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Summary. The aim of the paper is to define some basic notions
of restrictions of finite sequences.
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The notation and terminology used in this paper are introduced in the following
papers: [12], [15], [11], [14], [9], [2], [16], [5], [6], [3], [13], [1], [4], [7], [10], and
[8].

In this paper i, j, k, k1, k2, n are natural numbers.
The following propositions are true:

(1) If i ≤ n, then (n − i) + 1 is a natural number.

(2) If i ∈ Seg n, then (n− i) + 1 ∈ Seg n.

(3) For every function f and for arbitrary x, y such that f −1 {y} = {x}
holds x ∈ dom f and y ∈ rng f and f(x) = y.

(4) For every function f holds f is one-to-one iff for arbitrary x such that
x ∈ dom f holds f −1 {f(x)} = {x}.

(5) For every function f and for arbitrary y1, y2 such that f is one-to-one
and y1 ∈ rng f and y2 ∈ rng f and f −1 {y1} = f −1 {y2} holds y1 = y2.

Let x be arbitrary. Note that 〈x〉 is non empty.
Let us note that every set which is empty is also trivial.
Let x be arbitrary. Note that 〈x〉 is trivial. Let y be arbitrary. Observe that

〈x, y〉 is non trivial.
One can verify that there exists a finite sequence which is one-to-one and

non empty.
Next we state three propositions:

(6) For every non empty finite sequence f holds 1 ∈ dom f and len f ∈
dom f.
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(7) For every non empty finite sequence f there exists i such that i + 1 =
len f.

(8) For arbitrary x and for every finite sequence f holds len(〈x〉 � f) =
1 + len f.

The scheme domSeqLambda concerns a natural numberA and a unary functor
F yielding arbitrary, and states that:

There exists a finite sequence p such that len p = A and for every
k such that k ∈ dom p holds p(k) = F(k)

for all values of the parameters.
We now state four propositions:

(9) For every set X such that X ⊆ Seg n and 1 ≤ i and i ≤ j and j ≤
len SgmX and k1 = (Sgm X)(i) and k2 = (Sgm X)(j) holds k1 ≤ k2.

(10) For every finite sequence f and for arbitrary p, q such that p ∈ rng f
and q ∈ rng f and p � f = q � f holds p = q.

(11) For all finite sequences f , g such that n + 1 ∈ dom f and g = f
�
Seg n

holds f
�
Seg(n + 1) = g � 〈f(n + 1)〉.

(12) For every one-to-one finite sequence f such that i ∈ dom f holds f(i) �
f = i.

We adopt the following rules: D is a non empty set, p, q are elements of D,
and f , g are finite sequences of elements of D.

Let us consider D. One can verify that there exists a finite sequence of
elements of D which is one-to-one and non empty.

One can prove the following propositions:

(13) If dom f = dom g and for every i such that i ∈ dom f holds πif = πig,
then f = g.

(14) If len f = len g and for every k such that 1 ≤ k and k ≤ len f holds
πkf = πkg, then f = g.

(15) If len f = 1, then f = 〈π1f〉.

(16) π1(〈p〉 � f) = p.

(18)1 len(f
�
i) ≤ len f.

(19) len(f
�
i) ≤ i.

(20) dom(f
�
i) ⊆ dom f.

(21) rng(f
�
i) ⊆ rng f.

Let us consider D, f . Observe that f
�
0 is empty.

Next we state three propositions:

(22) If len f ≤ i, then f
�
i = f.

(23) If f is non empty, then f
�
1 = 〈π1f〉.

(24) If i + 1 = len f, then f = (f
�
i) � 〈πlen ff〉.

Let us consider i, D and let f be an one-to-one finite sequence of elements
of D. One can verify that f

�
i is one-to-one.

1The proposition (17) has been removed.
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The following propositions are true:

(25) If i ≤ len f, then (f � g)
�
i = f

�
i.

(26) (f � g)
�
len f = f.

(27) If p ∈ rng f, then (f ← p) � 〈p〉 = f
�
p � f.

(28) len(f  i) ≤ len f.

(29) If i ∈ dom(f  n), then n + i ∈ dom f.

(30) If i ∈ dom(f  n), then πif  n = πn+if.

(31) f  0 = f.

(32) If f is non empty, then f = 〈π1f〉 � (f  1 ).

(33) If i + 1 = len f, then f  i = 〈πlen ff〉.

(34) If j + 1 = i and i ∈ dom f, then 〈πif〉 � (f  i) = f  j .
(35) If len f ≤ i, then f  i is empty.

(36) rng(f  n) ⊆ rng f.

Let us consider i, D and let f be an one-to-one finite sequence of elements
of D. Note that f  i is one-to-one.

The following propositions are true:

(37) If f is one-to-one, then rng(f
�
n) misses rng(f  n).

(38) If p ∈ rng f, then f → p = f  p � f .

(39) (f � g)  len f+i = g  i .
(40) (f � g)  len f = g.

(41) If p ∈ rng f, then πp � f f = p.

(42) If i ∈ dom f, then (πif) � f ≤ i.

(43) If p ∈ rng(f
�
i), then p � (f

�
i) = p � f.

(44) If i ∈ dom f and f is one-to-one, then (πif) � f = i.

Let us consider D, f and let p be arbitrary. The functor f −: p yielding a
finite sequence of elements of D is defined as follows:

(Def.1) f −: p = f
�
p � f.

One can prove the following propositions:

(45) If p ∈ rng f, then len(f −: p) = p � f.

(46) If p ∈ rng f and i ∈ Seg(p � f), then πi(f −: p) = πif.

(47) If p ∈ rng f, then π1(f −: p) = π1f.

(48) If p ∈ rng f, then πp � f (f −: p) = p.

(49) If q ∈ rng f and p ∈ rng f and q � f ≤ p � f, then q ∈ rng(f −: p).

(50) If p ∈ rng f, then f −: p is non empty.

(51) rng(f −: p) ⊆ rng f.

Let us consider D, p and let f be an one-to-one finite sequence of elements
of D. Observe that f −: p is one-to-one.

Let us consider D, f , p. The functor f :− p yielding a finite sequence of
elements of D is defined by:

(Def.2) f :− p = 〈p〉 � (f  p � f ).
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We now state three propositions:

(52) If p ∈ rng f, then there exists i such that i+1 = p � f and f :−p = f  i .
(53) If p ∈ rng f, then len(f :− p) = (len f − p � f) + 1.

(54) If p ∈ rng f and j + 1 ∈ dom(f :− p), then j + p � f ∈ dom f.

Let us consider D, p, f . One can check that f :− p is non empty.
Next we state several propositions:

(55) If p ∈ rng f and j + 1 ∈ dom(f :− p), then πj+1(f :− p) = πj+p � f f.

(56) π1(f :− p) = p.

(57) If p ∈ rng f, then πlen(f :−p)(f :− p) = πlen ff.

(58) If p ∈ rng f, then rng(f :− p) ⊆ rng f.

(59) If p ∈ rng f and f is one-to-one, then f :− p is one-to-one.

Let f be a finite sequence. The functor Rev(f) yielding a finite sequence is
defined by:

(Def.3) len Rev(f) = len f and for every i such that i ∈ dom Rev(f) holds
(Rev(f))(i) = f((len f − i) + 1).

One can prove the following propositions:

(60) For every finite sequence f holds dom f = dom Rev(f) and rng f =
rng Rev(f).

(61) For every finite sequence f such that i ∈ dom f holds (Rev(f))(i) =
f((len f − i) + 1).

(62) For every finite sequence f and for all natural numbers i, j such that
i ∈ dom f and i + j = len f + 1 holds j ∈ dom Rev(f).

Let f be an empty finite sequence. Observe that Rev(f) is empty.
Next we state three propositions:

(63) For arbitrary x holds Rev(〈x〉) = 〈x〉.

(64) For arbitrary x1, x2 holds Rev(〈x1, x2〉) = 〈x2, x1〉.

(65) For every non empty finite sequence f holds f(1) = (Rev(f))(len f) and
f(len f) = (Rev(f))(1).

Let f be an one-to-one finite sequence. Note that Rev(f) is one-to-one.
The following two propositions are true:

(66) For every finite sequence f and for arbitrary x holds Rev(f � 〈x〉) =
〈x〉 � Rev(f).

(67) For all finite sequences f , g holds Rev(f � g) = (Rev(g)) � Rev(f).

Let us consider D, f . Then Rev(f) is a finite sequence of elements of D.
We now state two propositions:

(68) If f is non empty, then π1f = πlen f Rev(f) and πlen ff = π1 Rev(f).

(69) If i ∈ dom f and i + j = len f + 1, then πif = πj Rev(f).

Let us consider D, f , p, n. The functor Ins(f, n, p) yielding a finite sequence
of elements of D is defined as follows:

(Def.4) Ins(f, n, p) = (f
�
n) � 〈p〉 � (f  n).
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One can prove the following propositions:

(70) Ins(f, 0, p) = 〈p〉 � f.

(71) If len f ≤ n, then Ins(f, n, p) = f � 〈p〉.
(72) len Ins(f, n, p) = len f + 1.

(73) rng Ins(f, n, p) = {p} ∪ rng f.

Let us consider D, f , n, p. Observe that Ins(f, n, p) is non empty.
The following propositions are true:

(74) p ∈ rng Ins(f, n, p).

(75) If i ∈ dom(f
�
n), then πi Ins(f, n, p) = πif.

(76) If n ≤ len f, then πn+1 Ins(f, n, p) = p.

(77) If n + 1 ≤ i and i ≤ len f, then πi+1 Ins(f, n, p) = πif.

(78) If 1 ≤ n and f is non empty, then π1 Ins(f, n, p) = π1f.

(79) If f is one-to-one and p /∈ rng f, then Ins(f, n, p) is one-to-one.
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