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Summary. The dual concept to filters (see [2,3]) i.e. ideals of a
lattice is introduced.

MML Identifier: FILTER 2.

The articles [12], [14], [13], [4], [15], [6], [10], [9], [7], [5], [16], [8], [2], [11], [3],
and [1] provide the notation and terminology for this paper.

1. Some Properties of the Restriction of Binary Operations

In this paper D is a non empty set.
We now state several propositions:

(1) Let D be a non empty set, and let S be a non empty subset of D, and
let f be a binary operation on D, and let g be a binary operation on S.
Suppose g = f

�
[: S, S :]. Then

(i) if f is commutative, then g is commutative,
(ii) if f is idempotent, then g is idempotent, and
(iii) if f is associative, then g is associative.

(2) Let D be a non empty set, and let S be a non empty subset of D, and
let f be a binary operation on D, and let g be a binary operation on S,
and let d be an element of D, and let d′ be an element of S. Suppose
g = f

�
[:S, S :] and d′ = d. Then

(i) if d is a left unity w.r.t. f , then d′ is a left unity w.r.t. g,
(ii) if d is a right unity w.r.t. f , then d′ is a right unity w.r.t. g, and
(iii) if d is a unity w.r.t. f , then d′ is a unity w.r.t. g.

(3) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, f2 be binary operations on D, and let g1, g2 be binary operations
on S. Suppose g1 = f1

�
[: S, S :] and g2 = f2

�
[:S, S :]. Then
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(i) if f1 is left distributive w.r.t. f2, then g1 is left distributive w.r.t. g2,
and

(ii) if f1 is right distributive w.r.t. f2, then g1 is right distributive w.r.t.
g2.

(4) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, f2 be binary operations on D, and let g1, g2 be binary operations
on S. Suppose g1 = f1

�
[:S, S :] and g2 = f2

�
[:S, S :]. If f1 is distributive

w.r.t. f2, then g1 is distributive w.r.t. g2.

(5) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, f2 be binary operations on D, and let g1, g2 be binary operations
on S. If g1 = f1

�
[:S, S :] and g2 = f2

�
[: S, S :], then if f1 absorbs f2, then

g1 absorbs g2.

2. Closed Subsets of a Lattice

Let D be a non empty set and let X1, X2 be subsets of D. Let us observe
that X1 = X2 if and only if:

(Def.1) For every element x of D holds x ∈ X1 iff x ∈ X2.

For simplicity we follow the rules: L will denote a lattice, p, q, r will denote
elements of the carrier of L, p′, q′ will denote elements of the carrier of L◦, and
x will be arbitrary.

Next we state several propositions:

(6) Let L1, L2 be lattice structures. Suppose the lattice structure of L1 =
the lattice structure of L2. Then L1

◦ = L2
◦.

(7) (L◦)◦ = the lattice structure of L.

(8) Let L1, L2 be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of L2. Let a1, b1 be elements of the
carrier of L1 and let a2, b2 be elements of the carrier of L2. Suppose
a1 = a2 and b1 = b2. Then a1 ⊔ b1 = a2 ⊔ b2 and a1 ⊓ b1 = a2 ⊓ b2 and
a1 ⊑ b1 iff a2 ⊑ b2.

(9) Let L1, L2 be lower bound lattices. Suppose the lattice structure of
L1 = the lattice structure of L2. Then ⊥(L1) = ⊥(L2).

(10) Let L1, L2 be upper bound lattices. Suppose the lattice structure of
L1 = the lattice structure of L2. Then ⊤(L1) = ⊤(L2).

(11) Let L1, L2 be complemented lattices. Suppose the lattice structure of
L1 = the lattice structure of L2. Let a1, b1 be elements of the carrier of
L1 and let a2, b2 be elements of the carrier of L2. If a1 = a2 and b1 = b2

and a1 is a complement of b1, then a2 is a complement of b2.

(12) Let L1, L2 be Boolean lattices. Suppose the lattice structure of L1 = the
lattice structure of L2. Let a be an element of the carrier of L1 and let b
be an element of the carrier of L2. If a = b, then ac = bc.
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Let us consider L. A subset of the carrier of L is said to be a closed subset
of L if:

(Def.2) For all p, q such that p ∈ it and q ∈ it holds p ⊓ q ∈ it and p ⊔ q ∈ it.

Let us consider L. Observe that there exists a closed subset of L which is
non empty.

The following two propositions are true:

(13) Let X be a subset of the carrier of L. Suppose that for all p, q holds
p ∈ X and q ∈ X iff p ⊓ q ∈ X. Then X is a closed subset of L.

(14) Let X be a subset of the carrier of L. Suppose that for all p, q holds
p ∈ X and q ∈ X iff p ⊔ q ∈ X. Then X is a closed subset of L.

Let us consider L. Then [L) is a filter of L. Let p be an element of the carrier
of L. Then [p) is a filter of L.

Let us consider L and let D be a non empty subset of the carrier of L. Then
[D) is a filter of L.

Let L be a distributive lattice and let F1, F2 be filters of L. Then F1 ⊓F2 is
a filter of L.

Let us consider L. A non empty closed subset of L is called an ideal of L if:

(Def.3) p ∈ it and q ∈ it iff p ⊔ q ∈ it.

Next we state three propositions:

(15) Let X be a non empty subset of the carrier of L. Suppose that for all
p, q holds p ∈ X and q ∈ X iff p ⊔ q ∈ X. Then X is an ideal of L.

(16) Let L1, L2 be lattices. Suppose the lattice structure of L1 = the lattice
structure of L2. Given x. If x is a filter of L1, then x is a filter of L2.

(17) Let L1, L2 be lattices. Suppose the lattice structure of L1 = the lattice
structure of L2. Given x. If x is an ideal of L1, then x is an ideal of L2.

Let us consider L, p. The functor p◦ yielding an element of the carrier of L◦

is defined by:

(Def.4) p◦ = p.

Let us consider L and let p be an element of the carrier of L◦. The functor
◦p yields an element of the carrier of L and is defined as follows:

(Def.5) ◦p = p.

Next we state four propositions:

(18) ◦p◦ = p and (◦p′)◦ = p′.

(19) p⊓q = p◦⊔q◦ and p⊔q = p◦⊓q◦ and p′⊓q′ = ◦p′⊔◦q′ and p′⊔q′ = ◦p′⊓◦q′.

(20) p ⊑ q iff q◦ ⊑ p◦ and p′ ⊑ q′ iff ◦q′ ⊑ ◦p′.

(21) x is an ideal of L iff x is a filter of L◦.

Let us consider L and let X be a subset of the carrier of L. The functor X ◦

yielding a subset of the carrier of L◦ is defined as follows:

(Def.6) X◦ = X.

Let us consider L and let X be a subset of the carrier of L◦. The functor ◦X
yielding a subset of the carrier of L is defined by:
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(Def.7) ◦X = X.

Let us consider L and let D be a non empty subset of the carrier of L.
Observe that D◦ is non empty.

Let us consider L and let D be a non empty subset of the carrier of L◦.
Observe that ◦D is non empty.

Let us consider L and let S be a closed subset of L. Then S◦ is a closed
subset of L◦.

Let us consider L and let S be a non empty closed subset of L. Then S◦ is
a non empty closed subset of L◦.

Let us consider L and let S be a closed subset of L◦. Then ◦S is a closed
subset of L.

Let us consider L and let S be a non empty closed subset of L◦. Then ◦S is
a non empty closed subset of L.

Let us consider L and let F be a filter of L. Then F ◦ is an ideal of L◦.
Let us consider L and let F be a filter of L◦. Then ◦F is an ideal of L.
Let us consider L and let I be an ideal of L. Then I◦ is a filter of L◦.
Let us consider L and let I be an ideal of L◦. Then ◦I is a filter of L.
We now state the proposition

(22) Let D be a non empty subset of the carrier of L. Then D is an ideal of
L if and only if the following conditions are satisfied:

(i) for all p, q such that p ∈ D and q ∈ D holds p ⊔ q ∈ D, and
(ii) for all p, q such that p ∈ D and q ⊑ p holds q ∈ D.

In the sequel I, J will be ideals of L and F will be a filter of L.
One can prove the following propositions:

(23) If p ∈ I, then p ⊓ q ∈ I and q ⊓ p ∈ I.

(24) There exists p such that p ∈ I.

(25) If L is lower-bounded, then ⊥L ∈ I.

(26) If L is lower-bounded, then {⊥L} is an ideal of L.

(27) If {p} is an ideal of L, then L is lower-bounded.

3. Ideals Generated by Subsets of a Lattice

Next we state the proposition

(28) The carrier of L is an ideal of L.

Let us consider L. The functor (L] yielding an ideal of L is defined as follows:

(Def.8) (L] = the carrier of L.

Let us consider L, p. The functor (p] yields an ideal of L and is defined as
follows:

(Def.9) (p] = {q : q ⊑ p}.

We now state four propositions:

(29) q ∈ (p] iff q ⊑ p.
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(30) (p] = [p◦) and (p◦] = [p).

(31) p ∈ (p] and p ⊓ q ∈ (p] and q ⊓ p ∈ (p].

(32) If L is upper-bounded, then (L] = (⊤L].

Let us consider L, I. We say that I is maximal if and only if:

(Def.10) I 6= the carrier of L and for every J such that I ⊆ J and J 6= the carrier
of L holds I = J.

One can prove the following four propositions:

(33) I is maximal iff I◦ is an ultrafilter.

(34) If L is upper-bounded, then for every I such that I 6= the carrier of L
there exists J such that I ⊆ J and J is maximal.

(35) If there exists r such that p ⊔ r 6= p, then (p] 6= the carrier of L.

(36) If L is upper-bounded and p 6= ⊤L, then there exists I such that p ∈ I
and I is maximal.

In the sequel D denotes a non empty subset of the carrier of L and D ′ denotes
a non empty subset of the carrier of L◦.

Let us consider L, D. The functor (D] yields an ideal of L and is defined as
follows:

(Def.11) D ⊆ (D] and for every I such that D ⊆ I holds (D] ⊆ I.

We now state two propositions:

(37) [D◦) = (D] and [D) = (D◦] and [◦D′) = (D′] and [D′) = (◦D′].

(38) (I] = I.

In the sequel D1, D2 are non empty subsets of the carrier of L and D ′

1, D′

2

are non empty subsets of the carrier of L◦.
The following propositions are true:

(39) If D1 ⊆ D2, then (D1] ⊆ (D2] and ((D]] ⊆ (D].

(40) If p ∈ D, then (p] ⊆ (D].

(41) If D = {p}, then (D] = (p].

(42) If L is upper-bounded and ⊤L ∈ D, then (D] = (L] and (D] = the
carrier of L.

(43) If L is upper-bounded and ⊤L ∈ I, then I = (L] and I = the carrier of
L.

Let us consider L, I. We say that I is prime if and only if:

(Def.12) p ⊓ q ∈ I iff p ∈ I or q ∈ I.

The following proposition is true

(44) I is prime iff I◦ is prime.

Let us consider L, D1, D2. The functor D1⊔D2 yielding a non empty subset
of the carrier of L is defined by:

(Def.13) D1 ⊔ D2 = {p ⊔ q : p ∈ D1 ∧ q ∈ D2}.

We now state four propositions:
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(45) D1⊔D2 = D1
◦⊓D2

◦ and D1
◦⊔D2

◦ = D1⊓D2 and D′

1⊔D′

2 = ◦D′

1⊓
◦D′

2

and ◦D′

1 ⊔
◦D′

2 = D′

1 ⊓ D′

2.

(46) If p ∈ D1 and q ∈ D2, then p ⊔ q ∈ D1 ⊔ D2 and q ⊔ p ∈ D1 ⊔ D2.

(47) If x ∈ D1 ⊔ D2, then there exist p, q such that x = p ⊔ q and p ∈ D1

and q ∈ D2.

(48) D1 ⊔ D2 = D2 ⊔ D1.

Let L be a distributive lattice and let I1, I2 be ideals of L. Then I1 ⊔ I2 is
an ideal of L.

The following four propositions are true:

(49) (D1 ∪ D2] = ((D1] ∪ D2] and (D1 ∪ D2] = (D1 ∪ (D2]].

(50) (I ∪ J ] = {r :
∨

p,q r ⊑ p ⊔ q ∧ p ∈ I ∧ q ∈ J}.

(51) I ⊆ I ⊔ J and J ⊆ I ⊔ J.

(52) (I ∪ J ] = (I ⊔ J ].

We follow the rules: B denotes a Boolean lattice, I3, J1 denote ideals of B,
and a, b denote elements of the carrier of B.

The following propositions are true:

(53) L is a complemented lattice iff L◦ is a complemented lattice.

(54) L is a Boolean lattice iff L◦ is a Boolean lattice.

Let B be a Boolean lattice. One can verify that B◦ is Boolean and lattice-like.
In the sequel a′ will denote an element of the carrier of (B qua lattice)◦ .
The following propositions are true:

(55) (a◦)c = ac and (◦a′)c = a′c.

(56) (I3 ∪ J1] = I3 ⊔ J1.

(57) I3 is maximal iff I3 6= the carrier of B and for every a holds a ∈ I3 or
ac ∈ I3.

(58) I3 6= (B] and I3 is prime iff I3 is maximal.

(59) If I3 is maximal, then for every a holds a ∈ I3 iff ac /∈ I3.

(60) If a 6= b, then there exists I3 such that I3 is maximal but a ∈ I3 and
b /∈ I3 or a /∈ I3 and b ∈ I3.

In the sequel P denotes a non empty closed subset of L and o1, o2 denote
binary operations on P .

One can prove the following two propositions:

(61) (i) (The join operation of L)
�
[:P, P :] is a binary operation on P , and

(ii) (the meet operation of L)
�
[: P, P :] is a binary operation on P .

(62) Suppose o1 = (the join operation of L)
�
[: P, P :] and o2 = (the meet

operation of L)
�
[: P, P :]. Then o1 is commutative and associative and o2

is commutative and associative and o1 absorbs o2 and o2 absorbs o1.

Let us consider L, p, q. Let us assume that p ⊑ q. The functor [p, q] yielding
a non empty closed subset of L is defined by:

(Def.14) [p, q] = {r : p ⊑ r ∧ r ⊑ q}.

We now state several propositions:



ideals 155

(63) If p ⊑ q, then r ∈ [p, q] iff p ⊑ r and r ⊑ q.

(64) If p ⊑ q, then p ∈ [p, q] and q ∈ [p, q].

(65) [p, p] = {p}.

(66) If L is upper-bounded, then [p) = [p,⊤L].

(67) If L is lower-bounded, then (p] = [⊥L, p].

(68) Let L1, L2 be lattices, and let F1 be a filter of L1, and let F2 be a filter
of L2. Suppose the lattice structure of L1 = the lattice structure of L2

and F1 = F2. Then � (F1 ) = � (F2 ).

4. Sublattices

Let us consider L. Let us note that the sublattice of L can be characterized
by the following (equivalent) condition:

(Def.15) There exist P , o1, o2 such that
(i) o1 = (the join operation of L)

�
[: P, P :],

(ii) o2 = (the meet operation of L)
�
[: P, P :], and

(iii) the lattice structure of it = 〈P, o1, o2〉.

The following proposition is true

(69) For every sublattice K of L holds every element of the carrier of K is
an element of the carrier of L.

Let us consider L, P . The functor � L
P yields a strict sublattice of L and is

defined as follows:

(Def.16) There exist o1, o2 such that o1 = (the join operation of L)
�
[:P, P :] and

o2 = (the meet operation of L)
�
[: P, P :] and � L

P = 〈P, o1, o2〉.

Let us consider L and let l be a sublattice of L. Then l◦ is a strict sublattice
of L◦.

Next we state a number of propositions:

(70) � F = � L
F .

(71) � L
P = ( � L◦

P ◦ )◦.

(72) � L
(L] = the lattice structure of L and � L

[L) = the lattice structure of L.

(73) (i) The carrier of � L
P = P,

(ii) the join operation of � L
P = (the join operation of L)

�
[: P, P :], and

(iii) the meet operation of � L
P = (the meet operation of L)

�
[: P, P :].

(74) For all p, q and for all elements p′, q′ of the carrier of � L
P such that

p = p′ and q = q′ holds p ⊔ q = p′ ⊔ q′ and p ⊓ q = p′ ⊓ q′.

(75) For all p, q and for all elements p′, q′ of the carrier of � L
P such that

p = p′ and q = q′ holds p ⊑ q iff p′ ⊑ q′.

(76) If L is lower-bounded, then � L
I is lower-bounded.

(77) If L is modular, then � L
P is modular.

(78) If L is distributive, then � L
P is distributive.
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(79) If L is implicative and p ⊑ q, then � L
[p,q] is implicative.

(80) � L
(p] is upper-bounded.

(81) ⊤ � L
(p]

= p.

(82) If L is lower-bounded, then � L
(p] is lower-bounded and ⊥ � L

(p]
= ⊥L.

(83) If L is lower-bounded, then � L
(p] is bounded.

(84) If p ⊑ q, then � L
[p,q] is bounded and ⊤ � L

[p,q]
= q and ⊥ � L

[p,q]
= p.

(85) If L is a complemented lattice and modular, then � L
(p] is a complemented

lattice.

(86) If L is a complemented lattice and modular and p ⊑ q, then � L
[p,q] is a

complemented lattice.

(87) If L is a Boolean lattice and p ⊑ q, then � L
[p,q] is a Boolean lattice.
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