Ideals

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Summary. The dual concept to filters (see [2,3]) i.e. ideals of a lattice is introduced.

MML Identifier: FILTER_2.

The articles [12], [14], [13], [4], [15], [6], [10], [9], [7], [5], [16], [8], [2], [11], [3], and [1] provide the notation and terminology for this paper.

1. Some Properties of the Restriction of Binary Operations

In this paper D is a non empty set.
We now state several propositions:
(1) Let D be a non empty set, and let S be a non empty subset of D, and let f be a binary operation on D, and let g be a binary operation on S. Suppose $g=f$ 「: S, S :]. Then
(i) if f is commutative, then g is commutative,
(ii) if f is idempotent, then g is idempotent, and
(iii) if f is associative, then g is associative.
(2) Let D be a non empty set, and let S be a non empty subset of D, and let f be a binary operation on D, and let g be a binary operation on S, and let d be an element of D, and let d^{\prime} be an element of S. Suppose $g=f \upharpoonright\left[: S, S\right.$: and $d^{\prime}=d$. Then
(i) if d is a left unity w.r.t. f, then d^{\prime} is a left unity w.r.t. g,
(ii) if d is a right unity w.r.t. f, then d^{\prime} is a right unity w.r.t. g, and
(iii) if d is a unity w.r.t. f, then d^{\prime} is a unity w.r.t. g.
(3) Let D be a non empty set, and let S be a non empty subset of D, and let f_{1}, f_{2} be binary operations on D, and let g_{1}, g_{2} be binary operations on S. Suppose $g_{1}=f_{1} \upharpoonright: S, S$: and $g_{2}=f_{2} \upharpoonright: S, S$:. Then
(i) if f_{1} is left distributive w.r.t. f_{2}, then g_{1} is left distributive w.r.t. g_{2}, and
(ii) if f_{1} is right distributive w.r.t. f_{2}, then g_{1} is right distributive w.r.t. g_{2}.
(4) Let D be a non empty set, and let S be a non empty subset of D, and let f_{1}, f_{2} be binary operations on D, and let g_{1}, g_{2} be binary operations on S. Suppose $g_{1}=f_{1} \upharpoonright\left\{S, S:\right.$ and $g_{2}=f_{2} \upharpoonright\left\lceil S, S:\right.$. If f_{1} is distributive w.r.t. f_{2}, then g_{1} is distributive w.r.t. g_{2}.
(5) Let D be a non empty set, and let S be a non empty subset of D, and let f_{1}, f_{2} be binary operations on D, and let g_{1}, g_{2} be binary operations on S. If $g_{1}=f_{1} \upharpoonright: S, S$! and $g_{2}=f_{2} \upharpoonright$: S, S : , then if f_{1} absorbs f_{2}, then g_{1} absorbs g_{2}.

2. Closed Subsets of a Lattice

Let D be a non empty set and let X_{1}, X_{2} be subsets of D. Let us observe that $X_{1}=X_{2}$ if and only if:
(Def.1) For every element x of D holds $x \in X_{1}$ iff $x \in X_{2}$.
For simplicity we follow the rules: L will denote a lattice, p, q, r will denote elements of the carrier of $L, p^{\prime}, q^{\prime}$ will denote elements of the carrier of L°, and x will be arbitrary.

Next we state several propositions:
(6) Let L_{1}, L_{2} be lattice structures. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Then $L_{1}{ }^{\circ}=L_{2}{ }^{\circ}$.
(7) $\left(L^{\circ}\right)^{\circ}=$ the lattice structure of L.
(8) Let L_{1}, L_{2} be non empty lattice structures. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Let a_{1}, b_{1} be elements of the carrier of L_{1} and let a_{2}, b_{2} be elements of the carrier of L_{2}. Suppose $a_{1}=a_{2}$ and $b_{1}=b_{2}$. Then $a_{1} \sqcup b_{1}=a_{2} \sqcup b_{2}$ and $a_{1} \sqcap b_{1}=a_{2} \sqcap b_{2}$ and $a_{1} \sqsubseteq b_{1}$ iff $a_{2} \sqsubseteq b_{2}$.
(9) Let L_{1}, L_{2} be lower bound lattices. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Then $\perp_{\left(L_{1}\right)}=\perp_{\left(L_{2}\right)}$.
(10) Let L_{1}, L_{2} be upper bound lattices. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Then $\top_{\left(L_{1}\right)}=\top_{\left(L_{2}\right)}$.
(11) Let L_{1}, L_{2} be complemented lattices. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Let a_{1}, b_{1} be elements of the carrier of L_{1} and let a_{2}, b_{2} be elements of the carrier of L_{2}. If $a_{1}=a_{2}$ and $b_{1}=b_{2}$ and a_{1} is a complement of b_{1}, then a_{2} is a complement of b_{2}.
(12) Let L_{1}, L_{2} be Boolean lattices. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Let a be an element of the carrier of L_{1} and let b be an element of the carrier of L_{2}. If $a=b$, then $a^{\mathrm{c}}=b^{\mathrm{c}}$.

Let us consider L. A subset of the carrier of L is said to be a closed subset of L if:
(Def.2) For all p, q such that $p \in$ it and $q \in$ it holds $p \sqcap q \in$ it and $p \sqcup q \in$ it.
Let us consider L. Observe that there exists a closed subset of L which is non empty.

The following two propositions are true:
(13) Let X be a subset of the carrier of L. Suppose that for all p, q holds $p \in X$ and $q \in X$ iff $p \sqcap q \in X$. Then X is a closed subset of L.
(14) Let X be a subset of the carrier of L. Suppose that for all p, q holds $p \in X$ and $q \in X$ iff $p \sqcup q \in X$. Then X is a closed subset of L.
Let us consider L. Then $[L)$ is a filter of L. Let p be an element of the carrier of L. Then $[p)$ is a filter of L.

Let us consider L and let D be a non empty subset of the carrier of L. Then $[D)$ is a filter of L.

Let L be a distributive lattice and let F_{1}, F_{2} be filters of L. Then $F_{1} \sqcap F_{2}$ is a filter of L.

Let us consider L. A non empty closed subset of L is called an ideal of L if: (Def.3) $\quad p \in$ it and $q \in$ it iff $p \sqcup q \in$ it.

Next we state three propositions:
(15) Let X be a non empty subset of the carrier of L. Suppose that for all p, q holds $p \in X$ and $q \in X$ iff $p \sqcup q \in X$. Then X is an ideal of L.
(16) Let L_{1}, L_{2} be lattices. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Given x. If x is a filter of L_{1}, then x is a filter of L_{2}.
(17) Let L_{1}, L_{2} be lattices. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Given x. If x is an ideal of L_{1}, then x is an ideal of L_{2}.
Let us consider L, p. The functor p° yielding an element of the carrier of L° is defined by:
(Def.4) $\quad p^{\circ}=p$.
Let us consider L and let p be an element of the carrier of L°. The functor ${ }^{\circ} p$ yields an element of the carrier of L and is defined as follows:
(Def.5) $\quad{ }^{\circ} p=p$.
Next we state four propositions:
(19) $p \sqcap q=p^{\circ} \sqcup q^{\circ}$ and $p \sqcup q=p^{\circ} \sqcap q^{\circ}$ and $p^{\prime} \sqcap q^{\prime}={ }^{\circ} p^{\prime} \sqcup{ }^{\circ} q^{\prime}$ and $p^{\prime} \sqcup q^{\prime}={ }^{\circ} p^{\prime} \square^{\circ} q^{\prime}$.
(20) $\quad p \sqsubseteq q$ iff $q^{\circ} \sqsubseteq p^{\circ}$ and $p^{\prime} \sqsubseteq q^{\prime}$ iff ${ }^{\circ} q^{\prime} \sqsubseteq{ }^{\circ} p^{\prime}$.
(21) x is an ideal of L iff x is a filter of L°.

Let us consider L and let X be a subset of the carrier of L. The functor X° yielding a subset of the carrier of L° is defined as follows:
(Def.6) $\quad X^{\circ}=X$.
Let us consider L and let X be a subset of the carrier of L°. The functor ${ }^{\circ} X$ yielding a subset of the carrier of L is defined by:
(Def.7) $\quad{ }^{\circ} X=X$.
Let us consider L and let D be a non empty subset of the carrier of L. Observe that D° is non empty.

Let us consider L and let D be a non empty subset of the carrier of L°. Observe that ${ }^{\circ} D$ is non empty.

Let us consider L and let S be a closed subset of L. Then S° is a closed subset of L°.

Let us consider L and let S be a non empty closed subset of L. Then S° is a non empty closed subset of L°.

Let us consider L and let S be a closed subset of L°. Then ${ }^{\circ} S$ is a closed subset of L.

Let us consider L and let S be a non empty closed subset of L°. Then ${ }^{\circ} S$ is a non empty closed subset of L.

Let us consider L and let F be a filter of L. Then F° is an ideal of L°.
Let us consider L and let F be a filter of L°. Then ${ }^{\circ} F$ is an ideal of L.
Let us consider L and let I be an ideal of L. Then I° is a filter of L°.
Let us consider L and let I be an ideal of L°. Then ${ }^{\circ} I$ is a filter of L.
We now state the proposition
(22) Let D be a non empty subset of the carrier of L. Then D is an ideal of L if and only if the following conditions are satisfied:
(i) for all p, q such that $p \in D$ and $q \in D$ holds $p \sqcup q \in D$, and
(ii) for all p, q such that $p \in D$ and $q \sqsubseteq p$ holds $q \in D$.

In the sequel I, J will be ideals of L and F will be a filter of L.
One can prove the following propositions:
(23) If $p \in I$, then $p \sqcap q \in I$ and $q \sqcap p \in I$.
(24) There exists p such that $p \in I$.
(25) If L is lower-bounded, then $\perp_{L} \in I$.
(26) If L is lower-bounded, then $\left\{\perp_{L}\right\}$ is an ideal of L.
(27) If $\{p\}$ is an ideal of L, then L is lower-bounded.

3. Ideals Generated by Subsets of a Lattice

Next we state the proposition
(28) The carrier of L is an ideal of L.

Let us consider L. The functor (L] yielding an ideal of L is defined as follows:
(Def.8) $\quad(L]=$ the carrier of L.
Let us consider L, p. The functor $(p]$ yields an ideal of L and is defined as follows:
(Def.9) $\quad(p]=\{q: q \sqsubseteq p\}$.
We now state four propositions:

$$
\begin{equation*}
q \in(p] \text { iff } q \sqsubseteq p . \tag{29}
\end{equation*}
$$

(31) $\quad p \in(p]$ and $p \sqcap q \in(p]$ and $q \sqcap p \in(p]$.
(32) If L is upper-bounded, then $(L]=\left(\top_{L}\right]$.

Let us consider L, I. We say that I is maximal if and only if:
(Def.10) $\quad I \neq$ the carrier of L and for every J such that $I \subseteq J$ and $J \neq$ the carrier of L holds $I=J$.
One can prove the following four propositions:
(33) I is maximal iff I° is an ultrafilter.
(34) If L is upper-bounded, then for every I such that $I \neq$ the carrier of L there exists J such that $I \subseteq J$ and J is maximal.
(35) If there exists r such that $p \sqcup r \neq p$, then $(p] \neq$ the carrier of L.
(36) If L is upper-bounded and $p \neq \top_{L}$, then there exists I such that $p \in I$ and I is maximal.
In the sequel D denotes a non empty subset of the carrier of L and D^{\prime} denotes a non empty subset of the carrier of L°.

Let us consider L, D. The functor $(D]$ yields an ideal of L and is defined as follows:
(Def.11) $D \subseteq(D]$ and for every I such that $D \subseteq I$ holds $(D] \subseteq I$.
We now state two propositions:

$$
\begin{align*}
& {\left[D^{\circ}\right)=(D] \text { and }[D)=\left(D^{\circ}\right] \text { and }\left[{ }^{\circ} D^{\prime}\right)=\left(D^{\prime}\right] \text { and }\left[D^{\prime}\right)=\left({ }^{\circ} D^{\prime}\right]} \tag{37}\\
& (I]=I \tag{38}
\end{align*}
$$

In the sequel D_{1}, D_{2} are non empty subsets of the carrier of L and $D_{1}^{\prime}, D_{2}^{\prime}$ are non empty subsets of the carrier of L°.

The following propositions are true:
(39) If $D_{1} \subseteq D_{2}$, then $\left(D_{1}\right] \subseteq\left(D_{2}\right]$ and $((D]] \subseteq(D]$.
(40) If $p \in D$, then $(p] \subseteq(D]$.
(41) If $D=\{p\}$, then $(D]=(p]$.
(42) If L is upper-bounded and $\top_{L} \in D$, then $(D]=(L]$ and $(D]=$ the carrier of L.
(43) If L is upper-bounded and $\top_{L} \in I$, then $I=(L]$ and $I=$ the carrier of L.
Let us consider L, I. We say that I is prime if and only if:
(Def.12) $\quad p \sqcap q \in I$ iff $p \in I$ or $q \in I$.
The following proposition is true
(44) I is prime iff I° is prime.

Let us consider L, D_{1}, D_{2}. The functor $D_{1} \sqcup D_{2}$ yielding a non empty subset of the carrier of L is defined by:
(Def.13) $\quad D_{1} \sqcup D_{2}=\left\{p \sqcup q: p \in D_{1} \wedge q \in D_{2}\right\}$.
We now state four propositions:
$D_{1} \sqcup D_{2}=D_{1}{ }^{\circ} \sqcap D_{2}{ }^{\circ}$ and $D_{1}{ }^{\circ} \sqcup D_{2}{ }^{\circ}=D_{1} \sqcap D_{2}$ and $D_{1}^{\prime} \sqcup D_{2}^{\prime}={ }^{\circ} D_{1}^{\prime} \sqcap^{\circ} D_{2}^{\prime}$ and ${ }^{\circ} D_{1}^{\prime} \sqcup^{\circ} D_{2}^{\prime}=D_{1}^{\prime} \sqcap D_{2}^{\prime}$.

$$
\begin{equation*}
\text { If } p \in D_{1} \text { and } q \in D_{2} \text {, then } p \sqcup q \in D_{1} \sqcup D_{2} \text { and } q \sqcup p \in D_{1} \sqcup D_{2} \text {. } \tag{45}
\end{equation*}
$$

If $x \in D_{1} \sqcup D_{2}$, then there exist p, q such that $x=p \sqcup q$ and $p \in D_{1}$ and $q \in D_{2}$.
(48) $D_{1} \sqcup D_{2}=D_{2} \sqcup D_{1}$.

Let L be a distributive lattice and let I_{1}, I_{2} be ideals of L. Then $I_{1} \sqcup I_{2}$ is an ideal of L.

The following four propositions are true:

$$
\begin{align*}
& \left(D_{1} \cup D_{2}\right]=\left(\left(D_{1}\right] \cup D_{2}\right] \text { and }\left(D_{1} \cup D_{2}\right]=\left(D_{1} \cup\left(D_{2}\right]\right] . \tag{49}\\
& (I \cup J]=\left\{r: \bigvee_{p, q} r \sqsubseteq p \sqcup q \wedge p \in I \wedge q \in J\right\} . \tag{50}\\
& I \subseteq I \sqcup J \text { and } J \subseteq I \sqcup J . \tag{51}\\
& (I \cup J]=(I \sqcup J] . \tag{52}
\end{align*}
$$

We follow the rules: B denotes a Boolean lattice, I_{3}, J_{1} denote ideals of B, and a, b denote elements of the carrier of B.

The following propositions are true:
(53) L is a complemented lattice iff L° is a complemented lattice.
(54) L is a Boolean lattice iff L° is a Boolean lattice.

Let B be a Boolean lattice. One can verify that B° is Boolean and lattice-like.
In the sequel a^{\prime} will denote an element of the carrier of (B qua lattice) ${ }^{\circ}$.
The following propositions are true:

$$
\begin{align*}
& \left(a^{\circ}\right)^{\mathrm{c}}=a^{\mathrm{c}} \text { and }\left({ }^{\circ} a^{\prime}\right)^{\mathrm{c}}=a^{\prime \mathrm{c}} . \tag{55}\\
& \left(I_{3} \cup J_{1}\right]=I_{3} \sqcup J_{1} .
\end{align*}
$$

(57) $\quad I_{3}$ is maximal iff $I_{3} \neq$ the carrier of B and for every a holds $a \in I_{3}$ or $a^{\mathrm{c}} \in I_{3}$.
(58) $\quad I_{3} \neq(B]$ and I_{3} is prime iff I_{3} is maximal.
(59) If I_{3} is maximal, then for every a holds $a \in I_{3}$ iff $a^{\mathrm{c}} \notin I_{3}$.
(60) If $a \neq b$, then there exists I_{3} such that I_{3} is maximal but $a \in I_{3}$ and $b \notin I_{3}$ or $a \notin I_{3}$ and $b \in I_{3}$.
In the sequel P denotes a non empty closed subset of L and o_{1}, o_{2} denote binary operations on P.

One can prove the following two propositions:
(61) (i) (The join operation of $L) \upharpoonright: P, P \vdots$ is a binary operation on P, and
(ii) (the meet operation of $L) \upharpoonright[: P, P:$ is a binary operation on P.
(62) Suppose $o_{1}=$ (the join operation of L) $\left\lceil P, P \vdots\right.$ and $o_{2}=$ (the meet operation of $L) \upharpoonright: P, P$: Then o_{1} is commutative and associative and o_{2} is commutative and associative and o_{1} absorbs o_{2} and o_{2} absorbs o_{1}.
Let us consider L, p, q. Let us assume that $p \sqsubseteq q$. The functor $[p, q]$ yielding a non empty closed subset of L is defined by:
(Def.14)

$$
[p, q]=\{r: p \sqsubseteq r \wedge r \sqsubseteq q\} .
$$

We now state several propositions: If $p \sqsubseteq q$, then $r \in[p, q]$ iff $p \sqsubseteq r$ and $r \sqsubseteq q$.
(64) If $p \sqsubseteq q$, then $p \in[p, q]$ and $q \in[p, q]$.
(65) $\quad[p, p]=\{p\}$.
(66) If L is upper-bounded, then $[p)=\left[p, \top_{L}\right]$.
(67) If L is lower-bounded, then $(p]=\left[\perp_{L}, p\right]$.
(68) Let L_{1}, L_{2} be lattices, and let F_{1} be a filter of L_{1}, and let F_{2} be a filter of L_{2}. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2} and $F_{1}=F_{2}$. Then $\mathbb{L}_{\left(F_{1}\right)}=\mathbb{L}_{\left(F_{2}\right)}$.

4. Sublattices

Let us consider L. Let us note that the sublattice of L can be characterized by the following (equivalent) condition:
(Def.15) There exist P, o_{1}, o_{2} such that
(i) $\quad o_{1}=($ the join operation of $L) \upharpoonright[: P, P:]$,
(ii) $\quad o_{2}=($ the meet operation of $L) \upharpoonright[: P, P:]$, and
(iii) the lattice structure of it $=\left\langle P, o_{1}, o_{2}\right\rangle$.

The following proposition is true
(69) For every sublattice K of L holds every element of the carrier of K is an element of the carrier of L.
Let us consider L, P. The functor \mathbb{L}_{P}^{L} yields a strict sublattice of L and is defined as follows:
(Def.16) There exist o_{1}, o_{2} such that $o_{1}=($ the join operation of $L) \upharpoonright[: P, P:]$ and $o_{2}=($ the meet operation of $L) \upharpoonright\left[: P, P:\right.$ and $\mathbb{L}_{P}^{L}=\left\langle P, o_{1}, o_{2}\right\rangle$.
Let us consider L and let l be a sublattice of L. Then l° is a strict sublattice of L°.

Next we state a number of propositions:

$$
\begin{equation*}
\mathbb{L}_{F}=\mathbb{L}_{F}^{L} \tag{70}
\end{equation*}
$$

(71) $\mathbb{L}_{P}^{L}=\left(\mathbb{L}_{P^{\circ}}^{L^{\circ}}\right)^{\circ}$.
(72) $\mathbb{L}_{(L]}^{L}=$ the lattice structure of L and $\mathbb{L}_{[L)}^{L}=$ the lattice structure of L.
(73) (i) The carrier of $\mathbb{L}_{P}^{L}=P$,
(ii) the join operation of $\mathbb{L}_{P}^{L}=($ the join operation of $L) \upharpoonright: P, P:$, and
(iii) the meet operation of $\mathbb{L}_{P}^{L}=($ the meet operation of $\left.L) \upharpoonright: P, P:\right]$.
(74) For all p, q and for all elements p^{\prime}, q^{\prime} of the carrier of \mathbb{Q}_{P}^{L} such that $p=p^{\prime}$ and $q=q^{\prime}$ holds $p \sqcup q=p^{\prime} \sqcup q^{\prime}$ and $p \sqcap q=p^{\prime} \sqcap q^{\prime}$.
(75) For all p, q and for all elements p^{\prime}, q^{\prime} of the carrier of \mathbb{L}_{P}^{L} such that $p=p^{\prime}$ and $q=q^{\prime}$ holds $p \sqsubseteq q$ iff $p^{\prime} \sqsubseteq q^{\prime}$.
(76) If L is lower-bounded, then \mathbb{L}_{I}^{L} is lower-bounded.
(77) If L is modular, then \mathbb{L}_{P}^{L} is modular.
(78) If L is distributive, then \mathbb{L}_{P}^{L} is distributive. lattice.
(86) If L is a complemented lattice and modular and $p \sqsubseteq q$, then $\mathbb{L}_{[p, q]}^{L}$ is a complemented lattice.

If L is a Boolean lattice and $p \sqsubseteq q$, then $\mathbb{\Vdash}_{[p, q]}^{L}$ is a Boolean lattice.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[2] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[3] Grzegorz Bancerek. Filters - part II. Quotient lattices modulo filters and direct product of two lattices. Formalized Mathematics, 2(3):433-438, 1991.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. Formalized Mathematics, 2(4):453-459, 1991.
[9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983-988, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[16] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received October 24, 1994

