂
T is a

set of measure zero w.r.t. Lµ.

(37) Let T be a family of measurable sets of Lµ-σFIELD. Suppose that for
every set A such that A ∈ T holds A is a set of measure zero w.r.t. Lµ.
Then

⋂
T is a set of measure zero w.r.t. Lµ.

(38) Let A be an element of Lµ-σFIELD and let B be a set of measure zero
w.r.t. Lµ. If A ⊆ B, then A is a set of measure zero w.r.t. Lµ.

(39) Let A, B be sets of measure zero w.r.t. Lµ. Then
(i) A ∪ B is a set of measure zero w.r.t. Lµ,
(ii) A ∩ B is a set of measure zero w.r.t. Lµ, and
(iii) A \ B is a set of measure zero w.r.t. Lµ.

(40) Let A be an element of Lµ-σFIELD and let B be a set of measure
zero w.r.t. Lµ. Then Lµ(A ∪ B) = Lµ(A) and Lµ(A ∩ B) = 0 � and
Lµ(A \ B) = Lµ(A).

(41) (i) ∅ is measurable w.r.t. Lµ,
(ii) � is measurable w.r.t. Lµ, and
(iii) for all sets A, B such that A is measurable w.r.t. Lµ and B is measur-

able w.r.t. Lµ holds � \A is measurable w.r.t. Lµ and A∪B is measurable
w.r.t. Lµ and A ∩ B is measurable w.r.t. Lµ.

(42) Let T be a denumerable family of subsets of � . Suppose that for every
set A such that A ∈ T holds A is measurable w.r.t. Lµ. Then

⋃
T is

measurable w.r.t. Lµ and
⋂

T is measurable w.r.t. Lµ.
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