Some Properties of Restrictions of Finite Sequences

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. The aim of the paper is to define some basic notions of restrictions of finite sequences.

MML Identifier: FINSEQ_5.

The notation and terminology used in this paper are introduced in the following papers: [12], [15], [11], [14], [9], [2], [16], [5], [6], [3], [13], [1], [4], [7], [10], and [8].

In this paper i, j, k, k_{1}, k_{2}, n are natural numbers.
The following propositions are true:
(1) If $i \leq n$, then $(n-i)+1$ is a natural number.
(2) If $i \in \operatorname{Seg} n$, then $(n-i)+1 \in \operatorname{Seg} n$.
(3) For every function f and for arbitrary x, y such that $f^{-1}\{y\}=\{x\}$ holds $x \in \operatorname{dom} f$ and $y \in \operatorname{rng} f$ and $f(x)=y$.
(4) For every function f holds f is one-to-one iff for arbitrary x such that $x \in \operatorname{dom} f$ holds $f^{-1}\{f(x)\}=\{x\}$.
(5) For every function f and for arbitrary y_{1}, y_{2} such that f is one-to-one and $y_{1} \in \operatorname{rng} f$ and $y_{2} \in \operatorname{rng} f$ and $f^{-1}\left\{y_{1}\right\}=f^{-1}\left\{y_{2}\right\}$ holds $y_{1}=y_{2}$.
Let x be arbitrary. Note that $\langle x\rangle$ is non empty.
Let us note that every set which is empty is also trivial.
Let x be arbitrary. Note that $\langle x\rangle$ is trivial. Let y be arbitrary. Observe that $\langle x, y\rangle$ is non trivial.

One can verify that there exists a finite sequence which is one-to-one and non empty.

Next we state three propositions:
(6) For every non empty finite sequence f holds $1 \in \operatorname{dom} f$ and len $f \in$ $\operatorname{dom} f$.
(7) For every non empty finite sequence f there exists i such that $i+1=$ len f.
(8) For arbitrary x and for every finite sequence f holds len $(\langle x\rangle \sim f)=$ $1+\operatorname{len} f$.
The scheme domSeqLambda concerns a natural number \mathcal{A} and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a finite sequence p such that $\operatorname{len} p=\mathcal{A}$ and for every
k such that $k \in \operatorname{dom} p$ holds $p(k)=\mathcal{F}(k)$
for all values of the parameters.
We now state four propositions:
(9) For every set X such that $X \subseteq \operatorname{Seg} n$ and $1 \leq i$ and $i \leq j$ and $j \leq$ len $\operatorname{Sgm} X$ and $k_{1}=(\operatorname{Sgm} X)(i)$ and $k_{2}=(\operatorname{Sgm} X)(j)$ holds $k_{1} \leq k_{2}$.
(10) For every finite sequence f and for arbitrary p, q such that $p \in \operatorname{rng} f$ and $q \in \operatorname{rng} f$ and $p \leftarrow f=q \leftrightarrow f$ holds $p=q$.
(11) For all finite sequences f, g such that $n+1 \in \operatorname{dom} f$ and $g=f \upharpoonright \operatorname{Seg} n$ holds $f \upharpoonright \operatorname{Seg}(n+1)=g^{\wedge}\langle f(n+1)\rangle$.
(12) For every one-to-one finite sequence f such that $i \in \operatorname{dom} f$ holds $f(i) \leftarrow$ $f=i$.
We adopt the following rules: D is a non empty set, p, q are elements of D, and f, g are finite sequences of elements of D.

Let us consider D. One can verify that there exists a finite sequence of elements of D which is one-to-one and non empty.

One can prove the following propositions:
(13) If $\operatorname{dom} f=\operatorname{dom} g$ and for every i such that $i \in \operatorname{dom} f$ holds $\pi_{i} f=\pi_{i} g$, then $f=g$.
(14) If len $f=\operatorname{len} g$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} f$ holds $\pi_{k} f=\pi_{k} g$, then $f=g$.
(15) If len $f=1$, then $f=\left\langle\pi_{1} f\right\rangle$.
(16) $\left.\quad \pi_{1}(\langle p\rangle\rangle^{\wedge} f\right)=p$.
$(18)^{1} \quad \operatorname{len}(f \upharpoonright i) \leq \operatorname{len} f$.
(19) $\quad \operatorname{len}(f \upharpoonright i) \leq i$.
(20) $\operatorname{dom}(f \upharpoonright i) \subseteq \operatorname{dom} f$.
(21) $\quad \operatorname{rng}(f \upharpoonright i) \subseteq \operatorname{rng} f$.

Let us consider D, f. Observe that $f \upharpoonright 0$ is empty.
Next we state three propositions:
(22) If len $f \leq i$, then $f \upharpoonright i=f$.
(23) If f is non empty, then $f \upharpoonright 1=\left\langle\pi_{1} f\right\rangle$.
(24) If $i+1=\operatorname{len} f$, then $f=(f \upharpoonright i)^{\wedge}\left\langle\pi_{\operatorname{len} f} f\right\rangle$.

Let us consider i, D and let f be an one-to-one finite sequence of elements of D. One can verify that $f \upharpoonright i$ is one-to-one.

[^0]The following propositions are true:
(25) If $i \leq \operatorname{len} f$, then $\left(f^{\wedge} g\right) \upharpoonright i=f \upharpoonright i$.
(27) If $p \in \operatorname{rng} f$, then $(f \leftarrow p)^{\wedge}\langle p\rangle=f \upharpoonright p \leftrightarrow f$.
(28) $\operatorname{len}\left(f_{\text {li }}\right) \leq \operatorname{len} f$.
(29) If $i \in \operatorname{dom}\left(f_{\llcorner n}\right)$, then $n+i \in \operatorname{dom} f$.
(30) If $i \in \operatorname{dom}\left(f_{\mathfrak{~} n}\right)$, then $\pi_{i} f_{\mathfrak{l n}}=\pi_{n+i} f$.
(31) $f_{l 0}=f$.
(32) If f is non empty, then $f=\left\langle\pi_{1} f\right\rangle \sim\left(f_{l 1}\right)$.
(33) If $i+1=\operatorname{len} f$, then $f_{l i}=\left\langle\pi_{\operatorname{len} f} f\right\rangle$.
(34) If $j+1=i$ and $i \in \operatorname{dom} f$, then $\left\langle\pi_{i} f\right\rangle \wedge\left(f_{1 i}\right)=f_{1 j}$.
(35) If len $f \leq i$, then $f_{l i}$ is empty.

$$
\begin{equation*}
\operatorname{rng}\left(f_{l n}\right) \subseteq \operatorname{rng} f \tag{36}
\end{equation*}
$$

Let us consider i, D and let f be an one-to-one finite sequence of elements of D. Note that $f_{l i}$ is one-to-one.

The following propositions are true:
(37) If f is one-to-one, then $\operatorname{rng}(f \upharpoonright n) \operatorname{misses} \operatorname{rng}\left(f_{\text {ln }}\right)$.
(38) If $p \in \operatorname{rng} f$, then $f \rightarrow p=f_{\lfloor p ゃ f f}$.
(39) $\quad\left(f^{\wedge} g\right)_{\text {len } f+i}=g_{l i}$.
(40) $\quad(f \wedge g)_{\text {len } f}=g$.
(41) If $p \in \operatorname{rng} f$, then $\pi_{p \leftrightarrow \& f} f=p$.
(42) If $i \in \operatorname{dom} f$, then $\left(\pi_{i} f\right) \leftrightarrow f \leq i$.
(43) If $p \in \operatorname{rng}(f \upharpoonright i)$, then $p \leftrightarrow(f \upharpoonright i)=p \leftrightarrow f$.
(44) If $i \in \operatorname{dom} f$ and f is one-to-one, then $\left(\pi_{i} f\right) \leftrightarrow f=i$.

Let us consider D, f and let p be arbitrary. The functor $f-: p$ yielding a finite sequence of elements of D is defined as follows:
(Def.1) $\quad f-: p=f \upharpoonright p \leftrightarrow f$.
One can prove the following propositions:
(45) If $p \in \operatorname{rng} f$, then $\operatorname{len}(f-: p)=p \leftrightarrow f$.
(46) If $p \in \operatorname{rng} f$ and $i \in \operatorname{Seg}(p \leftrightarrow f)$, then $\pi_{i}(f-: p)=\pi_{i} f$.
(47) If $p \in \operatorname{rng} f$, then $\pi_{1}(f-: p)=\pi_{1} f$.
(48) If $p \in \operatorname{rng} f$, then $\pi_{p \leftrightarrow \leftarrow f}(f-: p)=p$.
(49) If $q \in \operatorname{rng} f$ and $p \in \operatorname{rng} f$ and $q \leftrightarrow f \leq p \leftrightarrow f$, then $q \in \operatorname{rng}(f-: p)$.
(50) If $p \in \operatorname{rng} f$, then $f-: p$ is non empty.
(51) $\quad \operatorname{rng}(f-: p) \subseteq \operatorname{rng} f$.

Let us consider D, p and let f be an one-to-one finite sequence of elements of D. Observe that $f-: p$ is one-to-one.

Let us consider D, f, p. The functor $f:-p$ yielding a finite sequence of elements of D is defined by:
(Def.2) $\quad f:-p=\langle p\rangle \sim\left(f_{\lfloor p \not p f}\right)$.

We now state three propositions:
(52) If $p \in \operatorname{rng} f$, then there exists i such that $i+1=p \leftrightarrow f$ and $f:-p=f_{l i}$.
(54) If $p \in \operatorname{rng} f$ and $j+1 \in \operatorname{dom}(f:-p)$, then $j+p \leftrightarrow f \in \operatorname{dom} f$.

Let us consider D, p, f. One can check that $f:-p$ is non empty.
Next we state several propositions:
(55) If $p \in \operatorname{rng} f$ and $j+1 \in \operatorname{dom}(f:-p)$, then $\pi_{j+1}(f:-p)=\pi_{j+p \nleftarrow f} f$.
(57) If $p \in \operatorname{rng} f$, then $\pi_{\operatorname{len}(f:-p)}(f:-p)=\pi_{\operatorname{len} f} f$.
(58) If $p \in \operatorname{rng} f$, then $\operatorname{rng}(f:-p) \subseteq \operatorname{rng} f$.
(59) If $p \in \operatorname{rng} f$ and f is one-to-one, then $f:-p$ is one-to-one.

Let f be a finite sequence. The functor $\operatorname{Rev}(f)$ yielding a finite sequence is defined by:
(Def.3) len $\operatorname{Rev}(f)=\operatorname{len} f$ and for every i such that $i \in \operatorname{dom} \operatorname{Rev}(f)$ holds $(\operatorname{Rev}(f))(i)=f((\operatorname{len} f-i)+1)$.
One can prove the following propositions:
(60) For every finite sequence f holds $\operatorname{dom} f=\operatorname{dom} \operatorname{Rev}(f)$ and $\operatorname{rng} f=$ $\mathrm{rng} \operatorname{Rev}(f)$.
(61) For every finite sequence f such that $i \in \operatorname{dom} f$ holds $(\operatorname{Rev}(f))(i)=$ $f((\operatorname{len} f-i)+1)$.
(62) For every finite sequence f and for all natural numbers i, j such that $i \in \operatorname{dom} f$ and $i+j=\operatorname{len} f+1$ holds $j \in \operatorname{dom} \operatorname{Rev}(f)$.
Let f be an empty finite sequence. Observe that $\operatorname{Rev}(f)$ is empty.
Next we state three propositions:
(63) For arbitrary x holds $\operatorname{Rev}(\langle x\rangle)=\langle x\rangle$.
(64) For arbitrary x_{1}, x_{2} holds $\operatorname{Rev}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{2}, x_{1}\right\rangle$.
(65) For every non empty finite sequence f holds $f(1)=(\operatorname{Rev}(f))(\operatorname{len} f)$ and $f(\operatorname{len} f)=(\operatorname{Rev}(f))(1)$.
Let f be an one-to-one finite sequence. Note that $\operatorname{Rev}(f)$ is one-to-one.
The following two propositions are true:
(66) For every finite sequence f and for arbitrary x holds $\operatorname{Rev}\left(f^{\wedge}\langle x\rangle\right)=$ $\langle x\rangle \wedge \operatorname{Rev}(f)$.
(67) For all finite sequences f, g holds $\operatorname{Rev}(f \wedge g)=(\operatorname{Rev}(g)) \wedge \operatorname{Rev}(f)$.

Let us consider D, f. Then $\operatorname{Rev}(f)$ is a finite sequence of elements of D.
We now state two propositions:
(68) If f is non empty, then $\pi_{1} f=\pi_{\operatorname{len} f} \operatorname{Rev}(f)$ and $\pi_{\operatorname{len} f} f=\pi_{1} \operatorname{Rev}(f)$.
(69) If $i \in \operatorname{dom} f$ and $i+j=\operatorname{len} f+1$, then $\pi_{i} f=\pi_{j} \operatorname{Rev}(f)$.

Let us consider D, f, p, n. The functor $\operatorname{Ins}(f, n, p)$ yielding a finite sequence of elements of D is defined as follows:
(Def.4) $\operatorname{Ins}(f, n, p)=(f \upharpoonright n)^{\wedge}\langle p\rangle \wedge\left(f_{\text {ln }}\right)$.

One can prove the following propositions:
(70) $\operatorname{Ins}(f, 0, p)=\langle p\rangle{ }^{\wedge} f$.

$$
\begin{equation*}
\operatorname{len} \operatorname{Ins}(f, n, p)=\operatorname{len} f+1 \tag{72}
\end{equation*}
$$

$$
\begin{equation*}
\text { If len } f \leq n \text {, then } \operatorname{Ins}(f, n, p)=f^{\wedge}\langle p\rangle \text {. } \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} \operatorname{Ins}(f, n, p)=\{p\} \cup \operatorname{rng} f \tag{73}
\end{equation*}
$$

Let us consider D, f, n, p. Observe that $\operatorname{Ins}(f, n, p)$ is non empty.
The following propositions are true:
(74) $p \in \operatorname{rng} \operatorname{Ins}(f, n, p)$.

If $i \in \operatorname{dom}(f \upharpoonright n)$, then $\pi_{i} \operatorname{Ins}(f, n, p)=\pi_{i} f$.
If $n \leq \operatorname{len} f$, then $\pi_{n+1} \operatorname{Ins}(f, n, p)=p$.
If $n+1 \leq i$ and $i \leq \operatorname{len} f$, then $\pi_{i+1} \operatorname{Ins}(f, n, p)=\pi_{i} f$.
If $1 \leq n$ and f is non empty, then $\pi_{1} \operatorname{Ins}(f, n, p)=\pi_{1} f$.
(79) If f is one-to-one and $p \notin \operatorname{rng} f$, then $\operatorname{Ins}(f, n, p)$ is one-to-one.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 25, 1995

[^0]: ${ }^{1}$ The proposition (17) has been removed.

